xref: /linux/drivers/rtc/rtc-stm32.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/errno.h>
11 #include <linux/iopoll.h>
12 #include <linux/ioport.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_wakeirq.h>
18 #include <linux/regmap.h>
19 #include <linux/rtc.h>
20 
21 #define DRIVER_NAME "stm32_rtc"
22 
23 /* STM32_RTC_TR bit fields  */
24 #define STM32_RTC_TR_SEC_SHIFT		0
25 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
26 #define STM32_RTC_TR_MIN_SHIFT		8
27 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
28 #define STM32_RTC_TR_HOUR_SHIFT		16
29 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
30 
31 /* STM32_RTC_DR bit fields */
32 #define STM32_RTC_DR_DATE_SHIFT		0
33 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
34 #define STM32_RTC_DR_MONTH_SHIFT	8
35 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
36 #define STM32_RTC_DR_WDAY_SHIFT		13
37 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
38 #define STM32_RTC_DR_YEAR_SHIFT		16
39 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
40 
41 /* STM32_RTC_CR bit fields */
42 #define STM32_RTC_CR_FMT		BIT(6)
43 #define STM32_RTC_CR_ALRAE		BIT(8)
44 #define STM32_RTC_CR_ALRAIE		BIT(12)
45 
46 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
47 #define STM32_RTC_ISR_ALRAWF		BIT(0)
48 #define STM32_RTC_ISR_INITS		BIT(4)
49 #define STM32_RTC_ISR_RSF		BIT(5)
50 #define STM32_RTC_ISR_INITF		BIT(6)
51 #define STM32_RTC_ISR_INIT		BIT(7)
52 #define STM32_RTC_ISR_ALRAF		BIT(8)
53 
54 /* STM32_RTC_PRER bit fields */
55 #define STM32_RTC_PRER_PRED_S_SHIFT	0
56 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
57 #define STM32_RTC_PRER_PRED_A_SHIFT	16
58 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
59 
60 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
61 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
62 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
63 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
64 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
65 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
66 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
67 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
68 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
69 #define STM32_RTC_ALRMXR_PM		BIT(22)
70 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
71 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
72 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
73 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
74 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
75 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
76 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
77 
78 /* STM32_RTC_SR/_SCR bit fields */
79 #define STM32_RTC_SR_ALRA		BIT(0)
80 
81 /* STM32_RTC_VERR bit fields */
82 #define STM32_RTC_VERR_MINREV_SHIFT	0
83 #define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
84 #define STM32_RTC_VERR_MAJREV_SHIFT	4
85 #define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
86 
87 /* STM32_RTC_SECCFGR bit fields */
88 #define STM32_RTC_SECCFGR		0x20
89 #define STM32_RTC_SECCFGR_ALRA_SEC	BIT(0)
90 #define STM32_RTC_SECCFGR_INIT_SEC	BIT(14)
91 #define STM32_RTC_SECCFGR_SEC		BIT(15)
92 
93 /* STM32_RTC_RXCIDCFGR bit fields */
94 #define STM32_RTC_RXCIDCFGR(x)		(0x80 + 0x4 * (x))
95 #define STM32_RTC_RXCIDCFGR_CFEN	BIT(0)
96 #define STM32_RTC_RXCIDCFGR_CID		GENMASK(6, 4)
97 #define STM32_RTC_RXCIDCFGR_CID1	1
98 
99 /* STM32_RTC_WPR key constants */
100 #define RTC_WPR_1ST_KEY			0xCA
101 #define RTC_WPR_2ND_KEY			0x53
102 #define RTC_WPR_WRONG_KEY		0xFF
103 
104 /* Max STM32 RTC register offset is 0x3FC */
105 #define UNDEF_REG			0xFFFF
106 
107 /* STM32 RTC driver time helpers */
108 #define SEC_PER_DAY		(24 * 60 * 60)
109 
110 struct stm32_rtc;
111 
112 struct stm32_rtc_registers {
113 	u16 tr;
114 	u16 dr;
115 	u16 cr;
116 	u16 isr;
117 	u16 prer;
118 	u16 alrmar;
119 	u16 wpr;
120 	u16 sr;
121 	u16 scr;
