xref: /linux/drivers/rtc/rtc-stm32.c (revision 70d7f7dbd98a4d499b46ec9ef2bd1f2698facf2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/errno.h>
12 #include <linux/iopoll.h>
13 #include <linux/ioport.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/pinctrl/pinctrl.h>
18 #include <linux/pinctrl/pinconf-generic.h>
19 #include <linux/pinctrl/pinmux.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_wakeirq.h>
22 #include <linux/regmap.h>
23 #include <linux/rtc.h>
24 
25 #define DRIVER_NAME "stm32_rtc"
26 
27 /* STM32_RTC_TR bit fields  */
28 #define STM32_RTC_TR_SEC_SHIFT		0
29 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
30 #define STM32_RTC_TR_MIN_SHIFT		8
31 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
32 #define STM32_RTC_TR_HOUR_SHIFT		16
33 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
34 
35 /* STM32_RTC_DR bit fields */
36 #define STM32_RTC_DR_DATE_SHIFT		0
37 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
38 #define STM32_RTC_DR_MONTH_SHIFT	8
39 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
40 #define STM32_RTC_DR_WDAY_SHIFT		13
41 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
42 #define STM32_RTC_DR_YEAR_SHIFT		16
43 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
44 
45 /* STM32_RTC_CR bit fields */
46 #define STM32_RTC_CR_FMT		BIT(6)
47 #define STM32_RTC_CR_ALRAE		BIT(8)
48 #define STM32_RTC_CR_ALRAIE		BIT(12)
49 #define STM32_RTC_CR_OSEL		GENMASK(22, 21)
50 #define STM32_RTC_CR_OSEL_ALARM_A	FIELD_PREP(STM32_RTC_CR_OSEL, 0x01)
51 #define STM32_RTC_CR_COE		BIT(23)
52 #define STM32_RTC_CR_TAMPOE		BIT(26)
53 #define STM32_RTC_CR_TAMPALRM_TYPE	BIT(30)
54 #define STM32_RTC_CR_OUT2EN		BIT(31)
55 
56 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
57 #define STM32_RTC_ISR_ALRAWF		BIT(0)
58 #define STM32_RTC_ISR_INITS		BIT(4)
59 #define STM32_RTC_ISR_RSF		BIT(5)
60 #define STM32_RTC_ISR_INITF		BIT(6)
61 #define STM32_RTC_ISR_INIT		BIT(7)
62 #define STM32_RTC_ISR_ALRAF		BIT(8)
63 
64 /* STM32_RTC_PRER bit fields */
65 #define STM32_RTC_PRER_PRED_S_SHIFT	0
66 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
67 #define STM32_RTC_PRER_PRED_A_SHIFT	16
68 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
69 
70 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
71 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
72 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
73 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
74 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
75 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
76 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
77 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
78 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
79 #define STM32_RTC_ALRMXR_PM		BIT(22)
80 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
81 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
82 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
83 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
84 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
85 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
86 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
87 
88 /* STM32_RTC_SR/_SCR bit fields */
89 #define STM32_RTC_SR_ALRA		BIT(0)
90 
91 /* STM32_RTC_CFGR bit fields */
92 #define STM32_RTC_CFGR_OUT2_RMP		BIT(0)
93 #define STM32_RTC_CFGR_LSCOEN		GENMASK(2, 1)
94 #define STM32_RTC_CFGR_LSCOEN_OUT1	1
95 #define STM32_RTC_CFGR_LSCOEN_OUT2_RMP	2
96 
97 /* STM32_RTC_VERR bit fields */
98 #define STM32_RTC_VERR_MINREV_SHIFT	0
99 #define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
100 #define STM32_RTC_VERR_MAJREV_SHIFT	4
101 #define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
102 
103 /* STM32_RTC_SECCFGR bit fields */
104 #define STM32_RTC_SECCFGR		0x20
105 #define STM32_RTC_SECCFGR_ALRA_SEC	BIT(0)
106 #define STM32_RTC_SECCFGR_INIT_SEC	BIT(14)
107 #define STM32_RTC_SECCFGR_SEC		BIT(15)
108 
109 /* STM32_RTC_RXCIDCFGR bit fields */
110 #define STM32_RTC_RXCIDCFGR(x)		(0x80 + 0x4 * (x))
111 #define STM32_RTC_RXCIDCFGR_CFEN	BIT(0)
112 #define STM32_RTC_RXCIDCFGR_CID		GENMASK(6, 4)
113 #define STM32_RTC_RXCIDCFGR_CID1	1
114 
115 /* STM32_RTC_WPR key constants */
116 #define RTC_WPR_1ST_KEY			0xCA
117 #define RTC_WPR_2ND_KEY			0x53
118 #define RTC_WPR_WRONG_KEY		0xFF
119 
120 /* Max STM32 RTC register offset is 0x3FC */
121 #define UNDEF_REG			0xFFFF
122 
123 /* STM32 RTC driver time helpers */
124 #define SEC_PER_DAY		(24 * 60 * 60)
125 
126 /* STM32 RTC pinctrl helpers */
127 #define STM32_RTC_PINMUX(_name, _action, ...) { \
128 	.name = (_name), \
129 	.action = (_action), \
130 	.groups = ((const char *[]){ __VA_ARGS__ }), \
131 	.num_groups = ARRAY_SIZE(((const char *[]){ __VA_ARGS__ })), \
132 }
133 
134 struct stm32_rtc;
135 
136 struct stm32_rtc_registers {
137 	u16 tr;
138 	u16 dr;
139 	u16 cr;
140 	u16 isr;
141 	u16 prer;
142 	u16 alrmar;
143 	u16 wpr;
144 	u16 sr;
145 	u16 scr;
146 	u16 cfgr;
147 	u16 verr;
148 };
149 
150 struct stm32_rtc_events {
151 	u32 alra;
152 };
153 
154 struct stm32_rtc_data {
155 	const struct stm32_rtc_registers regs;
156 	const struct stm32_rtc_events events;
157 	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
158 	bool has_pclk;
159 	bool need_dbp;
160 	bool need_accuracy;
161 	bool rif_protected;
162 	bool has_lsco;
163 	bool has_alarm_out;
164 };
165 
166 struct stm32_rtc {
167 	struct rtc_device *rtc_dev;
168 	void __iomem *base;
169 	struct regmap *dbp;
170 	unsigned int dbp_reg;
