xref: /linux/drivers/rtc/rtc-stmp3xxx.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Freescale STMP37XX/STMP378X Real Time Clock driver
3  *
4  * Copyright (c) 2007 Sigmatel, Inc.
5  * Peter Hartley, <peter.hartley@sigmatel.com>
6  *
7  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10  */
11 
12 /*
13  * The code contained herein is licensed under the GNU General Public
14  * License. You may obtain a copy of the GNU General Public License
15  * Version 2 or later at the following locations:
16  *
17  * http://www.opensource.org/licenses/gpl-license.html
18  * http://www.gnu.org/copyleft/gpl.html
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
33 
34 #define STMP3XXX_RTC_CTRL			0x0
35 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
36 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
38 #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
39 
40 #define STMP3XXX_RTC_STAT			0x10
41 #define STMP3XXX_RTC_STAT_STALE_SHIFT		16
42 #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
43 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
44 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
45 
46 #define STMP3XXX_RTC_SECONDS			0x30
47 
48 #define STMP3XXX_RTC_ALARM			0x40
49 
50 #define STMP3XXX_RTC_WATCHDOG			0x50
51 
52 #define STMP3XXX_RTC_PERSISTENT0		0x60
53 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
54 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
55 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
56 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
57 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
58 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
59 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
60 
61 #define STMP3XXX_RTC_PERSISTENT1		0x70
62 /* missing bitmask in headers */
63 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
64 
65 struct stmp3xxx_rtc_data {
66 	struct rtc_device *rtc;
67 	void __iomem *io;
68 	int irq_alarm;
69 };
70 
71 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
72 /**
73  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
74  * @dev: the parent device of the watchdog (= the RTC)
75  * @timeout: the desired value for the timeout register of the watchdog.
76  *           0 disables the watchdog
77  *
78  * The watchdog needs one register and two bits which are in the RTC domain.
79  * To handle the resource conflict, the RTC driver will create another
80  * platform_device for the watchdog driver as a child of the RTC device.
81  * The watchdog driver is passed the below accessor function via platform_data
82  * to configure the watchdog. Locking is not needed because accessing SET/CLR
83  * registers is atomic.
84  */
85 
86 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
87 {
88 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
89 
90 	if (timeout) {
91 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
92 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
93 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
94 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
95 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
96 	} else {
97 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
98 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
99 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
100 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
101 	}
102 }
103 
104 static struct stmp3xxx_wdt_pdata wdt_pdata = {
105 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
106 };
107 
108 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
109 {
110 	int rc = -1;
111 	struct platform_device *wdt_pdev =
112 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
113 
114 	if (wdt_pdev) {
115 		wdt_pdev->dev.parent = &rtc_pdev->dev;
116 		wdt_pdev->dev.platform_data = &wdt_pdata;
117 		rc = platform_device_add(wdt_pdev);
118 	}
119 
120 	if (rc)
121 		dev_err(&rtc_pdev->dev,
122 			"failed to register stmp3xxx_rtc_wdt\n");
123 }
124 #else
125 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
126 {
127 }
128 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
129 
130 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
131 {
132 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
133 	/*
134 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
135 	 * states:
136 	 * | The order in which registers are updated is
137 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
138 	 * | (This list is in bitfield order, from LSB to MSB, as they would
139 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
140 	 * | register. For example, the Seconds register corresponds to
141 	 * | STALE_REGS or NEW_REGS containing 0x80.)