122 	u16 verr;
123 };
124 
125 struct stm32_rtc_events {
126 	u32 alra;
127 };
128 
129 struct stm32_rtc_data {
130 	const struct stm32_rtc_registers regs;
131 	const struct stm32_rtc_events events;
132 	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
133 	bool has_pclk;
134 	bool need_dbp;
135 	bool need_accuracy;
136 	bool rif_protected;
137 };
138 
139 struct stm32_rtc {
140 	struct rtc_device *rtc_dev;
141 	void __iomem *base;
142 	struct regmap *dbp;
143 	unsigned int dbp_reg;
144 	unsigned int dbp_mask;
145 	struct clk *pclk;
146 	struct clk *rtc_ck;
147 	const struct stm32_rtc_data *data;
148 	int irq_alarm;
149 };
150 
151 struct stm32_rtc_rif_resource {
152 	unsigned int num;
153 	u32 bit;
154 };
155 
156 static const struct stm32_rtc_rif_resource STM32_RTC_RES_ALRA = {0, STM32_RTC_SECCFGR_ALRA_SEC};
157 static const struct stm32_rtc_rif_resource STM32_RTC_RES_INIT = {5, STM32_RTC_SECCFGR_INIT_SEC};
158 
159 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
160 {
161 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
162 
163 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
164 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
165 }
166 
167 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
168 {
169 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
170 
171 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
172 }
173 
174 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
175 {
176 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
177 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
178 
179 	if (!(isr & STM32_RTC_ISR_INITF)) {
180 		isr |= STM32_RTC_ISR_INIT;
181 		writel_relaxed(isr, rtc->base + regs->isr);
182 
183 		/*
184 		 * It takes around 2 rtc_ck clock cycles to enter in
185 		 * initialization phase mode (and have INITF flag set). As
186 		 * slowest rtc_ck frequency may be 32kHz and highest should be
187 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
188 		 */
189 		return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr,
190 							 (isr & STM32_RTC_ISR_INITF),
191 							 10, 100000);
192 	}
193 
194 	return 0;
195 }
196 
197 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
198 {
199 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
200 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
201 
202 	isr &= ~STM32_RTC_ISR_INIT;
203 	writel_relaxed(isr, rtc->base + regs->isr);
204 }
205 
206 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
207 {
208 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
209 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
210 
211 	isr &= ~STM32_RTC_ISR_RSF;
212 	writel_relaxed(isr, rtc->base + regs->isr);
213 
214 	/*
215 	 * Wait for RSF to be set to ensure the calendar registers are
216 	 * synchronised, it takes around 2 rtc_ck clock cycles
217 	 */
218 	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
219 						 isr,
220 						 (isr & STM32_RTC_ISR_RSF),
221 						 10, 100000);
222 }
223 
224 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
225 					unsigned int flags)
226 {
227 	rtc->data->clear_events(rtc, flags);
228 }
229 
230 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
231 {
232 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
233 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
234 	const struct stm32_rtc_events *evts = &rtc->data->events;
235 	unsigned int status, cr;
236 
237 	rtc_lock(rtc->rtc_dev);
238 
239 	status = readl_relaxed(rtc->base + regs->sr);
240 	cr = readl_relaxed(rtc->base + regs->cr);
241 
242 	if ((status & evts->alra) &&
243 	    (cr & STM32_RTC_CR_ALRAIE)) {
244 		/* Alarm A flag - Alarm interrupt */
245 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
246 
247 		/* Pass event to the kernel */
248 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
249 
250 		/* Clear event flags, otherwise new events won't be received */
251 		stm32_rtc_clear_event_flags(rtc, evts->alra);
252 	}
253 
