xref: /linux/drivers/rtc/rtc-stm32.c (revision f94909ceb1ed4bfdb2ada72f93236305e6d6951f)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) STMicroelectronics 2017
4   * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5   */
6  
7  #include <linux/bcd.h>
8  #include <linux/clk.h>
9  #include <linux/iopoll.h>
10  #include <linux/ioport.h>
11  #include <linux/mfd/syscon.h>
12  #include <linux/module.h>
13  #include <linux/of_device.h>
14  #include <linux/pm_wakeirq.h>
15  #include <linux/regmap.h>
16  #include <linux/rtc.h>
17  
18  #define DRIVER_NAME "stm32_rtc"
19  
20  /* STM32_RTC_TR bit fields  */
21  #define STM32_RTC_TR_SEC_SHIFT		0
22  #define STM32_RTC_TR_SEC		GENMASK(6, 0)
23  #define STM32_RTC_TR_MIN_SHIFT		8
24  #define STM32_RTC_TR_MIN		GENMASK(14, 8)
25  #define STM32_RTC_TR_HOUR_SHIFT		16
26  #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
27  
28  /* STM32_RTC_DR bit fields */
29  #define STM32_RTC_DR_DATE_SHIFT		0
30  #define STM32_RTC_DR_DATE		GENMASK(5, 0)
31  #define STM32_RTC_DR_MONTH_SHIFT	8
32  #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
33  #define STM32_RTC_DR_WDAY_SHIFT		13
34  #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
35  #define STM32_RTC_DR_YEAR_SHIFT		16
36  #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
37  
38  /* STM32_RTC_CR bit fields */
39  #define STM32_RTC_CR_FMT		BIT(6)
40  #define STM32_RTC_CR_ALRAE		BIT(8)
41  #define STM32_RTC_CR_ALRAIE		BIT(12)
42  
43  /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
44  #define STM32_RTC_ISR_ALRAWF		BIT(0)
45  #define STM32_RTC_ISR_INITS		BIT(4)
46  #define STM32_RTC_ISR_RSF		BIT(5)
47  #define STM32_RTC_ISR_INITF		BIT(6)
48  #define STM32_RTC_ISR_INIT		BIT(7)
49  #define STM32_RTC_ISR_ALRAF		BIT(8)
50  
51  /* STM32_RTC_PRER bit fields */
52  #define STM32_RTC_PRER_PRED_S_SHIFT	0
53  #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
54  #define STM32_RTC_PRER_PRED_A_SHIFT	16
55  #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
56  
57  /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
58  #define STM32_RTC_ALRMXR_SEC_SHIFT	0
59  #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
60  #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
61  #define STM32_RTC_ALRMXR_MIN_SHIFT	8
62  #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
63  #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
64  #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
65  #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
66  #define STM32_RTC_ALRMXR_PM		BIT(22)
67  #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
68  #define STM32_RTC_ALRMXR_DATE_SHIFT	24
69  #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
70  #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
71  #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
72  #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
73  #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
74  
75  /* STM32_RTC_SR/_SCR bit fields */
76  #define STM32_RTC_SR_ALRA		BIT(0)
77  
78  /* STM32_RTC_VERR bit fields */
79  #define STM32_RTC_VERR_MINREV_SHIFT	0
80  #define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
81  #define STM32_RTC_VERR_MAJREV_SHIFT	4
82  #define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
83  
84  /* STM32_RTC_WPR key constants */
85  #define RTC_WPR_1ST_KEY			0xCA
86  #define RTC_WPR_2ND_KEY			0x53
87  #define RTC_WPR_WRONG_KEY		0xFF
88  
89  /* Max STM32 RTC register offset is 0x3FC */
90  #define UNDEF_REG			0xFFFF
91  
92  struct stm32_rtc;
93  
94  struct stm32_rtc_registers {
95  	u16 tr;
96  	u16 dr;
97  	u16 cr;
98  	u16 isr;
99  	u16 prer;
100  	u16 alrmar;
101  	u16 wpr;
102  	u16 sr;
103  	u16 scr;
104  	u16 verr;
105  };
106  
107  struct stm32_rtc_events {
108  	u32 alra;
109  };
110  
111  struct stm32_rtc_data {
112  	const struct stm32_rtc_registers regs;
113  	const struct stm32_rtc_events events;
114  	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
115  	bool has_pclk;
116  	bool need_dbp;
117  	bool has_wakeirq;
118  };
119  
120  struct stm32_rtc {
121  	struct rtc_device *rtc_dev;
122  	void __iomem *base;
123  	struct regmap *dbp;
124  	unsigned int dbp_reg;
125  	unsigned int dbp_mask;
126  	struct clk *pclk;
127  	struct clk *rtc_ck;
128  	const struct stm32_rtc_data *data;
129  	int irq_alarm;
130  	int wakeirq_alarm;
131  };
132  
133  static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
134  {
135  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
136  
137  	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
138  	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
139  }
140  
141  static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
142  {
143  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
144  
145  	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
146  }
147  
148  static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
149  {