142 	 */
143 	do {
144 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
145 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
146 			return 0;
147 		udelay(1);
148 	} while (--timeout > 0);
149 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
150 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
151 }
152 
153 /* Time read/write */
154 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
155 {
156 	int ret;
157 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
158 
159 	ret = stmp3xxx_wait_time(rtc_data);
160 	if (ret)
161 		return ret;
162 
163 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
164 	return 0;
165 }
166 
167 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
168 {
169 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
170 
171 	writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
172 	return stmp3xxx_wait_time(rtc_data);
173 }
174 
175 /* interrupt(s) handler */
176 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
177 {
178 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
179 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
180 
181 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
182 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
183 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
184 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
185 		return IRQ_HANDLED;
186 	}
187 
188 	return IRQ_NONE;
189 }
190 
191 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
192 {
193 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
194 
195 	if (enabled) {
196 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
197 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
198 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
199 				STMP_OFFSET_REG_SET);
200 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
201 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
202 	} else {
203 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
204 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
205 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
206 				STMP_OFFSET_REG_CLR);
207 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
208 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
209 	}
210 	return 0;
211 }
212 
213 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
214 {
215 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
216 
217 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
218 	return 0;
219 }
220 
221 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
222 {
223 	unsigned long t;
224 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
225 
226 	rtc_tm_to_time(&alm->time, &t);
227 	writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
228 
229 	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
230 
231 	return 0;
232 }
233 
234 static struct rtc_class_ops stmp3xxx_rtc_ops = {
235 	.alarm_irq_enable =
236 			  stmp3xxx_alarm_irq_enable,
237 	.read_time	= stmp3xxx_rtc_gettime,
238 	.set_mmss	= stmp3xxx_rtc_set_mmss,
239 	.read_alarm	= stmp3xxx_rtc_read_alarm,
240 	.set_alarm	= stmp3xxx_rtc_set_alarm,
241 };
242 
243 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
244 {
245 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
246 
247 	if (!rtc_data)
248 		return 0;
249 
250 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
251 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
252 
253 	return 0;
254 }
255 
256 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
257 {
258 	struct stmp3xxx_rtc_data *rtc_data;
259 	struct resource *r;
260 	u32 rtc_stat;
261 	u32 pers0_set, pers0_clr;
262 	u32 crystalfreq = 0;
263 	int err;
264 
265 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
266 	if (!rtc_data)
267 		return -ENOMEM;
268 
269 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
270 	if (!r) {
271 		dev_err(&pdev->dev, "failed to get resource\n");
272 		return -ENXIO;
273 	}
274 
275 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
276 	if (!rtc_data->io) {
277 		dev_err(&pdev->dev, "ioremap failed\n");
278 		return -EIO;
279 	}
280 
281 	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
282 
283 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
284 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
285 		dev_err(&pdev->dev, "no device onboard\n");
286 		return -ENODEV;
287 	}
288 
289 	platform_set_drvdata(pdev, rtc_data);
290 
291 	err = stmp_reset_block(rtc_data->io);
292 	if (err) {
293 		dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
294 		return err;
295 	}
296 
297 	/*
298 	 * Obviously the rtc needs a clock input to be able to run.
299 	 * This clock can be provided by an external 32k crystal. If that one is
300 	 * missing XTAL must not be disabled in suspend which consumes a
301 	 * lot of power. Normally the presence and exact frequency (supported
302 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
303 	 * proves these fuses are not blown correctly on all machines, so the
304 	 * frequency can be overridden in the device tree.
305 	 */
306 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
307 		crystalfreq = 32000;
308 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
309 		crystalfreq = 32768;
310 
311 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
312 			     &crystalfreq);
313 
314 	switch (crystalfreq) {
315 	case 32000:
316 		/* keep 32kHz crystal running in low-power mode */
317 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
318 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
319 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
320 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
321 		break;
322 	case 32768:
323 		/* keep 32.768kHz crystal running in low-power mode */
324 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
325 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
326 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
327 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
328 		break;
329 	default:
330 		dev_warn(&pdev->dev,
331 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
332 		/* fall-through */
333 	case 0:
334 		/* keep XTAL on in low-power mode */
335 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
336 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
337 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
338 	}
339 
340 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
341 			STMP_OFFSET_REG_SET);
342 
343 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
344 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
345 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
346 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
347 
348 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
349 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
350 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
351 
352 	rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
353 				&stmp3xxx_rtc_ops, THIS_MODULE);
354 	if (IS_ERR(rtc_data->rtc))
355 		return PTR_ERR(rtc_data->rtc);
356 
357 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
358 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
359 	if (err) {
360 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
361 			rtc_data->irq_alarm);
362 		return err;
363 	}
364 
365 	stmp3xxx_wdt_register(pdev);
366 	return 0;
367 }
368 
369 #ifdef CONFIG_PM_SLEEP
370 static int stmp3xxx_rtc_suspend(struct device *dev)
371 {
372 	return 0;
373 }
374 
375 static int stmp3xxx_rtc_resume(struct device *dev)
376 {
377 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
378 
379 	stmp_reset_block(rtc_data->io);
380 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
381 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
382 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
383 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
384 	return 0;
385 }
386 #endif
387 
388 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
389 			stmp3xxx_rtc_resume);
390 
391 static const struct of_device_id rtc_dt_ids[] = {
392 	{ .compatible = "fsl,stmp3xxx-rtc", },
393 	{ /* sentinel */ }
394 };
395 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
396 
397 static struct platform_driver stmp3xxx_rtcdrv = {
398 	.probe		= stmp3xxx_rtc_probe,
399 	.remove		= stmp3xxx_rtc_remove,
400 	.driver		= {
401 		.name	= "stmp3xxx-rtc",
402 		.pm	= &stmp3xxx_rtc_pm_ops,
403 		.of_match_table = rtc_dt_ids,
404 	},
405 };
406 
407 module_platform_driver(stmp3xxx_rtcdrv);
408 
409 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
410 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
411 		"Wolfram Sang <w.sang@pengutronix.de>");
412 MODULE_LICENSE("GPL");
413