254 	rtc_unlock(rtc->rtc_dev);
255 
256 	return IRQ_HANDLED;
257 }
258 
259 /* Convert rtc_time structure from bin to bcd format */
260 static void tm2bcd(struct rtc_time *tm)
261 {
262 	tm->tm_sec = bin2bcd(tm->tm_sec);
263 	tm->tm_min = bin2bcd(tm->tm_min);
264 	tm->tm_hour = bin2bcd(tm->tm_hour);
265 
266 	tm->tm_mday = bin2bcd(tm->tm_mday);
267 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
268 	tm->tm_year = bin2bcd(tm->tm_year - 100);
269 	/*
270 	 * Number of days since Sunday
271 	 * - on kernel side, 0=Sunday...6=Saturday
272 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
273 	 */
274 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
275 }
276 
277 /* Convert rtc_time structure from bcd to bin format */
278 static void bcd2tm(struct rtc_time *tm)
279 {
280 	tm->tm_sec = bcd2bin(tm->tm_sec);
281 	tm->tm_min = bcd2bin(tm->tm_min);
282 	tm->tm_hour = bcd2bin(tm->tm_hour);
283 
284 	tm->tm_mday = bcd2bin(tm->tm_mday);
285 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
286 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
287 	/*
288 	 * Number of days since Sunday
289 	 * - on kernel side, 0=Sunday...6=Saturday
290 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
291 	 */
292 	tm->tm_wday %= 7;
293 }
294 
295 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
296 {
297 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
298 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
299 	unsigned int tr, dr;
300 
301 	/* Time and Date in BCD format */
302 	tr = readl_relaxed(rtc->base + regs->tr);
303 	dr = readl_relaxed(rtc->base + regs->dr);
304 
305 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
306 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
307 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
308 
309 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
310 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
311 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
312 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
313 
314 	/* We don't report tm_yday and tm_isdst */
315 
316 	bcd2tm(tm);
317 
318 	return 0;
319 }
320 
321 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
322 {
323 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
324 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
325 	unsigned int tr, dr;
326 	int ret = 0;
327 
328 	tm2bcd(tm);
329 
330 	/* Time in BCD format */
331 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
332 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
333 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
334 
335 	/* Date in BCD format */
336 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
337 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
338 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
339 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
340 
341 	stm32_rtc_wpr_unlock(rtc);
342 
343 	ret = stm32_rtc_enter_init_mode(rtc);
344 	if (ret) {
345 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
346 		goto end;
347 	}
348 
349 	writel_relaxed(tr, rtc->base + regs->tr);
350 	writel_relaxed(dr, rtc->base + regs->dr);
351 
352 	stm32_rtc_exit_init_mode(rtc);
353 
354 	ret = stm32_rtc_wait_sync(rtc);
355 end:
356 	stm32_rtc_wpr_lock(rtc);
357 
358 	return ret;
359 }
360 
361 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
362 {
363 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
364 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
365 	const struct stm32_rtc_events *evts = &rtc->data->events;
366 	struct rtc_time *tm = &alrm->time;
367 	unsigned int alrmar, cr, status;
368 
369 	alrmar = readl_relaxed(rtc->base + regs->alrmar);
370 	cr = readl_relaxed(rtc->base + regs->cr);
371 	status = readl_relaxed(rtc->base + regs->sr);
372 
373 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
374 		/*
375 		 * Date/day doesn't matter in Alarm comparison so alarm
376 		 * triggers every day
377 		 */
378 		tm->tm_mday = -1;
