xref: /linux/drivers/rtc/rtc-stm32.c (revision 159a8bb06f7bb298da1aacc99975e9817e2cf02c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/clk.h>
9 #include <linux/iopoll.h>
10 #include <linux/ioport.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_wakeirq.h>
15 #include <linux/regmap.h>
16 #include <linux/rtc.h>
17 
18 #define DRIVER_NAME "stm32_rtc"
19 
20 /* STM32_RTC_TR bit fields  */
21 #define STM32_RTC_TR_SEC_SHIFT		0
22 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
23 #define STM32_RTC_TR_MIN_SHIFT		8
24 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
25 #define STM32_RTC_TR_HOUR_SHIFT		16
26 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
27 
28 /* STM32_RTC_DR bit fields */
29 #define STM32_RTC_DR_DATE_SHIFT		0
30 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
31 #define STM32_RTC_DR_MONTH_SHIFT	8
32 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
33 #define STM32_RTC_DR_WDAY_SHIFT		13
34 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
35 #define STM32_RTC_DR_YEAR_SHIFT		16
36 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
37 
38 /* STM32_RTC_CR bit fields */
39 #define STM32_RTC_CR_FMT		BIT(6)
40 #define STM32_RTC_CR_ALRAE		BIT(8)
41 #define STM32_RTC_CR_ALRAIE		BIT(12)
42 
43 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
44 #define STM32_RTC_ISR_ALRAWF		BIT(0)
45 #define STM32_RTC_ISR_INITS		BIT(4)
46 #define STM32_RTC_ISR_RSF		BIT(5)
47 #define STM32_RTC_ISR_INITF		BIT(6)
48 #define STM32_RTC_ISR_INIT		BIT(7)
49 #define STM32_RTC_ISR_ALRAF		BIT(8)
50 
51 /* STM32_RTC_PRER bit fields */
52 #define STM32_RTC_PRER_PRED_S_SHIFT	0
53 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
54 #define STM32_RTC_PRER_PRED_A_SHIFT	16
55 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
56 
57 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
58 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
59 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
60 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
61 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
62 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
63 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
64 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
65 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
66 #define STM32_RTC_ALRMXR_PM		BIT(22)
67 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
68 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
69 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
70 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
71 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
72 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
73 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
74 
75 /* STM32_RTC_SR/_SCR bit fields */
76 #define STM32_RTC_SR_ALRA		BIT(0)
77 
78 /* STM32_RTC_VERR bit fields */
79 #define STM32_RTC_VERR_MINREV_SHIFT	0
80 #define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
81 #define STM32_RTC_VERR_MAJREV_SHIFT	4
82 #define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
83 
84 /* STM32_RTC_WPR key constants */
85 #define RTC_WPR_1ST_KEY			0xCA
86 #define RTC_WPR_2ND_KEY			0x53
87 #define RTC_WPR_WRONG_KEY		0xFF
88 
89 /* Max STM32 RTC register offset is 0x3FC */
90 #define UNDEF_REG			0xFFFF
91 
92 struct stm32_rtc;
93 
94 struct stm32_rtc_registers {
95 	u16 tr;
96 	u16 dr;
97 	u16 cr;
98 	u16 isr;
99 	u16 prer;
100 	u16 alrmar;
101 	u16 wpr;
102 	u16 sr;
103 	u16 scr;
104 	u16 verr;
105 };
106 
107 struct stm32_rtc_events {
108 	u32 alra;
109 };
110 
111 struct stm32_rtc_data {
112 	const struct stm32_rtc_registers regs;
113 	const struct stm32_rtc_events events;
114 	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
115 	bool has_pclk;
116 	bool need_dbp;
117 };
118 
119 struct stm32_rtc {
120 	struct rtc_device *rtc_dev;
121 	void __iomem *base;
122 	struct regmap *dbp;
123 	unsigned int dbp_reg;
124 	unsigned int dbp_mask;
125 	struct clk *pclk;
126 	struct clk *rtc_ck;
127 	const struct stm32_rtc_data *data;
128 	int irq_alarm;
129 };
130 
131 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
132 {
133 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
134 
135 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
136 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
137 }
138 
139 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
140 {
141 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
142 
143 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
144 }
145 
146 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
147 {
148 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
149 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
150 
151 	if (!(isr & STM32_RTC_ISR_INITF)) {
152 		isr |= STM32_RTC_ISR_INIT;
153 		writel_relaxed(isr, rtc->base + regs->isr);
154 
155 		/*
156 		 * It takes around 2 rtc_ck clock cycles to enter in
157 		 * initialization phase mode (and have INITF flag set). As
158 		 * slowest rtc_ck frequency may be 32kHz and highest should be
159 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
160 		 */
161 		return readl_relaxed_poll_timeout_atomic(
162 					rtc->base + regs->isr,
163 					isr, (isr & STM32_RTC_ISR_INITF),
164 					10, 100000);
165 	}
166 
167 	return 0;
168 }
169 
170 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
171 {
172 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
173 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
174 
175 	isr &= ~STM32_RTC_ISR_INIT;
176 	writel_relaxed(isr, rtc->base + regs->isr);
177 }
178 
179 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
180 {