171 	unsigned int dbp_mask;
172 	struct clk *pclk;
173 	struct clk *rtc_ck;
174 	const struct stm32_rtc_data *data;
175 	int irq_alarm;
176 	struct clk *clk_lsco;
177 };
178 
179 struct stm32_rtc_rif_resource {
180 	unsigned int num;
181 	u32 bit;
182 };
183 
184 static const struct stm32_rtc_rif_resource STM32_RTC_RES_ALRA = {0, STM32_RTC_SECCFGR_ALRA_SEC};
185 static const struct stm32_rtc_rif_resource STM32_RTC_RES_INIT = {5, STM32_RTC_SECCFGR_INIT_SEC};
186 
187 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
188 {
189 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
190 
191 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
192 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
193 }
194 
195 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
196 {
197 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
198 
199 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
200 }
201 
202 enum stm32_rtc_pin_name {
203 	NONE,
204 	OUT1,
205 	OUT2,
206 	OUT2_RMP
207 };
208 
209 static const struct pinctrl_pin_desc stm32_rtc_pinctrl_pins[] = {
210 	PINCTRL_PIN(OUT1, "out1"),
211 	PINCTRL_PIN(OUT2, "out2"),
212 	PINCTRL_PIN(OUT2_RMP, "out2_rmp"),
213 };
214 
215 static int stm32_rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
216 {
217 	return ARRAY_SIZE(stm32_rtc_pinctrl_pins);
218 }
219 
220 static const char *stm32_rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
221 						    unsigned int selector)
222 {
223 	return stm32_rtc_pinctrl_pins[selector].name;
224 }
225 
226 static int stm32_rtc_pinctrl_get_group_pins(struct pinctrl_dev *pctldev,
227 					    unsigned int selector,
228 					    const unsigned int **pins,
229 					    unsigned int *num_pins)
230 {
231 	*pins = &stm32_rtc_pinctrl_pins[selector].number;
232 	*num_pins = 1;
233 	return 0;
234 }
235 
236 static const struct pinctrl_ops stm32_rtc_pinctrl_ops = {
237 	.dt_node_to_map		= pinconf_generic_dt_node_to_map_all,
238 	.dt_free_map		= pinconf_generic_dt_free_map,
239 	.get_groups_count	= stm32_rtc_pinctrl_get_groups_count,
240 	.get_group_name		= stm32_rtc_pinctrl_get_group_name,
241 	.get_group_pins		= stm32_rtc_pinctrl_get_group_pins,
242 };
243 
244 struct stm32_rtc_pinmux_func {
245 	const char *name;
246 	const char * const *groups;
247 	const unsigned int num_groups;
248 	int (*action)(struct pinctrl_dev *pctl_dev, unsigned int pin);
249 };
250 
251 static int stm32_rtc_pinmux_action_alarm(struct pinctrl_dev *pctldev, unsigned int pin)
252 {
253 	struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
254 	struct stm32_rtc_registers regs = rtc->data->regs;
255 	unsigned int cr = readl_relaxed(rtc->base + regs.cr);
256 	unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr);
257 
258 	if (!rtc->data->has_alarm_out)
259 		return -EPERM;
260 
261 	cr &= ~STM32_RTC_CR_OSEL;
262 	cr |= STM32_RTC_CR_OSEL_ALARM_A;
263 	cr &= ~STM32_RTC_CR_TAMPOE;
264 	cr &= ~STM32_RTC_CR_COE;
265 	cr &= ~STM32_RTC_CR_TAMPALRM_TYPE;
266 
267 	switch (pin) {
268 	case OUT1:
269 		cr &= ~STM32_RTC_CR_OUT2EN;
270 		cfgr &= ~STM32_RTC_CFGR_OUT2_RMP;
271 		break;
272 	case OUT2:
273 		cr |= STM32_RTC_CR_OUT2EN;
274 		cfgr &= ~STM32_RTC_CFGR_OUT2_RMP;
275 		break;
276 	case OUT2_RMP:
277 		cr |= STM32_RTC_CR_OUT2EN;
278 		cfgr |= STM32_RTC_CFGR_OUT2_RMP;
279 		break;
280 	default:
281 		return -EINVAL;
282 	}
283 
284 	stm32_rtc_wpr_unlock(rtc);
285 	writel_relaxed(cr, rtc->base + regs.cr);
286 	writel_relaxed(cfgr, rtc->base + regs.cfgr);
287 	stm32_rtc_wpr_lock(rtc);
288 
289 	return 0;
290 }
291 
292 static int stm32_rtc_pinmux_lsco_available(struct pinctrl_dev *pctldev, unsigned int pin)
293 {
294 	struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
295 	struct stm32_rtc_registers regs = rtc->data->regs;
296 	unsigned int cr = readl_relaxed(rtc->base + regs.cr);
297 	unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr);
298 	unsigned int calib = STM32_RTC_CR_COE;
299 	unsigned int tampalrm = STM32_RTC_CR_TAMPOE | STM32_RTC_CR_OSEL;
300 
301 	switch (pin) {
302 	case OUT1:
303 		if ((!(cr & STM32_RTC_CR_OUT2EN) &&
304 		     ((cr & calib) || cr & tampalrm)) ||
305 		     ((cr & calib) && (cr & tampalrm)))
306 			return -EBUSY;
307 		break;
308 	case OUT2_RMP:
309 		if ((cr & STM32_RTC_CR_OUT2EN) &&
310 		    (cfgr & STM32_RTC_CFGR_OUT2_RMP) &&
311 		    ((cr & calib) || (cr & tampalrm)))
312 			return -EBUSY;
313 		break;
314 	default:
315 		return -EINVAL;
316 	}
317 
318 	if (clk_get_rate(rtc->rtc_ck) != 32768)
319 		return -ERANGE;
320 
321 	return 0;
322 }
323 
324 static int stm32_rtc_pinmux_action_lsco(struct pinctrl_dev *pctldev, unsigned int pin)
325 {
326 	struct stm32_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
327 	struct stm32_rtc_registers regs = rtc->data->regs;
328 	struct device *dev = rtc->rtc_dev->dev.parent;
329 	u8 lscoen;
330 	int ret;
331 
332 	if (!rtc->data->has_lsco)
333 		return -EPERM;
334 
335 	ret = stm32_rtc_pinmux_lsco_available(pctldev, pin);
336 	if (ret)
337 		return ret;
338 
339 	lscoen = (pin == OUT1) ? STM32_RTC_CFGR_LSCOEN_OUT1 : STM32_RTC_CFGR_LSCOEN_OUT2_RMP;
340 
341 	rtc->clk_lsco = clk_register_gate(dev, "rtc_lsco", __clk_get_name(rtc->rtc_ck),
342 					  CLK_IGNORE_UNUSED | CLK_IS_CRITICAL,
343 					  rtc->base + regs.cfgr, lscoen, 0, NULL);
344 	if (IS_ERR(rtc->clk_lsco))
345 		return PTR_ERR(rtc->clk_lsco);
346 
347 	of_clk_add_provider(dev->of_node, of_clk_src_simple_get, rtc->clk_lsco);
348 
349 	return 0;
350 }
351 
352 static const struct stm32_rtc_pinmux_func stm32_rtc_pinmux_functions[] = {
