1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2017 4 * Author: Amelie Delaunay <amelie.delaunay@st.com> 5 */ 6 7 #include <linux/bcd.h> 8 #include <linux/bitfield.h> 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/errno.h> 12 #include <linux/iopoll.h> 13 #include <linux/ioport.h> 14 #include <linux/mfd/syscon.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/pinctrl/pinctrl.h> 18 #include <linux/pinctrl/pinconf-generic.h> 19 #include <linux/pinctrl/pinmux.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_wakeirq.h> 22 #include <linux/regmap.h> 23 #include <linux/rtc.h> 24 25 #define DRIVER_NAME "stm32_rtc" 26 27 /* STM32_RTC_TR bit fields */ 28 #define STM32_RTC_TR_SEC_SHIFT 0 29 #define STM32_RTC_TR_SEC GENMASK(6, 0) 30 #define STM32_RTC_TR_MIN_SHIFT 8 31 #define STM32_RTC_TR_MIN GENMASK(14, 8) 32 #define STM32_RTC_TR_HOUR_SHIFT 16 33 #define STM32_RTC_TR_HOUR GENMASK(21, 16) 34 35 /* STM32_RTC_DR bit fields */ 36 #define STM32_RTC_DR_DATE_SHIFT 0 37 #define STM32_RTC_DR_DATE GENMASK(5, 0) 38 #define STM32_RTC_DR_MONTH_SHIFT 8 39 #define STM32_RTC_DR_MONTH GENMASK(12, 8) 40 #define STM32_RTC_DR_WDAY_SHIFT 13 41 #define STM32_RTC_DR_WDAY GENMASK(15, 13) 42 #define STM32_RTC_DR_YEAR_SHIFT 16 43 #define STM32_RTC_DR_YEAR GENMASK(23, 16) 44 45 /* STM32_RTC_CR bit fields */ 46 #define STM32_RTC_CR_FMT BIT(6) 47 #define STM32_RTC_CR_ALRAE BIT(8) 48 #define STM32_RTC_CR_ALRAIE BIT(12) 49 #define STM32_RTC_CR_OSEL GENMASK(22, 21) 50 #define STM32_RTC_CR_OSEL_ALARM_A FIELD_PREP(STM32_RTC_CR_OSEL, 0x01) 51 #define STM32_RTC_CR_COE BIT(23) 52 #define STM32_RTC_CR_TAMPOE BIT(26) 53 #define STM32_RTC_CR_TAMPALRM_TYPE BIT(30) 54 #define STM32_RTC_CR_OUT2EN BIT(31) 55 56 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */ 57 #define STM32_RTC_ISR_ALRAWF BIT(0) 58 #define STM32_RTC_ISR_INITS BIT(4) 59 #define STM32_RTC_ISR_RSF BIT(5) 60 #define STM32_RTC_ISR_INITF BIT(6) 61 #define STM32_RTC_ISR_INIT BIT(7) 62 #define STM32_RTC_ISR_ALRAF BIT(8) 63 64 /* STM32_RTC_PRER bit fields */ 65 #define STM32_RTC_PRER_PRED_S_SHIFT 0 66 #define STM32_RTC_PRER_PRED_S GENMASK(14, 0) 67 #define STM32_RTC_PRER_PRED_A_SHIFT 16 68 #define STM32_RTC_PRER_PRED_A GENMASK(22, 16) 69 70 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */ 71 #define STM32_RTC_ALRMXR_SEC_SHIFT 0 72 #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0) 73 #define STM32_RTC_ALRMXR_SEC_MASK BIT(7) 74 #define STM32_RTC_ALRMXR_MIN_SHIFT 8 75 #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8) 76 #define STM32_RTC_ALRMXR_MIN_MASK BIT(15) 77 #define STM32_RTC_ALRMXR_HOUR_SHIFT 16 78 #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16) 79 #define STM32_RTC_ALRMXR_PM BIT(22) 80 #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23) 81 #define STM32_RTC_ALRMXR_DATE_SHIFT 24 82 #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24) 83 #define STM32_RTC_ALRMXR_WDSEL BIT(30) 84 #define STM32_RTC_ALRMXR_WDAY_SHIFT 24 85 #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24) 86 #define STM32_RTC_ALRMXR_DATE_MASK BIT(31) 87 88 /* STM32_RTC_SR/_SCR bit fields */ 89 #define STM32_RTC_SR_ALRA BIT(0) 90 91 /* STM32_RTC_CFGR bit fields */ 92 #define STM32_RTC_CFGR_OUT2_RMP BIT(0) 93 #define STM32_RTC_CFGR_LSCOEN GENMASK(2, 1) 94 #define STM32_RTC_CFGR_LSCOEN_OUT1 1 95 #define STM32_RTC_CFGR_LSCOEN_OUT2_RMP 2 96 97 /* STM32_RTC_VERR bit fields */ 98 #define STM32_RTC_VERR_MINREV_SHIFT 0 99 #define STM32_RTC_VERR_MINREV GENMASK(3, 0) 100 #define STM32_RTC_VERR_MAJREV_SHIFT 4 101 #define STM32_RTC_VERR_MAJREV GENMASK(7, 4) 102 103 /* STM32_RTC_SECCFGR bit fields */ 104 #define STM32_RTC_SECCFGR 0x20 105 #define STM32_RTC_SECCFGR_ALRA_SEC BIT(0) 106 #define STM32_RTC_SECCFGR_INIT_SEC BIT(14) 107 #define STM32_RTC_SECCFGR_SEC BIT(15) 108 109 /* STM32_RTC_RXCIDCFGR bit fields */ 110 #define STM32_RTC_RXCIDCFGR(x) (0x80 + 0x4 * (x)) 111 #define STM32_RTC_RXCIDCFGR_CFEN BIT(0) 112 #define STM32_RTC_RXCIDCFGR_CID GENMASK(6, 4) 113 #define STM32_RTC_RXCIDCFGR_CID1 1 114 115 /* STM32_RTC_WPR key constants */ 116 #define RTC_WPR_1ST_KEY 0xCA 117 #define RTC_WPR_2ND_KEY 0x53 118 #define RTC_WPR_WRONG_KEY 0xFF 119 120 /* Max STM32 RTC register offset is 0x3FC */ 121 #define UNDEF_REG 0xFFFF 122 123 /* STM32 RTC driver time helpers */ 124 #define SEC_PER_DAY (24 * 60 * 60) 125 126 /* STM32 RTC pinctrl helpers */ 127 #define STM32_RTC_PINMUX(_name, _action, ...) { \ 128 .name = (_name), \ 129 .action = (_action), \ 130 .groups = ((const char *[]){ __VA_ARGS__ }), \ 131 .num_groups = ARRAY_SIZE(((const char *[]){ __VA_ARGS__ })), \ 132 } 133 134 struct stm32_rtc; 135 136 struct stm32_rtc_registers { 137 u16 tr; 138 u16 dr; 139 u16 cr; 140 u16 isr; 141 u16 prer; 142 u16 alrmar; 143 u16 wpr; 144 u16 sr; 145 u16 scr; 146 u16 cfgr; 147 u16 verr; 148 }; 149 150 struct stm32_rtc_events { 