379 		tm->tm_wday = -1;
380 	} else {
381 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
382 			/* Alarm is set to a day of week */
383 			tm->tm_mday = -1;
384 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
385 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
386 			tm->tm_wday %= 7;
387 		} else {
388 			/* Alarm is set to a day of month */
389 			tm->tm_wday = -1;
390 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
391 				       STM32_RTC_ALRMXR_DATE_SHIFT;
392 		}
393 	}
394 
395 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
396 		/* Hours don't matter in Alarm comparison */
397 		tm->tm_hour = -1;
398 	} else {
399 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
400 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
401 		if (alrmar & STM32_RTC_ALRMXR_PM)
402 			tm->tm_hour += 12;
403 	}
404 
405 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
406 		/* Minutes don't matter in Alarm comparison */
407 		tm->tm_min = -1;
408 	} else {
409 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
410 			      STM32_RTC_ALRMXR_MIN_SHIFT;
411 	}
412 
413 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
414 		/* Seconds don't matter in Alarm comparison */
415 		tm->tm_sec = -1;
416 	} else {
417 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
418 			      STM32_RTC_ALRMXR_SEC_SHIFT;
419 	}
420 
421 	bcd2tm(tm);
422 
423 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
424 	alrm->pending = (status & evts->alra) ? 1 : 0;
425 
426 	return 0;
427 }
428 
429 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
430 {
431 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
432 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
433 	const struct stm32_rtc_events *evts = &rtc->data->events;
434 	unsigned int cr;
435 
436 	cr = readl_relaxed(rtc->base + regs->cr);
437 
438 	stm32_rtc_wpr_unlock(rtc);
439 
440 	/* We expose Alarm A to the kernel */
441 	if (enabled)
442 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
443 	else
444 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
445 	writel_relaxed(cr, rtc->base + regs->cr);
446 
447 	/* Clear event flags, otherwise new events won't be received */
448 	stm32_rtc_clear_event_flags(rtc, evts->alra);
449 
450 	stm32_rtc_wpr_lock(rtc);
451 
452 	return 0;
453 }
454 
455 static int stm32_rtc_valid_alrm(struct device *dev, struct rtc_time *tm)
456 {
457 	static struct rtc_time now;
458 	time64_t max_alarm_time64;
459 	int max_day_forward;
460 	int next_month;
461 	int next_year;
462 
463 	/*
464 	 * Assuming current date is M-D-Y H:M:S.
465 	 * RTC alarm can't be set on a specific month and year.
466 	 * So the valid alarm range is:
467 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
468 	 */
469 	stm32_rtc_read_time(dev, &now);
470 
471 	/*
472 	 * Find the next month and the year of the next month.
473 	 * Note: tm_mon and next_month are from 0 to 11
474 	 */
475 	next_month = now.tm_mon + 1;
476 	if (next_month == 12) {
477 		next_month = 0;
478 		next_year = now.tm_year + 1;
479 	} else {
480 		next_year = now.tm_year;
481 	}
482 
483 	/* Find the maximum limit of alarm in days. */
484 	max_day_forward = rtc_month_days(now.tm_mon, now.tm_year)
485 			 - now.tm_mday
486 			 + min(rtc_month_days(next_month, next_year), now.tm_mday);
487 
488 	/* Convert to timestamp and compare the alarm time and its upper limit */
489 	max_alarm_time64 = rtc_tm_to_time64(&now) + max_day_forward * SEC_PER_DAY;
490 	return rtc_tm_to_time64(tm) <= max_alarm_time64 ? 0 : -EINVAL;
491 }
492 
493 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
494 {
495 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
496 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
497 	struct rtc_time *tm = &alrm->time;
498 	unsigned int cr, isr, alrmar;
499 	int ret = 0;
500 
501 	/*
502 	 * RTC alarm can't be set on a specific date, unless this date is
503 	 * up to the same day of month next month.