353 	STM32_RTC_PINMUX("lsco", &stm32_rtc_pinmux_action_lsco, "out1", "out2_rmp"),
354 	STM32_RTC_PINMUX("alarm-a", &stm32_rtc_pinmux_action_alarm, "out1", "out2", "out2_rmp"),
355 };
356 
357 static int stm32_rtc_pinmux_get_functions_count(struct pinctrl_dev *pctldev)
358 {
359 	return ARRAY_SIZE(stm32_rtc_pinmux_functions);
360 }
361 
362 static const char *stm32_rtc_pinmux_get_fname(struct pinctrl_dev *pctldev, unsigned int selector)
363 {
364 	return stm32_rtc_pinmux_functions[selector].name;
365 }
366 
367 static int stm32_rtc_pinmux_get_groups(struct pinctrl_dev *pctldev, unsigned int selector,
368 				       const char * const **groups, unsigned int * const num_groups)
369 {
370 	*groups = stm32_rtc_pinmux_functions[selector].groups;
371 	*num_groups = stm32_rtc_pinmux_functions[selector].num_groups;
372 	return 0;
373 }
374 
375 static int stm32_rtc_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int selector,
376 				    unsigned int group)
377 {
378 	struct stm32_rtc_pinmux_func selected_func = stm32_rtc_pinmux_functions[selector];
379 	struct pinctrl_pin_desc pin = stm32_rtc_pinctrl_pins[group];
380 
381 	/* Call action */
382 	if (selected_func.action)
383 		return selected_func.action(pctldev, pin.number);
384 
385 	return -EINVAL;
386 }
387 
388 static const struct pinmux_ops stm32_rtc_pinmux_ops = {
389 	.get_functions_count	= stm32_rtc_pinmux_get_functions_count,
390 	.get_function_name	= stm32_rtc_pinmux_get_fname,
391 	.get_function_groups	= stm32_rtc_pinmux_get_groups,
392 	.set_mux		= stm32_rtc_pinmux_set_mux,
393 	.strict			= true,
394 };
395 
396 static struct pinctrl_desc stm32_rtc_pdesc = {
397 	.name = DRIVER_NAME,
398 	.pins = stm32_rtc_pinctrl_pins,
399 	.npins = ARRAY_SIZE(stm32_rtc_pinctrl_pins),
400 	.owner = THIS_MODULE,
401 	.pctlops = &stm32_rtc_pinctrl_ops,
402 	.pmxops = &stm32_rtc_pinmux_ops,
403 };
404 
405 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
406 {
407 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
408 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
409 
410 	if (!(isr & STM32_RTC_ISR_INITF)) {
411 		isr |= STM32_RTC_ISR_INIT;
412 		writel_relaxed(isr, rtc->base + regs->isr);
413 
414 		/*
415 		 * It takes around 2 rtc_ck clock cycles to enter in
416 		 * initialization phase mode (and have INITF flag set). As
417 		 * slowest rtc_ck frequency may be 32kHz and highest should be
418 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
419 		 */
420 		return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr,
421 							 (isr & STM32_RTC_ISR_INITF),
422 							 10, 100000);
423 	}
424 
425 	return 0;
426 }
427 
428 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
429 {
430 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
431 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
432 
433 	isr &= ~STM32_RTC_ISR_INIT;
434 	writel_relaxed(isr, rtc->base + regs->isr);
435 }
436 
437 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
438 {
439 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
440 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
441 
442 	isr &= ~STM32_RTC_ISR_RSF;
443 	writel_relaxed(isr, rtc->base + regs->isr);
444 
445 	/*
446 	 * Wait for RSF to be set to ensure the calendar registers are
447 	 * synchronised, it takes around 2 rtc_ck clock cycles
448 	 */
449 	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
450 						 isr,
451 						 (isr & STM32_RTC_ISR_RSF),
452 						 10, 100000);
453 }
454 
455 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
456 					unsigned int flags)
457 {
458 	rtc->data->clear_events(rtc, flags);
459 }
460 
461 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
462 {
463 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
464 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
465 	const struct stm32_rtc_events *evts = &rtc->data->events;
466 	unsigned int status, cr;
467 
468 	rtc_lock(rtc->rtc_dev);
469 
470 	status = readl_relaxed(rtc->base + regs->sr);
471 	cr = readl_relaxed(rtc->base + regs->cr);
472 
473 	if ((status & evts->alra) &&
474 	    (cr & STM32_RTC_CR_ALRAIE)) {
475 		/* Alarm A flag - Alarm interrupt */
476 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
477 
478 		/* Pass event to the kernel */
479 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
480 
481 		/* Clear event flags, otherwise new events won't be received */
482 		stm32_rtc_clear_event_flags(rtc, evts->alra);
483 	}
484 
485 	rtc_unlock(rtc->rtc_dev);
486 
487 	return IRQ_HANDLED;
488 }
489 
490 /* Convert rtc_time structure from bin to bcd format */
491 static void tm2bcd(struct rtc_time *tm)
492 {
493 	tm->tm_sec = bin2bcd(tm->tm_sec);
494 	tm->tm_min = bin2bcd(tm->tm_min);
495 	tm->tm_hour = bin2bcd(tm->tm_hour);
496 
497 	tm->tm_mday = bin2bcd(tm->tm_mday);
498 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
499 	tm->tm_year = bin2bcd(tm->tm_year - 100);
500 	/*
501 	 * Number of days since Sunday
502 	 * - on kernel side, 0=Sunday...6=Saturday
503 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
504 	 */
505 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
506 }
507 
508 /* Convert rtc_time structure from bcd to bin format */
509 static void bcd2tm(struct rtc_time *tm)
510 {
511 	tm->tm_sec = bcd2bin(tm->tm_sec);
512 	tm->tm_min = bcd2bin(tm->tm_min);
513 	tm->tm_hour = bcd2bin(tm->tm_hour);
514 
515 	tm->tm_mday = bcd2bin(tm->tm_mday);
516 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