151 u32 alra; 152 }; 153 154 struct stm32_rtc_data { 155 const struct stm32_rtc_registers regs; 156 const struct stm32_rtc_events events; 157 void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags); 158 bool has_pclk; 159 bool need_dbp; 160 bool need_accuracy; 161 bool rif_protected; 162 bool has_lsco; 163 bool has_alarm_out; 164 }; 165 166 struct stm32_rtc { 167 struct rtc_device *rtc_dev; 168 void __iomem *base; 169 struct regmap *dbp; 170 unsigned int dbp_reg; 171 unsigned int dbp_mask; 172 struct clk *pclk; 173 struct clk *rtc_ck; 174 const struct stm32_rtc_data *data; 175 int irq_alarm; 176 struct clk *clk_lsco; 177 }; 178 179 struct stm32_rtc_rif_resource { 180 unsigned int num; 181 u32 bit; 182 }; 183 184 static const struct stm32_rtc_rif_resource STM32_RTC_RES_ALRA = {0, STM32_RTC_SECCFGR_ALRA_SEC}; 185 static const struct stm32_rtc_rif_resource STM32_RTC_RES_INIT = {5, STM32_RTC_SECCFGR_INIT_SEC}; 186 187 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc) 188 { 189 const struct stm32_rtc_registers *regs = &rtc->data->regs; 190 191 writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr); 192 writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr); 193 } 194 195 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc) 196 { 197 const struct stm32_rtc_registers *regs = &rtc->data->regs; 198 199 writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr); 200 } 201 202 enum stm32_rtc_pin_name { 203 NONE, 204 OUT1, 205 OUT2, 206 OUT2_RMP 207 }; 208 209 static const struct pinctrl_pin_desc stm32_rtc_pinctrl_pins[] = { 210 PINCTRL_PIN(OUT1, "out1"), 211 PINCTRL_PIN(OUT2, "out2"), 212 PINCTRL_PIN(OUT2_RMP, "out2_rmp"), 213 }; 214 215 static int stm32_rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) 216 { 217 return ARRAY_SIZE(stm32_rtc_pinctrl_pins); 218 } 219 220 static const char *stm32_rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev, 221 unsigned int selector) 222 { 223 return stm32_rtc_pinctrl_pins[selector].name; 224 } 225 226 static int stm32_rtc_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, 227 unsigned int selector, 228 const unsigned int **pins, 229 unsigned int *num_pins) 230 { 231 *pins = &stm32_rtc_pinctrl_pins[selector].number; 232 *num_pins = 1; 233 return 0; 234 } 235 236 static const struct pinctrl_ops stm32_rtc_pinctrl_ops = { 237 .dt_node_to_map = pinconf_generic_dt_node_to_map_all, 238 .dt_free_map = pinconf_generic_dt_free_map, 239 .get_groups_count = stm32_rtc_pinctrl_get_groups_count, 240 .get_group_name = stm32_rtc_pinctrl_get_group_name, 241 .get_group_pins = stm32_rtc_pinctrl_get_group_pins, 242 }; 243 244 struct stm32_rtc_pinmux_func { 245 const char *name; 246 const char * const *groups; 247 const unsigned int num_groups; 248 int (*action)(struct pinctrl_dev *pctl_dev, unsigned int pin); 249 }; 250 251 static int stm32_rtc_pinmux_action_alarm(struct pinctrl_dev *pctldev, unsigned int pin) 252 { 253 struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 254 struct stm32_rtc_registers regs = rtc->data->regs; 255 unsigned int cr = readl_relaxed(rtc->base + regs.cr); 256 unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr); 257 258 if (!rtc->data->has_alarm_out) 259 return -EPERM; 260 261 cr &= ~STM32_RTC_CR_OSEL; 262 cr |= STM32_RTC_CR_OSEL_ALARM_A; 263 cr &= ~STM32_RTC_CR_TAMPOE; 264 cr &= ~STM32_RTC_CR_COE; 265 cr &= ~STM32_RTC_CR_TAMPALRM_TYPE; 266 267 switch (pin) { 268 case OUT1: 269 cr &= ~STM32_RTC_CR_OUT2EN; 270 cfgr &= ~STM32_RTC_CFGR_OUT2_RMP; 271 break; 272 case OUT2: 273 cr |= STM32_RTC_CR_OUT2EN; 274 cfgr &= ~STM32_RTC_CFGR_OUT2_RMP; 275 break; 276 case OUT2_RMP: 277 cr |= STM32_RTC_CR_OUT2EN; 278 cfgr |= STM32_RTC_CFGR_OUT2_RMP; 279 break; 280 default: 281 return -EINVAL; 282 } 283 284 stm32_rtc_wpr_unlock(rtc); 285 writel_relaxed(cr, rtc->base + regs.cr); 286 writel_relaxed(cfgr, rtc->base + regs.cfgr); 287 stm32_rtc_wpr_lock(rtc); 288 289 return 0; 290 } 291 292 static int stm32_rtc_pinmux_lsco_available(struct pinctrl_dev *pctldev, unsigned int pin) 293 { 294 struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 295 struct stm32_rtc_registers regs = rtc->data->regs; 296 unsigned int cr = readl_relaxed(rtc->base + regs.cr); 297 unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr); 298 unsigned int calib = STM32_RTC_CR_COE; 299 unsigned int tampalrm = STM32_RTC_CR_TAMPOE | STM32_RTC_CR_OSEL; 300 301 switch (pin) { 302 case OUT1: 303 if ((!