150  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
151  	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
152  
153  	if (!(isr & STM32_RTC_ISR_INITF)) {
154  		isr |= STM32_RTC_ISR_INIT;
155  		writel_relaxed(isr, rtc->base + regs->isr);
156  
157  		/*
158  		 * It takes around 2 rtc_ck clock cycles to enter in
159  		 * initialization phase mode (and have INITF flag set). As
160  		 * slowest rtc_ck frequency may be 32kHz and highest should be
161  		 * 1MHz, we poll every 10 us with a timeout of 100ms.
162  		 */
163  		return readl_relaxed_poll_timeout_atomic(
164  					rtc->base + regs->isr,
165  					isr, (isr & STM32_RTC_ISR_INITF),
166  					10, 100000);
167  	}
168  
169  	return 0;
170  }
171  
172  static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
173  {
174  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
175  	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
176  
177  	isr &= ~STM32_RTC_ISR_INIT;
178  	writel_relaxed(isr, rtc->base + regs->isr);
179  }
180  
181  static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
182  {
183  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
184  	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
185  
186  	isr &= ~STM32_RTC_ISR_RSF;
187  	writel_relaxed(isr, rtc->base + regs->isr);
188  
189  	/*
190  	 * Wait for RSF to be set to ensure the calendar registers are
191  	 * synchronised, it takes around 2 rtc_ck clock cycles
192  	 */
193  	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
194  						 isr,
195  						 (isr & STM32_RTC_ISR_RSF),
196  						 10, 100000);
197  }
198  
199  static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
200  					unsigned int flags)
201  {
202  	rtc->data->clear_events(rtc, flags);
203  }
204  
205  static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
206  {
207  	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
208  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
209  	const struct stm32_rtc_events *evts = &rtc->data->events;
210  	unsigned int status, cr;
211  
212  	rtc_lock(rtc->rtc_dev);
213  
214  	status = readl_relaxed(rtc->base + regs->sr);
215  	cr = readl_relaxed(rtc->base + regs->cr);
216  
217  	if ((status & evts->alra) &&
218  	    (cr & STM32_RTC_CR_ALRAIE)) {
219  		/* Alarm A flag - Alarm interrupt */
220  		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
221  
222  		/* Pass event to the kernel */
223  		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
224  
225  		/* Clear event flags, otherwise new events won't be received */
226  		stm32_rtc_clear_event_flags(rtc, evts->alra);
227  	}
228  
229  	rtc_unlock(rtc->rtc_dev);
230  
231  	return IRQ_HANDLED;
232  }
233  
234  /* Convert rtc_time structure from bin to bcd format */
235  static void tm2bcd(struct rtc_time *tm)
236  {
237  	tm->tm_sec = bin2bcd(tm->tm_sec);
238  	tm->tm_min = bin2bcd(tm->tm_min);
239  	tm->tm_hour = bin2bcd(tm->tm_hour);
240  
241  	tm->tm_mday = bin2bcd(tm->tm_mday);
242  	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
243  	tm->tm_year = bin2bcd(tm->tm_year - 100);
244  	/*
245  	 * Number of days since Sunday
246  	 * - on kernel side, 0=Sunday...6=Saturday
247  	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
248  	 */
249  	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
250  }
251  
252  /* Convert rtc_time structure from bcd to bin format */
253  static void bcd2tm(struct rtc_time *tm)
254  {
255  	tm->tm_sec = bcd2bin(tm->tm_sec);
256  	tm->tm_min = bcd2bin(tm->tm_min);
257  	tm->tm_hour = bcd2bin(tm->tm_hour);
258  
259  	tm->tm_mday = bcd2bin(tm->tm_mday);
260  	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
261  	tm->tm_year = bcd2bin(tm->tm_year) + 100;
262  	/*
263  	 * Number of days since Sunday
264  	 * - on kernel side, 0=Sunday...6=Saturday
265  	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
266  	 */
267  	tm->tm_wday %= 7;
268  }
269  
270  static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
271  {
272  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
273  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
274  	unsigned int tr, dr;
275  
276  	/* Time and Date in BCD format */
277  	tr = readl_relaxed(rtc->base + regs->tr);
278  	dr = readl_relaxed(rtc->base + regs->dr);
279  
280  	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
281  	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
282  	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
283  
284  	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
285  	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
286  	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
287  	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
288  
289  	/* We don't report tm_yday and tm_isdst */
290  
291  	bcd2tm(tm);
292  
293  	return 0;
294  }
295  
296  static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
297  {
298  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