517 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
518 	/*
519 	 * Number of days since Sunday
520 	 * - on kernel side, 0=Sunday...6=Saturday
521 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
522 	 */
523 	tm->tm_wday %= 7;
524 }
525 
526 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
527 {
528 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
529 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
530 	unsigned int tr, dr;
531 
532 	/* Time and Date in BCD format */
533 	tr = readl_relaxed(rtc->base + regs->tr);
534 	dr = readl_relaxed(rtc->base + regs->dr);
535 
536 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
537 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
538 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
539 
540 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
541 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
542 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
543 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
544 
545 	/* We don't report tm_yday and tm_isdst */
546 
547 	bcd2tm(tm);
548 
549 	return 0;
550 }
551 
552 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
553 {
554 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
555 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
556 	unsigned int tr, dr;
557 	int ret = 0;
558 
559 	tm2bcd(tm);
560 
561 	/* Time in BCD format */
562 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
563 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
564 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
565 
566 	/* Date in BCD format */
567 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
568 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
569 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
570 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
571 
572 	stm32_rtc_wpr_unlock(rtc);
573 
574 	ret = stm32_rtc_enter_init_mode(rtc);
575 	if (ret) {
576 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
577 		goto end;
578 	}
579 
580 	writel_relaxed(tr, rtc->base + regs->tr);
581 	writel_relaxed(dr, rtc->base + regs->dr);
582 
583 	stm32_rtc_exit_init_mode(rtc);
584 
585 	ret = stm32_rtc_wait_sync(rtc);
586 end:
587 	stm32_rtc_wpr_lock(rtc);
588 
589 	return ret;
590 }
591 
592 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
593 {
594 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
595 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
596 	const struct stm32_rtc_events *evts = &rtc->data->events;
597 	struct rtc_time *tm = &alrm->time;
598 	unsigned int alrmar, cr, status;
599 
600 	alrmar = readl_relaxed(rtc->base + regs->alrmar);
601 	cr = readl_relaxed(rtc->base + regs->cr);
602 	status = readl_relaxed(rtc->base + regs->sr);
603 
604 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
605 		/*
606 		 * Date/day doesn't matter in Alarm comparison so alarm
607 		 * triggers every day
608 		 */
609 		tm->tm_mday = -1;
610 		tm->tm_wday = -1;
611 	} else {
612 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
613 			/* Alarm is set to a day of week */
614 			tm->tm_mday = -1;
615 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
616 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
617 			tm->tm_wday %= 7;
618 		} else {
619 			/* Alarm is set to a day of month */
620 			tm->tm_wday = -1;
621 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
622 				       STM32_RTC_ALRMXR_DATE_SHIFT;
623 		}
624 	}
625 
626 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
627 		/* Hours don't matter in Alarm comparison */
628 		tm->tm_hour = -1;
629 	} else {
630 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
631 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
632 		if (alrmar & STM32_RTC_ALRMXR_PM)
633 			tm->tm_hour += 12;
634 	}
635 
636 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
637 		/* Minutes don't matter in Alarm comparison */
638 		tm->tm_min = -1;
639 	} else {
640 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
641 			      STM32_RTC_ALRMXR_MIN_SHIFT;
642 	}
643 
644 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
645 		/* Seconds don't matter in Alarm comparison */
646 		tm->tm_sec = -1;
647 	} else {
648 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
649 			      STM32_RTC_ALRMXR_SEC_SHIFT;
650 	}
651 
652 	bcd2tm(tm);
653 
654 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
655 	alrm->pending = (status & evts->alra) ? 1 : 0;
656 
657 	return 0;
658 }
659 
660 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
661 {
662 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
663 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
664 	const struct stm32_rtc_events *evts = &rtc->data->events;
665 	unsigned int cr;
666 
667 	cr = readl_relaxed(rtc->base + regs->cr);
668 
669 	stm32_rtc_wpr_unlock(rtc);
670 
671 	/* We expose Alarm A to the kernel */
672 	if (enabled)
673 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
674 	else
675 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
676 	writel_relaxed(cr, rtc->base + regs->cr);
677 
678 	/* Clear event flags, otherwise new events won't be received */
679 	stm32_rtc_clear_event_flags(rtc, evts->alra);
680 
681 	stm32_rtc_wpr_lock(rtc);
682 
683 	return 0;
684 }
685 
686 static int stm32_rtc_valid_alrm(struct device *dev, struct rtc_time *tm)
687 {
688 	static struct rtc_time now;
689 	time64_t max_alarm_time64;
690 	int max_day_forward;
691 	int next_month;
692 	int next_year;
693 
694 	/*
695 	 * Assuming current date is M-D-Y H:M:S.