(cr & STM32_RTC_CR_OUT2EN) && 304 ((cr & calib) || cr & tampalrm)) || 305 ((cr & calib) && (cr & tampalrm))) 306 return -EBUSY; 307 break; 308 case OUT2_RMP: 309 if ((cr & STM32_RTC_CR_OUT2EN) && 310 (cfgr & STM32_RTC_CFGR_OUT2_RMP) && 311 ((cr & calib) || (cr & tampalrm))) 312 return -EBUSY; 313 break; 314 default: 315 return -EINVAL; 316 } 317 318 if (clk_get_rate(rtc->rtc_ck) != 32768) 319 return -ERANGE; 320 321 return 0; 322 } 323 324 static int stm32_rtc_pinmux_action_lsco(struct pinctrl_dev *pctldev, unsigned int pin) 325 { 326 struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 327 struct stm32_rtc_registers regs = rtc->data->regs; 328 struct device *dev = rtc->rtc_dev->dev.parent; 329 u8 lscoen; 330 int ret; 331 332 if (!rtc->data->has_lsco) 333 return -EPERM; 334 335 ret = stm32_rtc_pinmux_lsco_available(pctldev, pin); 336 if (ret) 337 return ret; 338 339 lscoen = (pin == OUT1) ? STM32_RTC_CFGR_LSCOEN_OUT1 : STM32_RTC_CFGR_LSCOEN_OUT2_RMP; 340 341 rtc->clk_lsco = clk_register_gate(dev, "rtc_lsco", __clk_get_name(rtc->rtc_ck), 342 CLK_IGNORE_UNUSED | CLK_IS_CRITICAL, 343 rtc->base + regs.cfgr, lscoen, 0, NULL); 344 if (IS_ERR(rtc->clk_lsco)) 345 return PTR_ERR(rtc->clk_lsco); 346 347 of_clk_add_provider(dev->of_node, of_clk_src_simple_get, rtc->clk_lsco); 348 349 return 0; 350 } 351 352 static const struct stm32_rtc_pinmux_func stm32_rtc_pinmux_functions[] = { 353 STM32_RTC_PINMUX("lsco", &stm32_rtc_pinmux_action_lsco, "out1", "out2_rmp"), 354 STM32_RTC_PINMUX("alarm-a", &stm32_rtc_pinmux_action_alarm, "out1", "out2", "out2_rmp"), 355 }; 356 357 static int stm32_rtc_pinmux_get_functions_count(struct pinctrl_dev *pctldev) 358 { 359 return ARRAY_SIZE(stm32_rtc_pinmux_functions); 360 } 361 362 static const char *stm32_rtc_pinmux_get_fname(struct pinctrl_dev *pctldev, unsigned int selector) 363 { 364 return stm32_rtc_pinmux_functions[selector].name; 365 } 366 367 static int stm32_rtc_pinmux_get_groups(struct pinctrl_dev *pctldev, unsigned int selector, 368 const char * const **groups, unsigned int * const num_groups) 369 { 370 *groups = stm32_rtc_pinmux_functions[selector].groups; 371 *num_groups = stm32_rtc_pinmux_functions[selector].num_groups; 372 return 0; 373 } 374 375 static int stm32_rtc_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int selector, 376 unsigned int group) 377 { 378 struct stm32_rtc_pinmux_func selected_func = stm32_rtc_pinmux_functions[selector]; 379 struct pinctrl_pin_desc pin = stm32_rtc_pinctrl_pins[group]; 380 381 /* Call action */ 382 if (selected_func.action) 383 return selected_func.action(pctldev, pin.number); 384 385 return -EINVAL; 386 } 387 388 static const struct pinmux_ops stm32_rtc_pinmux_ops = { 389 .get_functions_count = stm32_rtc_pinmux_get_functions_count, 390 .get_function_name = stm32_rtc_pinmux_get_fname, 391 .get_function_groups = stm32_rtc_pinmux_get_groups, 392 .set_mux = stm32_rtc_pinmux_set_mux, 393 .strict = true, 394 }; 395 396 static struct pinctrl_desc stm32_rtc_pdesc = { 397 .name = DRIVER_NAME, 398 .pins = stm32_rtc_pinctrl_pins, 399 .npins = ARRAY_SIZE(stm32_rtc_pinctrl_pins), 400 .owner = THIS_MODULE, 401 .pctlops = &stm32_rtc_pinctrl_ops, 402 .pmxops = &stm32_rtc_pinmux_ops, 403 }; 404 405 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc) 406 { 407 const struct stm32_rtc_registers *regs = &rtc->data->regs; 408 unsigned int isr = readl_relaxed(rtc->base + regs->isr); 409 410 if (!(isr & STM32_RTC_ISR_INITF)) { 411 isr |= STM32_RTC_ISR_INIT; 412 writel_relaxed(isr, rtc->base + regs->isr); 413 414 /* 415 * It takes around 2 rtc_ck clock cycles to enter in 416 * initialization phase mode (and have INITF flag set). As 417 * slowest rtc_ck frequency may be 32kHz and highest should be 418 * 1MHz, we poll every 10 us with a timeout of 100ms. 419 */ 420 return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr, 421 (isr & STM32_RTC_ISR_INITF), 422 10, 100000); 423 } 424 425 return 0; 426 } 427 428 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc) 429 { 430 const struct stm32_rtc_registers *regs = &rtc->data->regs; 431 unsigned int isr = readl_relaxed(rtc->base + regs->isr); 432 433 isr &= ~STM32_RTC_ISR_INIT; 434 writel_relaxed(isr, rtc->base + regs->isr); 435 } 436 437 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc) 438 { 439 const struct stm32_rtc_registers *regs = &rtc->data->regs; 440 unsigned int isr = readl_relaxed(rtc->base + regs->isr); 441 442 isr &= ~STM32_RTC_ISR_RSF; 443 writel_relaxed(isr, rtc->base + regs->isr); 444 445 /* 446 * Wait for RSF to be set to ensure the calendar registers are 447 * synchronised, it takes around 2 rtc_ck clock cycles 448 */ 449 return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, 450 isr, 451 (isr & STM32_RTC_ISR_RSF), 452 10, 100000); 453 } 454 455 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc, 456 unsigned int flags) 457 { 458 rtc->data->clear_events(rtc, flags); 459 } 460 461 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id) 462 { 463 struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id; 464 const struct stm32_rtc_registers *regs = &rtc->data->regs; 465 const struct stm32_rtc_events *evts = &rtc->data->events; 466 unsigned int status, cr; 467 468 rtc_lock(rtc->rtc_dev); 469 470 