504 	 */
505 	if (stm32_rtc_valid_alrm(dev, tm) < 0) {
506 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
507 		return -EINVAL;
508 	}
509 
510 	tm2bcd(tm);
511 
512 	alrmar = 0;
513 	/* tm_year and tm_mon are not used because not supported by RTC */
514 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
515 		  STM32_RTC_ALRMXR_DATE;
516 	/* 24-hour format */
517 	alrmar &= ~STM32_RTC_ALRMXR_PM;
518 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
519 		  STM32_RTC_ALRMXR_HOUR;
520 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
521 		  STM32_RTC_ALRMXR_MIN;
522 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
523 		  STM32_RTC_ALRMXR_SEC;
524 
525 	stm32_rtc_wpr_unlock(rtc);
526 
527 	/* Disable Alarm */
528 	cr = readl_relaxed(rtc->base + regs->cr);
529 	cr &= ~STM32_RTC_CR_ALRAE;
530 	writel_relaxed(cr, rtc->base + regs->cr);
531 
532 	/*
533 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
534 	 * takes around 2 rtc_ck clock cycles
535 	 */
536 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
537 						isr,
538 						(isr & STM32_RTC_ISR_ALRAWF),
539 						10, 100000);
540 
541 	if (ret) {
542 		dev_err(dev, "Alarm update not allowed\n");
543 		goto end;
544 	}
545 
546 	/* Write to Alarm register */
547 	writel_relaxed(alrmar, rtc->base + regs->alrmar);
548 
549 	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
550 end:
551 	stm32_rtc_wpr_lock(rtc);
552 
553 	return ret;
554 }
555 
556 static const struct rtc_class_ops stm32_rtc_ops = {
557 	.read_time	= stm32_rtc_read_time,
558 	.set_time	= stm32_rtc_set_time,
559 	.read_alarm	= stm32_rtc_read_alarm,
560 	.set_alarm	= stm32_rtc_set_alarm,
561 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
562 };
563 
564 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
565 				   unsigned int flags)
566 {
567 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
568 
569 	/* Flags are cleared by writing 0 in RTC_ISR */
570 	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
571 		       rtc->base + regs->isr);
572 }
573 
574 static const struct stm32_rtc_data stm32_rtc_data = {
575 	.has_pclk = false,
576 	.need_dbp = true,
577 	.need_accuracy = false,
578 	.rif_protected = false,
579 	.regs = {
580 		.tr = 0x00,
581 		.dr = 0x04,
582 		.cr = 0x08,
583 		.isr = 0x0C,
584 		.prer = 0x10,
585 		.alrmar = 0x1C,
586 		.wpr = 0x24,
587 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
588 		.scr = UNDEF_REG,
589 		.verr = UNDEF_REG,
590 	},
591 	.events = {
592 		.alra = STM32_RTC_ISR_ALRAF,
593 	},
594 	.clear_events = stm32_rtc_clear_events,
595 };
596 
597 static const struct stm32_rtc_data stm32h7_rtc_data = {
598 	.has_pclk = true,
599 	.need_dbp = true,
600 	.need_accuracy = false,
601 	.rif_protected = false,
602 	.regs = {
603 		.tr = 0x00,
604 		.dr = 0x04,
605 		.cr = 0x08,
606 		.isr = 0x0C,
607 		.prer = 0x10,
608 		.alrmar = 0x1C,
609 		.wpr = 0x24,
610 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
611 		.scr = UNDEF_REG,
612 		.verr = UNDEF_REG,
613 	},
614 	.events = {
615 		.alra = STM32_RTC_ISR_ALRAF,
616 	},
617 	.clear_events = stm32_rtc_clear_events,
618 };
619 
620 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
621 				      unsigned int flags)
622 {
623 	struct stm32_rtc_registers regs = rtc->data->regs;
624 
625 	/* Flags are cleared by writing 1 in RTC_SCR */
626 	writel_relaxed(flags, rtc->base + regs.scr);
627 }
628 
629 static const struct stm32_rtc_data stm32mp1_data = {
630 	.has_pclk = true,
631 	.need_dbp = false,
632 	.need_accuracy = true,
633 	.rif_protected = false,
634 	.regs = {
635 		.tr = 0x00,