696 	 * RTC alarm can't be set on a specific month and year.
697 	 * So the valid alarm range is:
698 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
699 	 */
700 	stm32_rtc_read_time(dev, &now);
701 
702 	/*
703 	 * Find the next month and the year of the next month.
704 	 * Note: tm_mon and next_month are from 0 to 11
705 	 */
706 	next_month = now.tm_mon + 1;
707 	if (next_month == 12) {
708 		next_month = 0;
709 		next_year = now.tm_year + 1;
710 	} else {
711 		next_year = now.tm_year;
712 	}
713 
714 	/* Find the maximum limit of alarm in days. */
715 	max_day_forward = rtc_month_days(now.tm_mon, now.tm_year)
716 			 - now.tm_mday
717 			 + min(rtc_month_days(next_month, next_year), now.tm_mday);
718 
719 	/* Convert to timestamp and compare the alarm time and its upper limit */
720 	max_alarm_time64 = rtc_tm_to_time64(&now) + max_day_forward * SEC_PER_DAY;
721 	return rtc_tm_to_time64(tm) <= max_alarm_time64 ? 0 : -EINVAL;
722 }
723 
724 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
725 {
726 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
727 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
728 	struct rtc_time *tm = &alrm->time;
729 	unsigned int cr, isr, alrmar;
730 	int ret = 0;
731 
732 	/*
733 	 * RTC alarm can't be set on a specific date, unless this date is
734 	 * up to the same day of month next month.
735 	 */
736 	if (stm32_rtc_valid_alrm(dev, tm) < 0) {
737 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
738 		return -EINVAL;
739 	}
740 
741 	tm2bcd(tm);
742 
743 	alrmar = 0;
744 	/* tm_year and tm_mon are not used because not supported by RTC */
745 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
746 		  STM32_RTC_ALRMXR_DATE;
747 	/* 24-hour format */
748 	alrmar &= ~STM32_RTC_ALRMXR_PM;
749 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
750 		  STM32_RTC_ALRMXR_HOUR;
751 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
752 		  STM32_RTC_ALRMXR_MIN;
753 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
754 		  STM32_RTC_ALRMXR_SEC;
755 
756 	stm32_rtc_wpr_unlock(rtc);
757 
758 	/* Disable Alarm */
759 	cr = readl_relaxed(rtc->base + regs->cr);
760 	cr &= ~STM32_RTC_CR_ALRAE;
761 	writel_relaxed(cr, rtc->base + regs->cr);
762 
763 	/*
764 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
765 	 * takes around 2 rtc_ck clock cycles
766 	 */
767 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
768 						isr,
769 						(isr & STM32_RTC_ISR_ALRAWF),
770 						10, 100000);
771 
772 	if (ret) {
773 		dev_err(dev, "Alarm update not allowed\n");
774 		goto end;
775 	}
776 
777 	/* Write to Alarm register */
778 	writel_relaxed(alrmar, rtc->base + regs->alrmar);
779 
780 	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
781 end:
782 	stm32_rtc_wpr_lock(rtc);
783 
784 	return ret;
785 }
786 
787 static const struct rtc_class_ops stm32_rtc_ops = {
788 	.read_time	= stm32_rtc_read_time,
789 	.set_time	= stm32_rtc_set_time,
790 	.read_alarm	= stm32_rtc_read_alarm,
791 	.set_alarm	= stm32_rtc_set_alarm,
792 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
793 };
794 
795 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
796 				   unsigned int flags)
797 {
798 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
799 
800 	/* Flags are cleared by writing 0 in RTC_ISR */
801 	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
802 		       rtc->base + regs->isr);
803 }
804 
805 static const struct stm32_rtc_data stm32_rtc_data = {
806 	.has_pclk = false,
807 	.need_dbp = true,
808 	.need_accuracy = false,
809 	.rif_protected = false,
810 	.has_lsco = false,
811 	.has_alarm_out = false,
812 	.regs = {
813 		.tr = 0x00,
814 		.dr = 0x04,
815 		.cr = 0x08,
816 		.isr = 0x0C,
817 		.prer = 0x10,
818 		.alrmar = 0x1C,
819 		.wpr = 0x24,
820 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
821 		.scr = UNDEF_REG,
822 		.cfgr = UNDEF_REG,
823 		.verr = UNDEF_REG,
824 	},
825 	.events = {
826 		.alra = STM32_RTC_ISR_ALRAF,
827 	},
828 	.clear_events = stm32_rtc_clear_events,
829 };
830 
831 static const struct stm32_rtc_data stm32h7_rtc_data = {
832 	.has_pclk = true,
833 	.need_dbp = true,
834 	.need_accuracy = false,
835 	.rif_protected = false,
836 	.has_lsco = false,
837 	.has_alarm_out = false,
838 	.regs = {
839 		.tr = 0x00,
840 		.dr = 0x04,
841 		.cr = 0x08,
842 		.isr = 0x0C,
843 		.prer = 0x10,
844 		.alrmar = 0x1C,
845 		.wpr = 0x24,
846 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