status = readl_relaxed(rtc->base + regs->sr); 471 cr = readl_relaxed(rtc->base + regs->cr); 472 473 if ((status & evts->alra) && 474 (cr & STM32_RTC_CR_ALRAIE)) { 475 /* Alarm A flag - Alarm interrupt */ 476 dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n"); 477 478 /* Pass event to the kernel */ 479 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF); 480 481 /* Clear event flags, otherwise new events won't be received */ 482 stm32_rtc_clear_event_flags(rtc, evts->alra); 483 } 484 485 rtc_unlock(rtc->rtc_dev); 486 487 return IRQ_HANDLED; 488 } 489 490 /* Convert rtc_time structure from bin to bcd format */ 491 static void tm2bcd(struct rtc_time *tm) 492 { 493 tm->tm_sec = bin2bcd(tm->tm_sec); 494 tm->tm_min = bin2bcd(tm->tm_min); 495 tm->tm_hour = bin2bcd(tm->tm_hour); 496 497 tm->tm_mday = bin2bcd(tm->tm_mday); 498 tm->tm_mon = bin2bcd(tm->tm_mon + 1); 499 tm->tm_year = bin2bcd(tm->tm_year - 100); 500 /* 501 * Number of days since Sunday 502 * - on kernel side, 0=Sunday...6=Saturday 503 * - on rtc side, 0=invalid,1=Monday...7=Sunday 504 */ 505 tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday; 506 } 507 508 /* Convert rtc_time structure from bcd to bin format */ 509 static void bcd2tm(struct rtc_time *tm) 510 { 511 tm->tm_sec = bcd2bin(tm->tm_sec); 512 tm->tm_min = bcd2bin(tm->tm_min); 513 tm->tm_hour = bcd2bin(tm->tm_hour); 514 515 tm->tm_mday = bcd2bin(tm->tm_mday); 516 tm->tm_mon = bcd2bin(tm->tm_mon) - 1; 517 tm->tm_year = bcd2bin(tm->tm_year) + 100; 518 /* 519 * Number of days since Sunday 520 * - on kernel side, 0=Sunday...6=Saturday 521 * - on rtc side, 0=invalid,1=Monday...7=Sunday 522 */ 523 tm->tm_wday %= 7; 524 } 525 526 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm) 527 { 528 struct stm32_rtc *rtc = dev_get_drvdata(dev); 529 const struct stm32_rtc_registers *regs = &rtc->data->regs; 530 unsigned int tr, dr; 531 532 /* Time and Date in BCD format */ 533 tr = readl_relaxed(rtc->base + regs->tr); 534 dr = readl_relaxed(rtc->base + regs->dr); 535 536 tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT; 537 tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT; 538 tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT; 539 540 tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT; 541 tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT; 542 tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT; 543 tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT; 544 545 /* We don't report tm_yday and tm_isdst */ 546 547 bcd2tm(tm); 548 549 return 0; 550 } 551 552 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm) 553 { 554 struct stm32_rtc *rtc = dev_get_drvdata(dev); 555 const struct stm32_rtc_registers *regs = &rtc->data->regs; 556 unsigned int tr, dr; 557 int ret = 0; 558 559 tm2bcd(tm); 560 561 /* Time in BCD format */ 562 tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) | 563 ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) | 564 ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR); 565 566 /* Date in BCD format */ 567 dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) | 568 ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) | 569 ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) | 570 ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY); 571 572 stm32_rtc_wpr_unlock(rtc); 573 574 ret = stm32_rtc_enter_init_mode(rtc); 575 if (ret) { 576 dev_err(dev, "Can't enter in init mode. Set time aborted.\n"); 577 goto end; 578 } 579 580 writel_relaxed(tr, rtc->base + regs->tr); 581 writel_relaxed(dr, rtc->base + regs->dr); 582 583 stm32_rtc_exit_init_mode(rtc); 584 585 ret = stm32_rtc_wait_sync(rtc); 586 end: 587 stm32_rtc_wpr_lock(rtc); 588 589 return ret; 590 } 591 592 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 593 { 594 struct stm32_rtc *rtc = dev_get_drvdata(dev); 595 const struct stm32_rtc_registers *regs = &rtc->data->regs; 596 const struct stm32_rtc_events *evts = &rtc->data->events; 597 struct rtc_time *tm = &alrm->time; 598 unsigned int alrmar, cr, status; 599 600 alrmar = readl_relaxed(rtc->base + regs->alrmar); 601 cr = readl_relaxed(rtc->base + regs->cr); 602 status = readl_relaxed(rtc->base + regs->sr); 603 604 if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) { 605 /* 606 * Date/day doesn't matter in Alarm comparison so alarm 607 * triggers every day 608 */ 609 tm->tm_mday = -1; 610 tm->tm_wday = -1; 611 } else { 612 if (alrmar & STM32_RTC_ALRMXR_WDSEL) { 613 /* Alarm is set to a day of week */ 614 tm->tm_mday = -1; 615 tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >> 616 STM32_RTC_ALRMXR_WDAY_SHIFT; 617 tm->tm_wday %= 7; 618 } else { 619 /* Alarm is set to a day of month */ 620 tm->tm_wday = -1; 621 tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >> 622 STM32_RTC_ALRMXR_DATE_SHIFT; 623 } 624 } 625 626 