636 		.dr = 0x04,
637 		.cr = 0x18,
638 		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
639 		.prer = 0x10,
640 		.alrmar = 0x40,
641 		.wpr = 0x24,
642 		.sr = 0x50,
643 		.scr = 0x5C,
644 		.verr = 0x3F4,
645 	},
646 	.events = {
647 		.alra = STM32_RTC_SR_ALRA,
648 	},
649 	.clear_events = stm32mp1_rtc_clear_events,
650 };
651 
652 static const struct stm32_rtc_data stm32mp25_data = {
653 	.has_pclk = true,
654 	.need_dbp = false,
655 	.need_accuracy = true,
656 	.rif_protected = true,
657 	.regs = {
658 		.tr = 0x00,
659 		.dr = 0x04,
660 		.cr = 0x18,
661 		.isr = 0x0C, /* named RTC_ICSR on stm32mp25 */
662 		.prer = 0x10,
663 		.alrmar = 0x40,
664 		.wpr = 0x24,
665 		.sr = 0x50,
666 		.scr = 0x5C,
667 		.verr = 0x3F4,
668 	},
669 	.events = {
670 		.alra = STM32_RTC_SR_ALRA,
671 	},
672 	.clear_events = stm32mp1_rtc_clear_events,
673 };
674 
675 static const struct of_device_id stm32_rtc_of_match[] = {
676 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
677 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
678 	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
679 	{ .compatible = "st,stm32mp25-rtc", .data = &stm32mp25_data },
680 	{}
681 };
682 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
683 
684 static int stm32_rtc_check_rif(struct stm32_rtc *stm32_rtc,
685 			       struct stm32_rtc_rif_resource res)
686 {
687 	u32 rxcidcfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_RXCIDCFGR(res.num));
688 	u32 seccfgr;
689 
690 	/* Check if RTC available for our CID */
691 	if ((rxcidcfgr & STM32_RTC_RXCIDCFGR_CFEN) &&
692 	    (FIELD_GET(STM32_RTC_RXCIDCFGR_CID, rxcidcfgr) != STM32_RTC_RXCIDCFGR_CID1))
693 		return -EACCES;
694 
695 	/* Check if RTC available for non secure world */
696 	seccfgr = readl_relaxed(stm32_rtc->base + STM32_RTC_SECCFGR);
697 	if ((seccfgr & STM32_RTC_SECCFGR_SEC) | (seccfgr & res.bit))
698 		return -EACCES;
699 
700 	return 0;
701 }
702 
703 static int stm32_rtc_init(struct platform_device *pdev,
704 			  struct stm32_rtc *rtc)
705 {
706 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
707 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
708 	unsigned int rate;
709 	int ret;
710 
711 	rate = clk_get_rate(rtc->rtc_ck);
712 
713 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
714 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
715 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
716 
717 	if (rate > (pred_a_max + 1) * (pred_s_max + 1)) {
718 		dev_err(&pdev->dev, "rtc_ck rate is too high: %dHz\n", rate);
719 		return -EINVAL;
720 	}
721 
722 	if (rtc->data->need_accuracy) {
723 		for (pred_a = 0; pred_a <= pred_a_max; pred_a++) {
724 			pred_s = (rate / (pred_a + 1)) - 1;
725 
726 			if (pred_s <= pred_s_max && ((pred_s + 1) * (pred_a + 1)) == rate)
727 				break;
728 		}
729 	} else {
730 		for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
731 			pred_s = (rate / (pred_a + 1)) - 1;
732 
733 			if (((pred_s + 1) * (pred_a + 1)) == rate)
734 				break;
735 		}
736 	}
737 
738 	/*
739 	 * Can't find a 1Hz, so give priority to RTC power consumption
740 	 * by choosing the higher possible value for prediv_a
741 	 */
742 	if (pred_s > pred_s_max || pred_a > pred_a_max) {
743 		pred_a = pred_a_max;
744 		pred_s = (rate / (pred_a + 1)) - 1;
745 
746 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
747 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
748 			 "fast" : "slow");
749 	}
750 
751 	cr = readl_relaxed(rtc->base + regs->cr);
752 
753 	prer = readl_relaxed(rtc->base + regs->prer);
754 	prer &= STM32_RTC_PRER_PRED_S | STM32_RTC_PRER_PRED_A;
755 