847 		.scr = UNDEF_REG,
848 		.cfgr = UNDEF_REG,
849 		.verr = UNDEF_REG,
850 	},
851 	.events = {
852 		.alra = STM32_RTC_ISR_ALRAF,
853 	},
854 	.clear_events = stm32_rtc_clear_events,
855 };
856 
857 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
858 				      unsigned int flags)
859 {
860 	struct stm32_rtc_registers regs = rtc->data->regs;
861 
862 	/* Flags are cleared by writing 1 in RTC_SCR */
863 	writel_relaxed(flags, rtc->base + regs.scr);
864 }
865 
866 static const struct stm32_rtc_data stm32mp1_data = {
867 	.has_pclk = true,
868 	.need_dbp = false,
869 	.need_accuracy = true,
870 	.rif_protected = false,
871 	.has_lsco = true,
872 	.has_alarm_out = true,
873 	.regs = {
874 		.tr = 0x00,
875 		.dr = 0x04,
876 		.cr = 0x18,
877 		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
878 		.prer = 0x10,
879 		.alrmar = 0x40,
880 		.wpr = 0x24,
881 		.sr = 0x50,
882 		.scr = 0x5C,
883 		.cfgr = 0x60,
884 		.verr = 0x3F4,
885 	},
886 	.events = {
887 		.alra = STM32_RTC_SR_ALRA,
888 	},
889 	.clear_events = stm32mp1_rtc_clear_events,
890 };
891 
892 static const struct stm32_rtc_data stm32mp25_data = {
893 	.has_pclk = true,
894 	.need_dbp = false,
895 	.need_accuracy = true,
896 	.rif_protected = true,
897 	.has_lsco = true,
898 	.has_alarm_out = true,
899 	.regs = {
900 		.tr = 0x00,
901 		.dr = 0x04,
902 		.cr = 0x18,
903 		.isr = 0x0C, /* named RTC_ICSR on stm32mp25 */
904 		.prer = 0x10,
905 		.alrmar = 0x40,
906 		.wpr = 0x24,
907 		.sr = 0x50,
908 		.scr = 0x5C,
909 		.cfgr = 0x60,
910 		.verr = 0x3F4,
911 	},
912 	.events = {
913 		.alra = STM32_RTC_SR_ALRA,
914 	},
915 	.clear_events = stm32mp1_rtc_clear_events,
916 };
917 
918 static const struct of_device_id stm32_rtc_of_match[] = {
919 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
920 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
921 	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
922 	{ .compatible = "st,stm32mp25-rtc", .data = &stm32mp25_data },
923 	{}
924 };
925 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
926 
927 static void stm32_rtc_clean_outs(struct stm32_rtc *rtc)
928 {
929 	struct stm32_rtc_registers regs = rtc->data->regs;
930 	unsigned int cr = readl_relaxed(rtc->base + regs.cr);
931 
932 	cr &= ~STM32_RTC_CR_OSEL;
933 	cr &= ~STM32_RTC_CR_TAMPOE;
934 	cr &= ~STM32_RTC_CR_COE;
935 	cr &= ~STM32_RTC_CR_TAMPALRM_TYPE;
936 	cr &= ~STM32_RTC_CR_OUT2EN;
937 
938 	stm32_rtc_wpr_unlock(rtc);
939 	writel_relaxed(cr, rtc->base + regs.cr);
940 	stm32_rtc_wpr_lock(rtc);
941 
942 	if (regs.cfgr != UNDEF_REG) {
943 		unsigned int cfgr = readl_relaxed(rtc->base + regs.cfgr);
944 
945 		cfgr &= ~STM32_RTC_CFGR_LSCOEN;
946 		cfgr &= ~STM32_RTC_CFGR_OUT2_RMP;
947 		writel_relaxed(cfgr, rtc->base + regs.cfgr);
948 	}
949 }
950 
951 static int stm32_rtc_check_rif(struct stm32_rtc *stm32_rtc,
952 			       struct stm32_rtc_rif_resource res)
953 {
954 	u32 rxcidcfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_RXCIDCFGR(res.num));
955 	u32 seccfgr;
956 
957 	/* Check if RTC available for our CID */
958 	if ((rxcidcfgr & STM32_RTC_RXCIDCFGR_CFEN) &&
959 	    (FIELD_GET(STM32_RTC_RXCIDCFGR_CID, rxcidcfgr) != STM32_RTC_RXCIDCFGR_CID1))
960 		return -EACCES;
961 
962 	/* Check if RTC available for non secure world */
963 	seccfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_SECCFGR);
964 	if ((seccfgr & STM32_RTC_SECCFGR_SEC) | (seccfgr & res.bit))
965 		return -EACCES;
966 
967 	return 0;
968 }
969 
970 static int stm32_rtc_init(struct platform_device *pdev,
971 			  struct stm32_rtc *rtc)
972 {
973 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
974 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
975 	unsigned int rate;
976 	int ret;
977 
978 	rate = clk_get_rate(rtc->rtc_ck);
979 
980 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
981 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
982 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
983 
984 	if (rate > (pred_a_max + 1) * (pred_s_max + 1)) {
985 		dev_err(&pdev->dev, "rtc_ck rate is too high: %dHz\n", rate);
986 		return -EINVAL;
987 	}
988 
989 	if (rtc->data->need_accuracy) {
990 		for (pred_a = 0; pred_a <= pred_a_max; pred_a++) {
991 			pred_s = (rate / (pred_a + 1)) - 1;
992 
993 			if (pred_s <= pred_s_max && ((pred_s + 1) * (pred_a + 1)) == rate)
994 				break;
995 		}
996 	} else {
997 		for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
998 			pred_s = (rate / (pred_a + 1)) - 1;