299  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
300  	unsigned int tr, dr;
301  	int ret = 0;
302  
303  	tm2bcd(tm);
304  
305  	/* Time in BCD format */
306  	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
307  	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
308  	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
309  
310  	/* Date in BCD format */
311  	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
312  	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
313  	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
314  	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
315  
316  	stm32_rtc_wpr_unlock(rtc);
317  
318  	ret = stm32_rtc_enter_init_mode(rtc);
319  	if (ret) {
320  		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
321  		goto end;
322  	}
323  
324  	writel_relaxed(tr, rtc->base + regs->tr);
325  	writel_relaxed(dr, rtc->base + regs->dr);
326  
327  	stm32_rtc_exit_init_mode(rtc);
328  
329  	ret = stm32_rtc_wait_sync(rtc);
330  end:
331  	stm32_rtc_wpr_lock(rtc);
332  
333  	return ret;
334  }
335  
336  static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
337  {
338  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
339  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
340  	const struct stm32_rtc_events *evts = &rtc->data->events;
341  	struct rtc_time *tm = &alrm->time;
342  	unsigned int alrmar, cr, status;
343  
344  	alrmar = readl_relaxed(rtc->base + regs->alrmar);
345  	cr = readl_relaxed(rtc->base + regs->cr);
346  	status = readl_relaxed(rtc->base + regs->sr);
347  
348  	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
349  		/*
350  		 * Date/day doesn't matter in Alarm comparison so alarm
351  		 * triggers every day
352  		 */
353  		tm->tm_mday = -1;
354  		tm->tm_wday = -1;
355  	} else {
356  		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
357  			/* Alarm is set to a day of week */
358  			tm->tm_mday = -1;
359  			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
360  				      STM32_RTC_ALRMXR_WDAY_SHIFT;
361  			tm->tm_wday %= 7;
362  		} else {
363  			/* Alarm is set to a day of month */
364  			tm->tm_wday = -1;
365  			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
366  				       STM32_RTC_ALRMXR_DATE_SHIFT;
367  		}
368  	}
369  
370  	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
371  		/* Hours don't matter in Alarm comparison */
372  		tm->tm_hour = -1;
373  	} else {
374  		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
375  			       STM32_RTC_ALRMXR_HOUR_SHIFT;
376  		if (alrmar & STM32_RTC_ALRMXR_PM)
377  			tm->tm_hour += 12;
378  	}
379  
380  	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
381  		/* Minutes don't matter in Alarm comparison */
382  		tm->tm_min = -1;
383  	} else {
384  		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
385  			      STM32_RTC_ALRMXR_MIN_SHIFT;
386  	}
387  
388  	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
389  		/* Seconds don't matter in Alarm comparison */
390  		tm->tm_sec = -1;
391  	} else {
392  		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
393  			      STM32_RTC_ALRMXR_SEC_SHIFT;
394  	}
395  
396  	bcd2tm(tm);
397  
398  	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
399  	alrm->pending = (status & evts->alra) ? 1 : 0;
400  
401  	return 0;
402  }
403  
404  static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
405  {
406  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
407  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
408  	const struct stm32_rtc_events *evts = &rtc->data->events;
409  	unsigned int cr;
410  
411  	cr = readl_relaxed(rtc->base + regs->cr);
412  
413  	stm32_rtc_wpr_unlock(rtc);
414  
415  	/* We expose Alarm A to the kernel */
416  	if (enabled)
417  		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
418  	else
419  		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
420  	writel_relaxed(cr, rtc->base + regs->cr);
421  
422  	/* Clear event flags, otherwise new events won't be received */
423  	stm32_rtc_clear_event_flags(rtc, evts->alra);
424  
425  	stm32_rtc_wpr_lock(rtc);
426  
427  	return 0;
428  }
429  
430  static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
431  {
432  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
433  	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
434  	unsigned int dr = readl_relaxed(rtc->base + regs->dr);
435  	unsigned int tr = readl_relaxed(rtc->base + regs->tr);
436  
437  	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
438  	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
439  	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
440  	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
441  	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
442  	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
443  
444  	/*
445  	 * Assuming current date is M-D-Y H:M:S.