181 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
182 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
183 
184 	isr &= ~STM32_RTC_ISR_RSF;
185 	writel_relaxed(isr, rtc->base + regs->isr);
186 
187 	/*
188 	 * Wait for RSF to be set to ensure the calendar registers are
189 	 * synchronised, it takes around 2 rtc_ck clock cycles
190 	 */
191 	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
192 						 isr,
193 						 (isr & STM32_RTC_ISR_RSF),
194 						 10, 100000);
195 }
196 
197 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
198 					unsigned int flags)
199 {
200 	rtc->data->clear_events(rtc, flags);
201 }
202 
203 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
204 {
205 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
206 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
207 	const struct stm32_rtc_events *evts = &rtc->data->events;
208 	unsigned int status, cr;
209 
210 	rtc_lock(rtc->rtc_dev);
211 
212 	status = readl_relaxed(rtc->base + regs->sr);
213 	cr = readl_relaxed(rtc->base + regs->cr);
214 
215 	if ((status & evts->alra) &&
216 	    (cr & STM32_RTC_CR_ALRAIE)) {
217 		/* Alarm A flag - Alarm interrupt */
218 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
219 
220 		/* Pass event to the kernel */
221 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
222 
223 		/* Clear event flags, otherwise new events won't be received */
224 		stm32_rtc_clear_event_flags(rtc, evts->alra);
225 	}
226 
227 	rtc_unlock(rtc->rtc_dev);
228 
229 	return IRQ_HANDLED;
230 }
231 
232 /* Convert rtc_time structure from bin to bcd format */
233 static void tm2bcd(struct rtc_time *tm)
234 {
235 	tm->tm_sec = bin2bcd(tm->tm_sec);
236 	tm->tm_min = bin2bcd(tm->tm_min);
237 	tm->tm_hour = bin2bcd(tm->tm_hour);
238 
239 	tm->tm_mday = bin2bcd(tm->tm_mday);
240 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
241 	tm->tm_year = bin2bcd(tm->tm_year - 100);
242 	/*
243 	 * Number of days since Sunday
244 	 * - on kernel side, 0=Sunday...6=Saturday
245 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
246 	 */
247 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
248 }
249 
250 /* Convert rtc_time structure from bcd to bin format */
251 static void bcd2tm(struct rtc_time *tm)
252 {
253 	tm->tm_sec = bcd2bin(tm->tm_sec);
254 	tm->tm_min = bcd2bin(tm->tm_min);
255 	tm->tm_hour = bcd2bin(tm->tm_hour);
256 
257 	tm->tm_mday = bcd2bin(tm->tm_mday);
258 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
259 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
260 	/*
261 	 * Number of days since Sunday
262 	 * - on kernel side, 0=Sunday...6=Saturday
263 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
264 	 */
265 	tm->tm_wday %= 7;
266 }
267 
268 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
269 {
270 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
271 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
272 	unsigned int tr, dr;
273 
274 	/* Time and Date in BCD format */
275 	tr = readl_relaxed(rtc->base + regs->tr);
276 	dr = readl_relaxed(rtc->base + regs->dr);
277 
278 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
279 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
280 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
281 
282 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
283 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
284 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
285 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
286 
287 	/* We don't report tm_yday and tm_isdst */
288 
289 	bcd2tm(tm);
290 
291 	return 0;
292 }
293 
294 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
295 {
296 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
297 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
298 	unsigned int tr, dr;
299 	int ret = 0;
300 
301 	tm2bcd(tm);
302 
303 	/* Time in BCD format */
304 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
305 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
306 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
307 
308 	/* Date in BCD format */
309 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
310 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
311 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
312 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
313 
314 	stm32_rtc_wpr_unlock(rtc);
315 
316 	ret = stm32_rtc_enter_init_mode(rtc);
317 	if (ret) {
318 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
319 		goto end;
320 	}
321 
322 	writel_relaxed(tr, rtc->base + regs->tr);
323 	writel_relaxed(dr, rtc->base + regs->dr);
324 
325 	stm32_rtc_exit_init_mode(rtc);
326 
327 	ret = stm32_rtc_wait_sync(rtc);
328 end:
329 	stm32_rtc_wpr_lock(rtc);
330 
331 	return ret;
332 }
333 
334 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
335 {
336 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
337 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
338 	const struct stm32_rtc_events *evts = &rtc->data->events;
339 	struct rtc_time *tm = &alrm->time;
340 	unsigned int alrmar, cr, status;
341 
342 	alrmar = readl_relaxed(rtc->base + regs->alrmar);
343 	cr = readl_relaxed(rtc->base + regs->cr);
344 	status = readl_relaxed(rtc->base + regs->sr);
345 
346 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
347 		/*
348 		 * Date/day doesn't matter in Alarm comparison so alarm
349 		 * triggers every day
350 		 */
351 		tm->tm_mday = -1;
352 		tm->tm_wday = -1;
353 	} else {
354 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
355 			/* Alarm is set to a day of week */
356 			tm->tm_mday = -1;
357 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