756 	pred_s = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) &
757 		 STM32_RTC_PRER_PRED_S;
758 	pred_a = (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) &
759 		 STM32_RTC_PRER_PRED_A;
760 
761 	/* quit if there is nothing to initialize */
762 	if ((cr & STM32_RTC_CR_FMT) == 0 && prer == (pred_s | pred_a))
763 		return 0;
764 
765 	stm32_rtc_wpr_unlock(rtc);
766 
767 	ret = stm32_rtc_enter_init_mode(rtc);
768 	if (ret) {
769 		dev_err(&pdev->dev,
770 			"Can't enter in init mode. Prescaler config failed.\n");
771 		goto end;
772 	}
773 
774 	writel_relaxed(pred_s, rtc->base + regs->prer);
775 	writel_relaxed(pred_a | pred_s, rtc->base + regs->prer);
776 
777 	/* Force 24h time format */
778 	cr &= ~STM32_RTC_CR_FMT;
779 	writel_relaxed(cr, rtc->base + regs->cr);
780 
781 	stm32_rtc_exit_init_mode(rtc);
782 
783 	ret = stm32_rtc_wait_sync(rtc);
784 end:
785 	stm32_rtc_wpr_lock(rtc);
786 
787 	return ret;
788 }
789 
790 static int stm32_rtc_probe(struct platform_device *pdev)
791 {
792 	struct stm32_rtc *rtc;
793 	const struct stm32_rtc_registers *regs;
794 	int ret;
795 
796 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
797 	if (!rtc)
798 		return -ENOMEM;
799 
800 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
801 	if (IS_ERR(rtc->base))
802 		return PTR_ERR(rtc->base);
803 
804 	rtc->data = (struct stm32_rtc_data *)
805 		    of_device_get_match_data(&pdev->dev);
806 	regs = &rtc->data->regs;
807 
808 	if (rtc->data->need_dbp) {
809 		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
810 							   "st,syscfg");
811 		if (IS_ERR(rtc->dbp)) {
812 			dev_err(&pdev->dev, "no st,syscfg\n");
813 			return PTR_ERR(rtc->dbp);
814 		}
815 
816 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
817 						 1, &rtc->dbp_reg);
818 		if (ret) {
819 			dev_err(&pdev->dev, "can't read DBP register offset\n");
820 			return ret;
821 		}
822 
823 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
824 						 2, &rtc->dbp_mask);
825 		if (ret) {
826 			dev_err(&pdev->dev, "can't read DBP register mask\n");
827 			return ret;
828 		}
829 	}
830 
831 	if (!rtc->data->has_pclk) {
832 		rtc->pclk = NULL;
833 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
834 	} else {
835 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
836 		if (IS_ERR(rtc->pclk))
837 			return dev_err_probe(&pdev->dev, PTR_ERR(rtc->pclk), "no pclk clock");
838 
839 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
840 	}
841 	if (IS_ERR(rtc->rtc_ck))
842 		return dev_err_probe(&pdev->dev, PTR_ERR(rtc->rtc_ck), "no rtc_ck clock");
843 
844 	if (rtc->data->has_pclk) {
845 		ret = clk_prepare_enable(rtc->pclk);
846 		if (ret)
847 			return ret;
848 	}
849 
850 	ret = clk_prepare_enable(rtc->rtc_ck);
851 	if (ret)
852 		goto err_no_rtc_ck;
853 
854 	if (rtc->data->need_dbp)
855 		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
856 				   rtc->dbp_mask, rtc->dbp_mask);
857 
858 	if (rtc->data->rif_protected) {
859 		ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_INIT);
860 		if (!ret)
861 			ret = stm32_rtc_check_rif(rtc, STM32_RTC_RES_ALRA);
862 		if (ret) {
863 			dev_err(&pdev->dev, "Failed to probe RTC due to RIF configuration\n");
864 			goto err;
865 		}
866 	}
867 
868 	/*
869 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
870 	 * the calendar has been initialized or not. INITS flag is reset by a
871 	 * power-on reset (no vbat, no power-supply). It is not reset if
872 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
873 	 * changed). That's why we cannot rely on this flag to know if RTC
874 	 * init has to be done.