446  	 * RTC alarm can't be set on a specific month and year.
447  	 * So the valid alarm range is:
448  	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
449  	 * with a specific case for December...
450  	 */
451  	if ((((tm->tm_year > cur_year) &&
452  	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
453  	     ((tm->tm_year == cur_year) &&
454  	      (tm->tm_mon <= cur_mon + 1))) &&
455  	    ((tm->tm_mday > cur_day) ||
456  	     ((tm->tm_mday == cur_day) &&
457  	     ((tm->tm_hour > cur_hour) ||
458  	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
459  	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
460  	       (tm->tm_sec >= cur_sec))))))
461  		return 0;
462  
463  	return -EINVAL;
464  }
465  
466  static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
467  {
468  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
469  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
470  	struct rtc_time *tm = &alrm->time;
471  	unsigned int cr, isr, alrmar;
472  	int ret = 0;
473  
474  	tm2bcd(tm);
475  
476  	/*
477  	 * RTC alarm can't be set on a specific date, unless this date is
478  	 * up to the same day of month next month.
479  	 */
480  	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
481  		dev_err(dev, "Alarm can be set only on upcoming month.\n");
482  		return -EINVAL;
483  	}
484  
485  	alrmar = 0;
486  	/* tm_year and tm_mon are not used because not supported by RTC */
487  	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
488  		  STM32_RTC_ALRMXR_DATE;
489  	/* 24-hour format */
490  	alrmar &= ~STM32_RTC_ALRMXR_PM;
491  	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
492  		  STM32_RTC_ALRMXR_HOUR;
493  	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
494  		  STM32_RTC_ALRMXR_MIN;
495  	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
496  		  STM32_RTC_ALRMXR_SEC;
497  
498  	stm32_rtc_wpr_unlock(rtc);
499  
500  	/* Disable Alarm */
501  	cr = readl_relaxed(rtc->base + regs->cr);
502  	cr &= ~STM32_RTC_CR_ALRAE;
503  	writel_relaxed(cr, rtc->base + regs->cr);
504  
505  	/*
506  	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
507  	 * takes around 2 rtc_ck clock cycles
508  	 */
509  	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
510  						isr,
511  						(isr & STM32_RTC_ISR_ALRAWF),
512  						10, 100000);
513  
514  	if (ret) {
515  		dev_err(dev, "Alarm update not allowed\n");
516  		goto end;
517  	}
518  
519  	/* Write to Alarm register */
520  	writel_relaxed(alrmar, rtc->base + regs->alrmar);
521  
522  	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
523  end:
524  	stm32_rtc_wpr_lock(rtc);
525  
526  	return ret;
527  }
528  
529  static const struct rtc_class_ops stm32_rtc_ops = {
530  	.read_time	= stm32_rtc_read_time,
531  	.set_time	= stm32_rtc_set_time,
532  	.read_alarm	= stm32_rtc_read_alarm,
533  	.set_alarm	= stm32_rtc_set_alarm,
534  	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
535  };
536  
537  static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
538  				   unsigned int flags)
539  {
540  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
541  
542  	/* Flags are cleared by writing 0 in RTC_ISR */
543  	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
544  		       rtc->base + regs->isr);
545  }