999 
1000 			if (((pred_s + 1) * (pred_a + 1)) == rate)
1001 				break;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Can't find a 1Hz, so give priority to RTC power consumption
1007 	 * by choosing the higher possible value for prediv_a
1008 	 */
1009 	if (pred_s > pred_s_max || pred_a > pred_a_max) {
1010 		pred_a = pred_a_max;
1011 		pred_s = (rate / (pred_a + 1)) - 1;
1012 
1013 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
1014 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
1015 			 "fast" : "slow");
1016 	}
1017 
1018 	cr = readl_relaxed(rtc->base + regs->cr);
1019 
1020 	prer = readl_relaxed(rtc->base + regs->prer);
1021 	prer &= STM32_RTC_PRER_PRED_S | STM32_RTC_PRER_PRED_A;
1022 
1023 	pred_s = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) &
1024 		 STM32_RTC_PRER_PRED_S;
1025 	pred_a = (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) &
1026 		 STM32_RTC_PRER_PRED_A;
1027 
1028 	/* quit if there is nothing to initialize */
1029 	if ((cr & STM32_RTC_CR_FMT) == 0 && prer == (pred_s | pred_a))
1030 		return 0;
1031 
1032 	stm32_rtc_wpr_unlock(rtc);
1033 
1034 	ret = stm32_rtc_enter_init_mode(rtc);
1035 	if (ret) {
1036 		dev_err(&pdev->dev,
1037 			"Can't enter in init mode. Prescaler config failed.\n");
1038 		goto end;
1039 	}
1040 
1041 	writel_relaxed(pred_s, rtc->base + regs->prer);
1042 	writel_relaxed(pred_a | pred_s, rtc->base + regs->prer);
1043 
1044 	/* Force 24h time format */
1045 	cr &= ~STM32_RTC_CR_FMT;
1046 	writel_relaxed(cr, rtc->base + regs->cr);
1047 
1048 	stm32_rtc_exit_init_mode(rtc);
1049 
1050 	ret = stm32_rtc_wait_sync(rtc);
1051 end:
1052 	stm32_rtc_wpr_lock(rtc);
1053 
1054 	return ret;
1055 }
1056 
1057 static int stm32_rtc_probe(struct platform_device *pdev)
1058 {
1059 	struct stm32_rtc *rtc;
1060 	const struct stm32_rtc_registers *regs;
1061 	struct pinctrl_dev *pctl;
1062 	int ret;
1063 
1064 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
1065 	if (!rtc)
1066 		return -ENOMEM;
1067 
1068 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
1069 	if (IS_ERR(rtc->base))
1070 		return PTR_ERR(rtc->base);
1071 
1072 	rtc->data = (struct stm32_rtc_data *)
1073 		    of_device_get_match_data(&pdev->dev);
1074 	regs = &rtc->data->regs;
1075 
1076 	if (rtc->data->need_dbp) {
1077 		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
1078 							   "st,syscfg");
1079 		if (IS_ERR(rtc->dbp)) {
1080 			dev_err(&pdev->dev, "no st,syscfg\n");
1081 			return PTR_ERR(rtc->dbp);
1082 		}
1083 
1084 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
1085 						 1, &rtc->dbp_reg);
1086 		if (ret) {
1087 			dev_err(&pdev->dev, "can't read DBP register offset\n");
1088 			return ret;
1089 		}
1090 
1091 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
1092 						 2, &rtc->dbp_mask);
1093 		if (ret) {
1094 			dev_err(&pdev->dev, "can't read DBP register mask\n");
1095 			return ret;
1096 		}
1097 	}
1098 
1099 	if (!rtc->data->has_pclk) {
1100 		rtc->pclk = NULL;
1101 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
1102 	} else {
1103 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
1104 		if (IS_ERR(rtc->pclk))
1105 			return dev_err_probe(&pdev->dev, PTR_ERR(rtc->pclk), "no pclk clock");
1106 
1107 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
1108 	}
1109 	if (IS_ERR(rtc->rtc_ck))
1110 		return dev_err_probe(&pdev->dev, PTR_ERR(rtc->rtc_ck), "no rtc_ck clock");
1111 
1112 	if (rtc->data->has_pclk) {
1113 		ret = clk_prepare_enable(rtc->pclk);
1114 		if (ret)
1115 			return ret;
1116 	}
1117 
1118 	ret = clk_prepare_enable(rtc->rtc_ck);
1119 	if (ret)
1120 		goto err_no_rtc_ck;
1121 
1122 	if (rtc->data->need_dbp)
1123 		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
1124 				   rtc->dbp_mask, rtc->dbp_mask);
1125 
1126 	if (rtc->data->rif_protected) {
1127 		ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_INIT);
1128 		if (!ret)
1129 			ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_ALRA);
1130 		if (ret) {
1131 			dev_err(&pdev->dev, "Failed to probe RTC due to RIF configuration\n");
1132 			goto err;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
1138 	 * the calendar has been initialized or not. INITS flag is reset by a
1139 	 * power-on reset (no vbat, no power-supply). It is not reset if
1140 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
1141 	 * changed). That's why we cannot rely on this flag to know if RTC
1142 	 * init has to be done.