875 	 */
876 	ret = stm32_rtc_init(pdev, rtc);
877 	if (ret)
878 		goto err;
879 
880 	rtc->irq_alarm = platform_get_irq(pdev, 0);
881 	if (rtc->irq_alarm <= 0) {
882 		ret = rtc->irq_alarm;
883 		goto err;
884 	}
885 
886 	ret = device_init_wakeup(&pdev->dev, true);
887 	if (ret)
888 		goto err;
889 
890 	ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm);
891 	if (ret)
892 		goto err;
893 
894 	platform_set_drvdata(pdev, rtc);
895 
896 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
897 						&stm32_rtc_ops, THIS_MODULE);
898 	if (IS_ERR(rtc->rtc_dev)) {
899 		ret = PTR_ERR(rtc->rtc_dev);
900 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
901 			ret);
902 		goto err;
903 	}
904 
905 	/* Handle RTC alarm interrupts */
906 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
907 					stm32_rtc_alarm_irq, IRQF_ONESHOT,
908 					pdev->name, rtc);
909 	if (ret) {
910 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
911 			rtc->irq_alarm);
912 		goto err;
913 	}
914 
915 	/*
916 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
917 	 * must be initialized
918 	 */
919 	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
920 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
921 
922 	if (regs->verr != UNDEF_REG) {
923 		u32 ver = readl_relaxed(rtc->base + regs->verr);
924 
925 		dev_info(&pdev->dev, "registered rev:%d.%d\n",
926 			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
927 			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
928 	}
929 
930 	return 0;
931 
932 err:
933 	clk_disable_unprepare(rtc->rtc_ck);
934 err_no_rtc_ck:
935 	if (rtc->data->has_pclk)
936 		clk_disable_unprepare(rtc->pclk);
937 
938 	if (rtc->data->need_dbp)
939 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
940 
941 	dev_pm_clear_wake_irq(&pdev->dev);
942 	device_init_wakeup(&pdev->dev, false);
943 
944 	return ret;
945 }
946 
947 static void stm32_rtc_remove(struct platform_device *pdev)
948 {
949 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
950 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
951 	unsigned int cr;
952 
953 	/* Disable interrupts */
954 	stm32_rtc_wpr_unlock(rtc);
955 	cr = readl_relaxed(rtc->base + regs->cr);
956 	cr &= ~STM32_RTC_CR_ALRAIE;
957 	writel_relaxed(cr, rtc->base + regs->cr);
958 	stm32_rtc_wpr_lock(rtc);
959 
960 	clk_disable_unprepare(rtc->rtc_ck);
961 	if (rtc->data->has_pclk)
962 		clk_disable_unprepare(rtc->pclk);
963 
964 	/* Enable backup domain write protection if needed */
965 	if (rtc->data->need_dbp)
966 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
967 
968 	dev_pm_clear_wake_irq(&pdev->dev);
969 	device_init_wakeup(&pdev->dev, false);
970 }
971 
972 static int stm32_rtc_suspend(struct device *dev)
973 {
974 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
975 
976 	if (rtc->data->has_pclk)
977 		clk_disable_unprepare(rtc->pclk);
978 
979 	return 0;
980 }
981 
982 static int stm32_rtc_resume(struct device *dev)
983 {
984 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
985 	int ret = 0;
986 
987 	if (rtc->data->has_pclk) {
988 		ret = clk_prepare_enable(rtc->pclk);
989 		if (ret)
990 			return ret;
991 	}
992 
993 	ret = stm32_rtc_wait_sync(rtc);
994 	if (ret < 0) {
995 		if (rtc->data->has_pclk)
996 			clk_disable_unprepare(rtc->pclk);
997 		return ret;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 static const struct dev_pm_ops stm32_rtc_pm_ops = {
1004 	NOIRQ_SYSTEM_SLEEP_PM_OPS(stm32_rtc_suspend, stm32_rtc_resume)
1005 };
1006 
1007 static struct platform_driver stm32_rtc_driver = {
1008 	.probe		= stm32_rtc_probe,
1009 	.remove_new	= stm32_rtc_remove,
1010 	.driver		= {
1011 		.name	= DRIVER_NAME,
1012 		.pm	= &stm32_rtc_pm_ops,
1013 		.of_match_table = stm32_rtc_of_match,
1014 	},
1015 };
1016 
1017 module_platform_driver(stm32_rtc_driver);
1018 
1019 MODULE_ALIAS("platform:" DRIVER_NAME);
1020 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
1021 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
1022 MODULE_LICENSE("GPL v2");
1023