546  
547  static const struct stm32_rtc_data stm32_rtc_data = {
548  	.has_pclk = false,
549  	.need_dbp = true,
550  	.has_wakeirq = false,
551  	.regs = {
552  		.tr = 0x00,
553  		.dr = 0x04,
554  		.cr = 0x08,
555  		.isr = 0x0C,
556  		.prer = 0x10,
557  		.alrmar = 0x1C,
558  		.wpr = 0x24,
559  		.sr = 0x0C, /* set to ISR offset to ease alarm management */
560  		.scr = UNDEF_REG,
561  		.verr = UNDEF_REG,
562  	},
563  	.events = {
564  		.alra = STM32_RTC_ISR_ALRAF,
565  	},
566  	.clear_events = stm32_rtc_clear_events,
567  };
568  
569  static const struct stm32_rtc_data stm32h7_rtc_data = {
570  	.has_pclk = true,
571  	.need_dbp = true,
572  	.has_wakeirq = false,
573  	.regs = {
574  		.tr = 0x00,
575  		.dr = 0x04,
576  		.cr = 0x08,
577  		.isr = 0x0C,
578  		.prer = 0x10,
579  		.alrmar = 0x1C,
580  		.wpr = 0x24,
581  		.sr = 0x0C, /* set to ISR offset to ease alarm management */
582  		.scr = UNDEF_REG,
583  		.verr = UNDEF_REG,
584  	},
585  	.events = {
586  		.alra = STM32_RTC_ISR_ALRAF,
587  	},
588  	.clear_events = stm32_rtc_clear_events,
589  };
590  
591  static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
592  				      unsigned int flags)
593  {
594  	struct stm32_rtc_registers regs = rtc->data->regs;
595  
596  	/* Flags are cleared by writing 1 in RTC_SCR */
597  	writel_relaxed(flags, rtc->base + regs.scr);
598  }
599  
600  static const struct stm32_rtc_data stm32mp1_data = {
601  	.has_pclk = true,
602  	.need_dbp = false,
603  	.has_wakeirq = true,
604  	.regs = {
605  		.tr = 0x00,
606  		.dr = 0x04,
607  		.cr = 0x18,
608  		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
609  		.prer = 0x10,
610  		.alrmar = 0x40,
611  		.wpr = 0x24,
612  		.sr = 0x50,
613  		.scr = 0x5C,
614  		.verr = 0x3F4,
615  	},
616  	.events = {
617  		.alra = STM32_RTC_SR_ALRA,
618  	},
619  	.clear_events = stm32mp1_rtc_clear_events,
620  };
621  
622  static const struct of_device_id stm32_rtc_of_match[] = {
623  	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
624  	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
625  	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
626  	{}
627  };
628  MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
629  
630  static int stm32_rtc_init(struct platform_device *pdev,
631  			  struct stm32_rtc *rtc)
632  {
633  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
634  	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
635  	unsigned int rate;
636  	int ret = 0;
637  
638  	rate = clk_get_rate(rtc->rtc_ck);
639  
640  	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
641  	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
642  	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
643  
644  	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
645  		pred_s = (rate / (pred_a + 1)) - 1;
646  
647  		if (((pred_s + 1) * (pred_a + 1)) == rate)
648  			break;
649  	}
650  
651  	/*
652  	 * Can't find a 1Hz, so give priority to RTC power consumption
653  	 * by choosing the higher possible value for prediv_a
654  	 */
655  	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
656  		pred_a = pred_a_max;
657  		pred_s = (rate / (pred_a + 1)) - 1;
658  
659  		dev_warn(&pdev->dev, "rtc_ck is %s\n",
660  			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