if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) { 627 /* Hours don't matter in Alarm comparison */ 628 tm->tm_hour = -1; 629 } else { 630 tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >> 631 STM32_RTC_ALRMXR_HOUR_SHIFT; 632 if (alrmar & STM32_RTC_ALRMXR_PM) 633 tm->tm_hour += 12; 634 } 635 636 if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) { 637 /* Minutes don't matter in Alarm comparison */ 638 tm->tm_min = -1; 639 } else { 640 tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >> 641 STM32_RTC_ALRMXR_MIN_SHIFT; 642 } 643 644 if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) { 645 /* Seconds don't matter in Alarm comparison */ 646 tm->tm_sec = -1; 647 } else { 648 tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >> 649 STM32_RTC_ALRMXR_SEC_SHIFT; 650 } 651 652 bcd2tm(tm); 653 654 alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0; 655 alrm->pending = (status & evts->alra) ? 1 : 0; 656 657 return 0; 658 } 659 660 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 661 { 662 struct stm32_rtc *rtc = dev_get_drvdata(dev); 663 const struct stm32_rtc_registers *regs = &rtc->data->regs; 664 const struct stm32_rtc_events *evts = &rtc->data->events; 665 unsigned int cr; 666 667 cr = readl_relaxed(rtc->base + regs->cr); 668 669 stm32_rtc_wpr_unlock(rtc); 670 671 /* We expose Alarm A to the kernel */ 672 if (enabled) 673 cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); 674 else 675 cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE); 676 writel_relaxed(cr, rtc->base + regs->cr); 677 678 /* Clear event flags, otherwise new events won't be received */ 679 stm32_rtc_clear_event_flags(rtc, evts->alra); 680 681 stm32_rtc_wpr_lock(rtc); 682 683 return 0; 684 } 685 686 static int stm32_rtc_valid_alrm(struct device *dev, struct rtc_time *tm) 687 { 688 static struct rtc_time now; 689 time64_t max_alarm_time64; 690 int max_day_forward; 691 int next_month; 692 int next_year; 693 694 /* 695 * Assuming current date is M-D-Y H:M:S. 696 * RTC alarm can't be set on a specific month and year. 697 * So the valid alarm range is: 698 * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S 699 */ 700 stm32_rtc_read_time(dev, &now); 701 702 /* 703 * Find the next month and the year of the next month. 704 * Note: tm_mon and next_month are from 0 to 11 705 */ 706 next_month = now.tm_mon + 1; 707 if (next_month == 12) { 708 next_month = 0; 709 next_year = now.tm_year + 1; 710 } else { 711 next_year = now.tm_year; 712 } 713 714 /* Find the maximum limit of alarm in days. */ 715 max_day_forward = rtc_month_days(now.tm_mon, now.tm_year) 716 - now.tm_mday 717 + min(rtc_month_days(next_month, next_year), now.tm_mday); 718 719 /* Convert to timestamp and compare the alarm time and its upper limit */ 720 max_alarm_time64 = rtc_tm_to_time64(&now) + max_day_forward * SEC_PER_DAY; 721 return rtc_tm_to_time64(tm) <= max_alarm_time64 ? 0 : -EINVAL; 722 } 723 724 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 725 { 726 struct stm32_rtc *rtc = dev_get_drvdata(dev); 727 const struct stm32_rtc_registers *regs = &rtc->data->regs; 728 struct rtc_time *tm = &alrm->time; 729 unsigned int cr, isr, alrmar; 730 int ret = 0; 731 732 /* 733 * RTC alarm can't be set on a specific date, unless this date is 734 * up to the same day of month next month. 735 */ 736 if (stm32_rtc_valid_alrm(dev, tm) < 0) { 737 dev_err(dev, "Alarm can be set only on upcoming month.\n"); 738 return -EINVAL; 739 } 740 741 tm2bcd(tm); 742 743 alrmar = 0; 744 /* tm_year and tm_mon are not used because not supported by RTC */ 745 alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) & 746 STM32_RTC_ALRMXR_DATE; 747 /* 24-hour format */ 748 alrmar &= ~STM32_RTC_ALRMXR_PM; 749 alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) & 750 STM32_RTC_ALRMXR_HOUR; 751 alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) & 752 STM32_RTC_ALRMXR_MIN; 753 alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) & 754 STM32_RTC_ALRMXR_SEC; 755 756 stm32_rtc_wpr_unlock(rtc); 757 758 /* Disable Alarm */ 759 cr = readl_relaxed(rtc->base + regs->cr); 760 cr &= ~STM32_RTC_CR_ALRAE; 761 writel_relaxed(cr, rtc->base + regs->cr); 762 763 /* 764 * Poll Alarm write flag to be sure that Alarm update is allowed: it 765 * takes around 2 rtc_ck clock cycles 766 */ 767 ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, 768 isr, 769 (isr & STM32_RTC_ISR_ALRAWF), 770 10, 100000); 771 772 if (ret) { 773 dev_err(dev, "Alarm update not allowed\n"); 774 goto end; 775 } 776 777 /* Write to Alarm register */ 778 writel_relaxed(alrmar, rtc->base + regs->alrmar); 779 780 stm32_rtc_alarm_irq_enable(dev, alrm->enabled); 781 end: 782 stm32_rtc_wpr_lock(rtc); 783 784 return ret; 785 } 786 787 static const struct rtc_class_ops stm32_rtc_ops = { 788 .read_time = stm32_rtc_read_time, 789 .set_time = stm32_rtc_set_time, 790 .read_alarm = stm32_rtc_read_alarm, 791 .set_alarm = stm32_rtc_set_alarm, 792 .alarm_irq_enable = stm32_rtc_alarm_irq_enable, 793 }; 794 795 static void stm32_rtc_clear_events(struct stm32_rtc *rtc, 796 unsigned int flags) 797 { 798 const struct stm32_rtc_registers *regs = &rtc->data->regs; 799 800 /* Flags are cleared by writing 0 in RTC_ISR */ 801 writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags, 802 rtc->base + regs->isr); 803 } 804 805 static const struct stm32_rtc_data stm32_rtc_data = { 806 .has_pclk = false, 807 .need_dbp = true, 808 .need_accuracy = false, 809 .rif_protected = false, 810 .has_lsco = false, 811 .has_alarm_out = false, 812 .regs = { 813 .tr = 0x00, 814 .dr = 0x04, 815 .cr = 0x08, 816 .isr = 0x0C, 817 .prer = 0x10, 818 .alrmar = 0x1C, 819 .wpr = 0x24, 820 .sr = 0x0C, /* set to ISR offset to ease alarm management */ 821 .scr = UNDEF_REG, 822 .cfgr = UNDEF_REG, 823 .verr = UNDEF_REG, 824 }, 825 .events = { 826 .alra = STM32_RTC_ISR_ALRAF, 827 }, 828 .clear_events = stm32_rtc_clear_events, 829 }; 830 831 static const struct stm32_rtc_data stm32h7_rtc_data = { 832 .has_pclk = true, 833 .need_dbp = true, 834 .need_accuracy = false, 835 .rif_protected = false, 836 .has_lsco = false, 837 .has_alarm_out = false, 838 .regs = { 839 .tr = 0x00, 840 .dr = 0x04, 841 .cr = 0x08, 842 .isr = 0x0C, 843 .prer = 0x10, 844 .alrmar = 0x1C, 845 .wpr = 0x24, 846 .sr = 0x0C, /* set to ISR offset to ease alarm management */ 847 .scr = UNDEF_REG, 848 .cfgr = UNDEF_REG, 849 .verr = UNDEF_REG, 850 }, 851 .events = { 852 .alra = STM32_RTC_ISR_ALRAF, 853 }, 854 .clear_events = stm32_rtc_clear_events, 855 }; 856 857 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc, 858 unsigned int flags) 859 { 860 struct stm32_rtc_registers regs = rtc->data->regs; 861 862 /* Flags are cleared by writing 1 in RTC_SCR */ 863 writel_relaxed(flags, rtc->base + regs.scr); 864 } 865 866 static const struct stm32_rtc_data stm32mp1_data = { 867 .has_pclk = true, 868 .need_dbp = false, 869 .need_accuracy = true, 870 .rif_protected = false, 871 .has_lsco = true, 872 .has_alarm_out = true, 873 .regs = { 874 .tr = 0x00, 875 .dr = 0x04, 876 .cr = 0x18, 877 .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */ 878 .prer = 0x10, 879 .alrmar = 0x40, 880 .wpr = 0x24, 881 .sr = 0x50, 882 .scr = 0x5C, 883 .cfgr = 0x60, 884 .verr = 0x3F4, 885 }, 886 .events = { 887 .alra = STM32_RTC_SR_ALRA, 888 }, 889 .clear_events = stm32mp1_rtc_clear_events, 890 }; 891 892 static const struct stm32_rtc_data stm32mp25_data = { 893 .has_pclk = true, 894 .need_dbp = false, 895 .need_accuracy = true, 896 .rif_protected = true, 897 .has_lsco = true, 898 .has_alarm_out = true, 899 .regs = { 900 .tr = 0x00, 901 .dr = 0x04, 902 .cr = 0x18, 903 .isr = 0x0C, /* named RTC_ICSR on stm32mp25 */ 904 .prer = 0x10, 905 .alrmar = 0x40, 906 .wpr = 0x24, 907 .sr = 0x50, 908 .scr = 0x5C, 909 .cfgr = 0x60, 910 .verr = 0x3F4, 911 }, 912 .events = { 913 .alra = STM32_RTC_SR_ALRA, 914 }, 915 .clear_events = stm32mp1_rtc_clear_events, 916 }; 917 918 static const struct of_device_id stm32_rtc_of_match[] = { 919 { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data }, 920 { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data }, 921 { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data }, 922 { .compatible = "st,stm32mp25-rtc", .data = &stm32mp25_data }, 923 {} 924 }; 925 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match); 926 927 static void stm32_rtc_clean_outs(struct stm32_rtc *rtc) 928 { 929 struct stm32_rtc_registers regs = rtc->data->regs; 930 unsigned int cr = readl_relaxed(rtc->base + regs.cr); 931 932 cr &= ~STM32_RTC_CR_OSEL; 933 cr &= ~STM32_RTC_CR_TAMPOE; 934 cr &= ~STM32_RTC_CR_COE; 935 cr &= ~STM32_RTC_CR_TAMPALRM_TYPE; 936 cr &= ~STM32_RTC_CR_OUT2EN; 937 938 stm32_rtc_wpr_unlock(rtc); 939 writel_relaxed(cr, rtc->base + regs.cr); 940 stm32_rtc_wpr_lock(rtc); 941 942 if (regs.cfgr != UNDEF_REG) { 943 unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr); 944 945 cfgr &= ~STM32_RTC_CFGR_LSCOEN; 946 cfgr &= ~STM32_RTC_CFGR_OUT2_RMP; 947 writel_relaxed(cfgr, rtc->base + regs.cfgr); 948 } 949 } 950 951 static int stm32_rtc_check_rif(struct stm32_rtc *stm32_rtc, 952 struct stm32_rtc_rif_resource res) 953 { 954 u32 rxcidcfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_RXCIDCFGR(res.num)); 955 u32 seccfgr; 956 957 /* Check if RTC available for our CID */ 958 if ((rxcidcfgr & STM32_RTC_RXCIDCFGR_CFEN) && 959 (FIELD_GET(STM32_RTC_RXCIDCFGR_CID, rxcidcfgr) != STM32_RTC_RXCIDCFGR_CID1)) 960 return -EACCES; 961 962 /* Check if RTC available for non secure world */ 963 seccfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_SECCFGR); 964 if ((seccfgr & STM32_RTC_SECCFGR_SEC) | (seccfgr & res.bit)) 965 return -EACCES; 966 967 return 0; 968 } 969 970 