1143 	 */
1144 	ret = stm32_rtc_init(pdev, rtc);
1145 	if (ret)
1146 		goto err;
1147 
1148 	rtc->irq_alarm = platform_get_irq(pdev, 0);
1149 	if (rtc->irq_alarm <= 0) {
1150 		ret = rtc->irq_alarm;
1151 		goto err;
1152 	}
1153 
1154 	ret = device_init_wakeup(&pdev->dev, true);
1155 	if (ret)
1156 		goto err;
1157 
1158 	ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm);
1159 	if (ret)
1160 		goto err;
1161 
1162 	platform_set_drvdata(pdev, rtc);
1163 
1164 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
1165 						&stm32_rtc_ops, THIS_MODULE);
1166 	if (IS_ERR(rtc->rtc_dev)) {
1167 		ret = PTR_ERR(rtc->rtc_dev);
1168 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
1169 			ret);
1170 		goto err;
1171 	}
1172 
1173 	/* Handle RTC alarm interrupts */
1174 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
1175 					stm32_rtc_alarm_irq, IRQF_ONESHOT,
1176 					pdev->name, rtc);
1177 	if (ret) {
1178 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
1179 			rtc->irq_alarm);
1180 		goto err;
1181 	}
1182 
1183 	stm32_rtc_clean_outs(rtc);
1184 
1185 	ret = devm_pinctrl_register_and_init(&pdev->dev, &stm32_rtc_pdesc, rtc, &pctl);
1186 	if (ret)
1187 		return dev_err_probe(&pdev->dev, ret, "pinctrl register failed");
1188 
1189 	ret = pinctrl_enable(pctl);
1190 	if (ret)
1191 		return dev_err_probe(&pdev->dev, ret, "pinctrl enable failed");
1192 
1193 	/*
1194 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
1195 	 * must be initialized
1196 	 */
1197 	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
1198 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
1199 
1200 	if (regs->verr != UNDEF_REG) {
1201 		u32 ver = readl_relaxed(rtc->base + regs->verr);
1202 
1203 		dev_info(&pdev->dev, "registered rev:%d.%d\n",
1204 			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
1205 			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
1206 	}
1207 
1208 	return 0;
1209 
1210 err:
1211 	clk_disable_unprepare(rtc->rtc_ck);
1212 err_no_rtc_ck:
1213 	if (rtc->data->has_pclk)
1214 		clk_disable_unprepare(rtc->pclk);
1215 
1216 	if (rtc->data->need_dbp)
1217 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
1218 
1219 	dev_pm_clear_wake_irq(&pdev->dev);
1220 	device_init_wakeup(&pdev->dev, false);
1221 
1222 	return ret;
1223 }
1224 
1225 static void stm32_rtc_remove(struct platform_device *pdev)
1226 {
1227 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
1228 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
1229 	unsigned int cr;
1230 
1231 	if (!IS_ERR_OR_NULL(rtc->clk_lsco))
1232 		clk_unregister_gate(rtc->clk_lsco);
1233 
1234 	/* Disable interrupts */
1235 	stm32_rtc_wpr_unlock(rtc);
1236 	cr = readl_relaxed(rtc->base + regs->cr);
1237 	cr &= ~STM32_RTC_CR_ALRAIE;
1238 	writel_relaxed(cr, rtc->base + regs->cr);
1239 	stm32_rtc_wpr_lock(rtc);
1240 
1241 	clk_disable_unprepare(rtc->rtc_ck);
1242 	if (rtc->data->has_pclk)
1243 		clk_disable_unprepare(rtc->pclk);
1244 
1245 	/* Enable backup domain write protection if needed */
1246 	if (rtc->data->need_dbp)
1247 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
1248 
1249 	dev_pm_clear_wake_irq(&pdev->dev);
1250 	device_init_wakeup(&pdev->dev, false);
1251 }
1252 
1253 static int stm32_rtc_suspend(struct device *dev)
1254 {
1255 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
1256 
1257 	if (rtc->data->has_pclk)
1258 		clk_disable_unprepare(rtc->pclk);
1259 
1260 	return 0;
1261 }
1262 
1263 static int stm32_rtc_resume(struct device *dev)
1264 {
1265 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
1266 	int ret = 0;
1267 
1268 	if (rtc->data->has_pclk) {
1269 		ret = clk_prepare_enable(rtc->pclk);
1270 		if (ret)
1271 			return ret;
1272 	}
1273 
1274 	ret = stm32_rtc_wait_sync(rtc);
1275 	if (ret < 0) {
1276 		if (rtc->data->has_pclk)
1277 			clk_disable_unprepare(rtc->pclk);
1278 		return ret;
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 static const struct dev_pm_ops stm32_rtc_pm_ops = {
1285 	NOIRQ_SYSTEM_SLEEP_PM_OPS(stm32_rtc_suspend, stm32_rtc_resume)
1286 };
1287 
1288 static struct platform_driver stm32_rtc_driver = {
1289 	.probe		= stm32_rtc_probe,
1290 	.remove_new	= stm32_rtc_remove,
1291 	.driver		= {
1292 		.name	= DRIVER_NAME,
1293 		.pm	= &stm32_rtc_pm_ops,
1294 		.of_match_table = stm32_rtc_of_match,
1295 	},
1296 };
1297 
1298 module_platform_driver(stm32_rtc_driver);
1299 
1300 MODULE_ALIAS("platform:" DRIVER_NAME);
1301 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
1302 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
1303 MODULE_LICENSE("GPL v2");
1304