661  			 "fast" : "slow");
662  	}
663  
664  	stm32_rtc_wpr_unlock(rtc);
665  
666  	ret = stm32_rtc_enter_init_mode(rtc);
667  	if (ret) {
668  		dev_err(&pdev->dev,
669  			"Can't enter in init mode. Prescaler config failed.\n");
670  		goto end;
671  	}
672  
673  	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
674  	writel_relaxed(prer, rtc->base + regs->prer);
675  	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
676  	writel_relaxed(prer, rtc->base + regs->prer);
677  
678  	/* Force 24h time format */
679  	cr = readl_relaxed(rtc->base + regs->cr);
680  	cr &= ~STM32_RTC_CR_FMT;
681  	writel_relaxed(cr, rtc->base + regs->cr);
682  
683  	stm32_rtc_exit_init_mode(rtc);
684  
685  	ret = stm32_rtc_wait_sync(rtc);
686  end:
687  	stm32_rtc_wpr_lock(rtc);
688  
689  	return ret;
690  }
691  
692  static int stm32_rtc_probe(struct platform_device *pdev)
693  {
694  	struct stm32_rtc *rtc;
695  	const struct stm32_rtc_registers *regs;
696  	int ret;
697  
698  	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
699  	if (!rtc)
700  		return -ENOMEM;
701  
702  	rtc->base = devm_platform_ioremap_resource(pdev, 0);
703  	if (IS_ERR(rtc->base))
704  		return PTR_ERR(rtc->base);
705  
706  	rtc->data = (struct stm32_rtc_data *)
707  		    of_device_get_match_data(&pdev->dev);
708  	regs = &rtc->data->regs;
709  
710  	if (rtc->data->need_dbp) {
711  		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
712  							   "st,syscfg");
713  		if (IS_ERR(rtc->dbp)) {
714  			dev_err(&pdev->dev, "no st,syscfg\n");
715  			return PTR_ERR(rtc->dbp);
716  		}
717  
718  		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
719  						 1, &rtc->dbp_reg);
720  		if (ret) {
721  			dev_err(&pdev->dev, "can't read DBP register offset\n");
722  			return ret;
723  		}
724  
725  		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
726  						 2, &rtc->dbp_mask);
727  		if (ret) {
728  			dev_err(&pdev->dev, "can't read DBP register mask\n");
729  			return ret;
730  		}
731  	}
732  
733  	if (!rtc->data->has_pclk) {
734  		rtc->pclk = NULL;
735  		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
736  	} else {
737  		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
738  		if (IS_ERR(rtc->pclk)) {
739  			dev_err(&pdev->dev, "no pclk clock");
740  			return PTR_ERR(rtc->pclk);
741  		}
742  		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
743  	}
744  	if (IS_ERR(rtc->rtc_ck)) {
745  		dev_err(&pdev->dev, "no rtc_ck clock");
746  		return PTR_ERR(rtc->rtc_ck);
747  	}
748  
749  	if (rtc->data->has_pclk) {
750  		ret = clk_prepare_enable(rtc->pclk);
751  		if (ret)
752  			return ret;
753  	}
754  
755  	ret = clk_prepare_enable(rtc->rtc_ck);
756  	if (ret)
757  		goto err_no_rtc_ck;
758  
759  	if (rtc->data->need_dbp)
760  		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
761  				   rtc->dbp_mask, rtc->dbp_mask);
762  
763  	/*
764  	 * After a system reset, RTC_ISR.INITS flag can be read to check if
765  	 * the calendar has been initialized or not. INITS flag is reset by a
766  	 * power-on reset (no vbat, no power-supply). It is not reset if
767  	 * rtc_ck parent clock has changed (so RTC prescalers need to be
768  	 * changed). That's why we cannot rely on this flag to know if RTC
769  	 * init has to be done.