static int stm32_rtc_init(struct platform_device *pdev, 971 struct stm32_rtc *rtc) 972 { 973 const struct stm32_rtc_registers *regs = &rtc->data->regs; 974 unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr; 975 unsigned int rate; 976 int ret; 977 978 rate = clk_get_rate(rtc->rtc_ck); 979 980 /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */ 981 pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT; 982 pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT; 983 984 if (rate > (pred_a_max + 1) * (pred_s_max + 1)) { 985 dev_err(&pdev->dev, "rtc_ck rate is too high: %dHz\n", rate); 986 return -EINVAL; 987 } 988 989 if (rtc->data->need_accuracy) { 990 for (pred_a = 0; pred_a <= pred_a_max; pred_a++) { 991 pred_s = (rate / (pred_a + 1)) - 1; 992 993 if (pred_s <= pred_s_max && ((pred_s + 1) * (pred_a + 1)) == rate) 994 break; 995 } 996 } else { 997 for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) { 998 pred_s = (rate / (pred_a + 1)) - 1; 999 1000 if (((pred_s + 1) * (pred_a + 1)) == rate) 1001 break; 1002 } 1003 } 1004 1005 /* 1006 * Can't find a 1Hz, so give priority to RTC power consumption 1007 * by choosing the higher possible value for prediv_a 1008 */ 1009 if (pred_s > pred_s_max || pred_a > pred_a_max) { 1010 pred_a = pred_a_max; 1011 pred_s = (rate / (pred_a + 1)) - 1; 1012 1013 dev_warn(&pdev->dev, "rtc_ck is %s\n", 1014 (rate < ((pred_a + 1) * (pred_s + 1))) ? 1015 "fast" : "slow"); 1016 } 1017 1018 cr = readl_relaxed(rtc->base + regs->cr); 1019 1020 prer = readl_relaxed(rtc->base + regs->prer); 1021 prer &= STM32_RTC_PRER_PRED_S | STM32_RTC_PRER_PRED_A; 1022 1023 pred_s = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & 1024 STM32_RTC_PRER_PRED_S; 1025 pred_a = (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & 1026 STM32_RTC_PRER_PRED_A; 1027 1028 /* quit if there is nothing to initialize */ 1029 if ((cr & STM32_RTC_CR_FMT) == 0 && prer == (pred_s | pred_a)) 1030 return 0; 1031 1032 stm32_rtc_wpr_unlock(rtc); 1033 1034 ret = stm32_rtc_enter_init_mode(rtc); 1035 if (ret) { 1036 dev_err(&pdev->dev, 1037 "Can't enter in init mode. Prescaler config failed.\n"); 1038 goto end; 1039 } 1040 1041 writel_relaxed(pred_s, rtc->base + regs->prer); 1042 writel_relaxed(pred_a | pred_s, rtc->base + regs->prer); 1043 1044 /* Force 24h time format */ 1045 cr &= ~STM32_RTC_CR_FMT; 1046 writel_relaxed(cr, rtc->base + regs->cr); 1047 1048 stm32_rtc_exit_init_mode(rtc); 1049 1050 ret = stm32_rtc_wait_sync(rtc); 1051 end: 1052 stm32_rtc_wpr_lock(rtc); 1053 1054 return ret; 1055 } 1056 1057 static int stm32_rtc_probe(struct platform_device *pdev) 1058 { 1059 struct stm32_rtc *rtc; 1060 const struct stm32_rtc_registers *regs; 1061 struct pinctrl_dev *pctl; 1062 int ret; 1063 1064 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 1065 if (!rtc) 1066 return -ENOMEM; 1067 1068 rtc->base = devm_platform_ioremap_resource(pdev, 0); 1069 if (IS_ERR(rtc->base)) 1070 return PTR_ERR(rtc->base); 1071 1072 rtc->data = (struct stm32_rtc_data *) 1073 of_device_get_match_data(&pdev->dev); 1074 regs = &rtc->data->regs; 1075 1076 if (rtc->data->need_dbp) { 1077 rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 1078 "st,syscfg"); 1079 if (IS_ERR(rtc->dbp)) { 1080 dev_err(&pdev->dev, "no st,syscfg\n"); 1081 return PTR_ERR(rtc->dbp); 1082 } 1083 1084 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", 1085 1, &rtc->dbp_reg); 1086 if (ret) { 1087 dev_err(&pdev->dev, "can't read DBP register offset\n"); 1088 return ret; 1089 } 1090 1091 ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg", 1092 2, &rtc->dbp_mask); 1093 if (ret) { 1094 dev_err(&pdev->dev, "can't read DBP register mask\n"); 1095 return ret; 1096 } 1097 } 1098 1099 if (!rtc->data->has_pclk) { 1100 rtc->pclk = NULL; 1101 rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL); 1102 } else { 1103 rtc->pclk = devm_clk_get(&pdev->dev, "pclk"); 1104 if (IS_ERR(rtc->pclk)) 1105 return dev_err_probe(&pdev->dev, PTR_ERR(rtc->pclk), "no pclk clock"); 1106 1107 rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck"); 1108 } 1109 if (IS_ERR(rtc->rtc_ck)) 1110 return dev_err_probe(&pdev->dev, PTR_ERR(rtc->rtc_ck), "no rtc_ck clock"); 1111 1112 if (rtc->data->has_pclk) { 1113 ret = clk_prepare_enable(rtc->pclk); 1114 if (ret) 1115 return ret; 1116 } 1117 1118 ret = clk_prepare_enable(rtc->rtc_ck); 1119 if (ret) 1120 goto err_no_rtc_ck; 1121 1122 if (rtc->data->need_dbp) 1123 regmap_update_bits(rtc->dbp, rtc->dbp_reg, 1124 rtc->dbp_mask, rtc->dbp_mask); 1125 1126 if (rtc->data->rif_protected) { 1127 ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_INIT); 1128 if (!ret) 1129 ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_ALRA); 1130 if (ret) { 1131 dev_err(&pdev->dev, "Failed to probe RTC due to RIF configuration\n"); 1132 goto err; 1133 } 1134 } 1135 1136 /* 1137 * After a system reset, RTC_ISR.INITS flag can be read to check if 1138 * the calendar has been initialized or not. INITS flag is reset by a 1139 * power-on reset (no vbat, no power-supply). It is not reset if 1140 * rtc_ck parent clock has changed (so RTC prescalers need to be 1141 * changed). That's why we cannot rely on this flag to know if RTC 1142 * init has to be done. 1143 */ 1144 ret = stm32_rtc_init(pdev, rtc); 1145 if (ret) 1146 goto err; 1147 1148 rtc->irq_alarm = platform_get_irq(pdev, 0); 1149 if (rtc->irq_alarm <= 0) { 1150 ret = rtc->irq_alarm; 1151 goto err; 1152 } 1153 1154 ret = device_init_wakeup(&pdev->dev, true); 1155 if (ret) 1156 goto err; 1157 1158 ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm); 1159 if (ret) 1160 goto err; 1161 1162 platform_set_drvdata(pdev, rtc); 1163 1164 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name, 1165 &stm32_rtc_ops, THIS_MODULE); 1166 if (IS_ERR(rtc->rtc_dev)) { 1167 ret = PTR_ERR(rtc->rtc_dev); 1168 dev_err(&pdev->dev, "rtc device registration failed, err=%d\n", 1169 ret); 1170 goto err; 1171 } 1172 1173 /* Handle RTC alarm interrupts */ 1174 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL, 1175 stm32_rtc_alarm_irq, IRQF_ONESHOT, 1176 pdev->name, rtc); 1177 if (ret) { 1178 dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n", 1179 rtc->irq_alarm); 1180 goto err; 1181 } 1182 1183 stm32_rtc_clean_outs(rtc); 1184 1185 ret = devm_pinctrl_register_and_init(&pdev->dev, &stm32_rtc_pdesc, rtc, &pctl); 1186 if (ret) 1187 return dev_err_probe(&pdev->dev, ret, "pinctrl register failed"); 1188 1189 ret = pinctrl_enable(pctl); 1190 if (ret) 1191 return dev_err_probe(&pdev->dev, ret, "pinctrl enable failed"); 1192 1193 /* 1194 * If INITS flag is reset (calendar year field set to 0x00), calendar 1195 * must be initialized 1196 */ 1197 if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS)) 1198 dev_warn(&pdev->dev, "Date/Time must be initialized\n"); 1199 1200 if (regs->verr != UNDEF_REG) { 1201 u32 ver = readl_relaxed(rtc->base + regs->verr); 1202 1203 dev_info(&pdev->dev, "registered rev:%d.%d\n", 1204 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF, 1205 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF); 1206 } 1207 1208 return 0; 1209 1210 err: 1211 clk_disable_unprepare(rtc->rtc_ck); 1212 err_no_rtc_ck: 1213 if (rtc->data->has_pclk) 1214 clk_disable_unprepare(rtc->pclk); 1215 1216 if (rtc->data->need_dbp) 1217 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); 1218 1219 dev_pm_clear_wake_irq(&pdev->dev); 1220 device_init_wakeup(&pdev->dev, false); 1221 1222 return ret; 1223 } 1224 1225 static void stm32_rtc_remove(struct platform_device *pdev) 1226 { 1227 struct stm32_rtc *rtc = platform_get_drvdata(pdev); 1228 const struct stm32_rtc_registers *regs = &rtc->data->regs; 1229 unsigned int cr; 1230 1231 if (!IS_ERR_OR_NULL(rtc->clk_lsco)) 1232 clk_unregister_gate(rtc->clk_lsco); 1233 1234 /* Disable interrupts */ 1235 stm32_rtc_wpr_unlock(rtc); 1236 cr = readl_relaxed(rtc->base + regs->cr); 1237 cr &= ~STM32_RTC_CR_ALRAIE; 1238 writel_relaxed(cr, rtc->base + regs->cr); 1239 stm32_rtc_wpr_lock(rtc); 1240 1241 clk_disable_unprepare(rtc->rtc_ck); 1242 if (rtc->data->has_pclk) 1243 clk_disable_unprepare(rtc->pclk); 1244 1245 /* Enable backup domain write protection if needed */ 1246 if (rtc->data->need_dbp) 1247 regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0); 1248 1249 dev_pm_clear_wake_irq(&pdev->dev); 1250 device_init_wakeup(&pdev->dev, false); 1251 } 1252 1253 static int stm32_rtc_suspend(struct device *dev) 1254 { 1255 struct stm32_rtc *rtc = dev_get_drvdata(dev); 1256 1257 if (rtc->data->has_pclk) 1258 clk_disable_unprepare(rtc->pclk); 1259 1260 return 0; 1261 } 1262 1263 static int stm32_rtc_resume(struct device *dev) 1264 { 1265 struct stm32_rtc *rtc = dev_get_drvdata(dev); 1266 int ret = 0; 1267 1268 if (rtc->data->has_pclk) { 1269 ret = clk_prepare_enable(rtc->pclk); 1270 if (ret) 1271 return ret; 1272 } 1273 1274 ret = stm32_rtc_wait_sync(rtc); 1275 if (ret < 0) { 1276 if (rtc->data->has_pclk) 1277 clk_disable_unprepare(rtc->pclk); 1278 return ret; 1279 } 1280 1281 return ret; 1282 } 1283 1284 static const struct dev_pm_ops stm32_rtc_pm_ops = { 1285 NOIRQ_SYSTEM_SLEEP_PM_OPS(stm32_rtc_suspend, stm32_rtc_resume) 1286 }; 1287 1288 static struct platform_driver stm32_rtc_driver = { 1289 .probe = stm32_rtc_probe, 1290 .remove = stm32_rtc_remove, 1291 .driver = { 1292 .name = DRIVER_NAME, 1293 .pm = &stm32_rtc_pm_ops, 1294 .of_match_table = stm32_rtc_of_match, 1295 }, 1296 }; 1297 1298 module_platform_driver(stm32_rtc_driver); 1299 1300 MODULE_ALIAS("platform:" DRIVER_NAME); 1301 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>"); 1302 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver"); 1303 MODULE_LICENSE("GPL v2"); 1304