770  	 */
771  	ret = stm32_rtc_init(pdev, rtc);
772  	if (ret)
773  		goto err;
774  
775  	rtc->irq_alarm = platform_get_irq(pdev, 0);
776  	if (rtc->irq_alarm <= 0) {
777  		ret = rtc->irq_alarm;
778  		goto err;
779  	}
780  
781  	ret = device_init_wakeup(&pdev->dev, true);
782  	if (rtc->data->has_wakeirq) {
783  		rtc->wakeirq_alarm = platform_get_irq(pdev, 1);
784  		if (rtc->wakeirq_alarm > 0) {
785  			ret = dev_pm_set_dedicated_wake_irq(&pdev->dev,
786  							    rtc->wakeirq_alarm);
787  		} else {
788  			ret = rtc->wakeirq_alarm;
789  			if (rtc->wakeirq_alarm == -EPROBE_DEFER)
790  				goto err;
791  		}
792  	}
793  	if (ret)
794  		dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret);
795  
796  	platform_set_drvdata(pdev, rtc);
797  
798  	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
799  						&stm32_rtc_ops, THIS_MODULE);
800  	if (IS_ERR(rtc->rtc_dev)) {
801  		ret = PTR_ERR(rtc->rtc_dev);
802  		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
803  			ret);
804  		goto err;
805  	}
806  
807  	/* Handle RTC alarm interrupts */
808  	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
809  					stm32_rtc_alarm_irq, IRQF_ONESHOT,
810  					pdev->name, rtc);
811  	if (ret) {
812  		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
813  			rtc->irq_alarm);
814  		goto err;
815  	}
816  
817  	/*
818  	 * If INITS flag is reset (calendar year field set to 0x00), calendar
819  	 * must be initialized
820  	 */
821  	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
822  		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
823  
824  	if (regs->verr != UNDEF_REG) {
825  		u32 ver = readl_relaxed(rtc->base + regs->verr);
826  
827  		dev_info(&pdev->dev, "registered rev:%d.%d\n",
828  			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
829  			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
830  	}
831  
832  	return 0;
833  
834  err:
835  	clk_disable_unprepare(rtc->rtc_ck);
836  err_no_rtc_ck:
837  	if (rtc->data->has_pclk)
838  		clk_disable_unprepare(rtc->pclk);
839  
840  	if (rtc->data->need_dbp)
841  		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
842  
843  	dev_pm_clear_wake_irq(&pdev->dev);
844  	device_init_wakeup(&pdev->dev, false);
845  
846  	return ret;
847  }
848  
849  static int stm32_rtc_remove(struct platform_device *pdev)
850  {
851  	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
852  	const struct stm32_rtc_registers *regs = &rtc->data->regs;
853  	unsigned int cr;
854  
855  	/* Disable interrupts */
856  	stm32_rtc_wpr_unlock(rtc);
857  	cr = readl_relaxed(rtc->base + regs->cr);
858  	cr &= ~STM32_RTC_CR_ALRAIE;
859  	writel_relaxed(cr, rtc->base + regs->cr);
860  	stm32_rtc_wpr_lock(rtc);
861  
862  	clk_disable_unprepare(rtc->rtc_ck);
863  	if (rtc->data->has_pclk)
864  		clk_disable_unprepare(rtc->pclk);
865  
866  	/* Enable backup domain write protection if needed */
867  	if (rtc->data->need_dbp)
868  		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
869  
870  	dev_pm_clear_wake_irq(&pdev->dev);
871  	device_init_wakeup(&pdev->dev, false);
872  
873  	return 0;
874  }
875  
876  #ifdef CONFIG_PM_SLEEP
877  static int stm32_rtc_suspend(struct device *dev)
878  {
879  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
880  
881  	if (rtc->data->has_pclk)
882  		clk_disable_unprepare(rtc->pclk);
883  
884  	if (device_may_wakeup(dev))
885  		return enable_irq_wake(rtc->irq_alarm);
886  
887  	return 0;
888  }
889  
890  static int stm32_rtc_resume(struct device *dev)
891  {
892  	struct stm32_rtc *rtc = dev_get_drvdata(dev);
893  	int ret = 0;
894  
895  	if (rtc->data->has_pclk) {
896  		ret = clk_prepare_enable(rtc->pclk);
897  		if (ret)
898  			return ret;
899  	}
900  
901  	ret = stm32_rtc_wait_sync(rtc);
902  	if (ret < 0) {
903  		if (rtc->data->has_pclk)
904  			clk_disable_unprepare(rtc->pclk);
905  		return ret;
906  	}
907  
908  	if (device_may_wakeup(dev))
909  		return disable_irq_wake(rtc->irq_alarm);
910  
911  	return ret;
912  }
913  #endif
914  
915  static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
916  			 stm32_rtc_suspend, stm32_rtc_resume);
917  
918  static struct platform_driver stm32_rtc_driver = {
919  	.probe		= stm32_rtc_probe,
920  	.remove		= stm32_rtc_remove,
921  	.driver		= {
922  		.name	= DRIVER_NAME,
923  		.pm	= &stm32_rtc_pm_ops,
924  		.of_match_table = stm32_rtc_of_match,
925  	},
926  };
927  
928  module_platform_driver(stm32_rtc_driver);
929  
930  MODULE_ALIAS("platform:" DRIVER_NAME);
931  MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
932  MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
933  MODULE_LICENSE("GPL v2");
934