358 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
359 			tm->tm_wday %= 7;
360 		} else {
361 			/* Alarm is set to a day of month */
362 			tm->tm_wday = -1;
363 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
364 				       STM32_RTC_ALRMXR_DATE_SHIFT;
365 		}
366 	}
367 
368 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
369 		/* Hours don't matter in Alarm comparison */
370 		tm->tm_hour = -1;
371 	} else {
372 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
373 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
374 		if (alrmar & STM32_RTC_ALRMXR_PM)
375 			tm->tm_hour += 12;
376 	}
377 
378 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
379 		/* Minutes don't matter in Alarm comparison */
380 		tm->tm_min = -1;
381 	} else {
382 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
383 			      STM32_RTC_ALRMXR_MIN_SHIFT;
384 	}
385 
386 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
387 		/* Seconds don't matter in Alarm comparison */
388 		tm->tm_sec = -1;
389 	} else {
390 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
391 			      STM32_RTC_ALRMXR_SEC_SHIFT;
392 	}
393 
394 	bcd2tm(tm);
395 
396 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
397 	alrm->pending = (status & evts->alra) ? 1 : 0;
398 
399 	return 0;
400 }
401 
402 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
403 {
404 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
405 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
406 	const struct stm32_rtc_events *evts = &rtc->data->events;
407 	unsigned int cr;
408 
409 	cr = readl_relaxed(rtc->base + regs->cr);
410 
411 	stm32_rtc_wpr_unlock(rtc);
412 
413 	/* We expose Alarm A to the kernel */
414 	if (enabled)
415 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
416 	else
417 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
418 	writel_relaxed(cr, rtc->base + regs->cr);
419 
420 	/* Clear event flags, otherwise new events won't be received */
421 	stm32_rtc_clear_event_flags(rtc, evts->alra);
422 
423 	stm32_rtc_wpr_lock(rtc);
424 
425 	return 0;
426 }
427 
428 static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
429 {
430 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
431 	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
432 	unsigned int dr = readl_relaxed(rtc->base + regs->dr);
433 	unsigned int tr = readl_relaxed(rtc->base + regs->tr);
434 
435 	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
436 	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
437 	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
438 	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
439 	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
440 	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
441 
442 	/*
443 	 * Assuming current date is M-D-Y H:M:S.
444 	 * RTC alarm can't be set on a specific month and year.
445 	 * So the valid alarm range is:
446 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
447 	 * with a specific case for December...
448 	 */
449 	if ((((tm->tm_year > cur_year) &&
450 	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
451 	     ((tm->tm_year == cur_year) &&
452 	      (tm->tm_mon <= cur_mon + 1))) &&
453 	    ((tm->tm_mday > cur_day) ||
454 	     ((tm->tm_mday == cur_day) &&
455 	     ((tm->tm_hour > cur_hour) ||
456 	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
457 	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
458 	       (tm->tm_sec >= cur_sec))))))
459 		return 0;
460 
461 	return -EINVAL;
462 }
463 
464 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
465 {
466 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
467 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
468 	struct rtc_time *tm = &alrm->time;
469 	unsigned int cr, isr, alrmar;
470 	int ret = 0;
471 
472 	tm2bcd(tm);
473 
474 	/*
475 	 * RTC alarm can't be set on a specific date, unless this date is
476 	 * up to the same day of month next month.
477 	 */
478 	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
479 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
480 		return -EINVAL;
481 	}
482 
483 	alrmar = 0;
484 	/* tm_year and tm_mon are not used because not supported by RTC */
485 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
486 		  STM32_RTC_ALRMXR_DATE;
487 	/* 24-hour format */
488 	alrmar &= ~STM32_RTC_ALRMXR_PM;
489 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
490 		  STM32_RTC_ALRMXR_HOUR;
491 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
492 		  STM32_RTC_ALRMXR_MIN;
493 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
494 		  STM32_RTC_ALRMXR_SEC;
495 
496 	stm32_rtc_wpr_unlock(rtc);
497 
498 	/* Disable Alarm */
499 	cr = readl_relaxed(rtc->base + regs->cr);
500 	cr &= ~STM32_RTC_CR_ALRAE;
501 	writel_relaxed(cr, rtc->base + regs->cr);
502 
503 	/*
504 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
505 	 * takes around 2 rtc_ck clock cycles
506 	 */
507 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
508 						isr,
509 						(isr & STM32_RTC_ISR_ALRAWF),
510 						10, 100000);
511 
512 	if (ret) {
513 		dev_err(dev, "Alarm update not allowed\n");
514 		goto end;
515 	}
516 
517 	/* Write to Alarm register */
518 	writel_relaxed(alrmar, rtc->base + regs->alrmar);
519 
520 	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
521 end:
522 	stm32_rtc_wpr_lock(rtc);
523 
524 	return ret;
525 }
526 
527 static const struct rtc_class_ops stm32_rtc_ops = {
528 	.read_time	= stm32_rtc_read_time,
529 	.set_time	= stm32_rtc_set_time,
530 	.read_alarm	= stm32_rtc_read_alarm,
531 	.set_alarm	= stm32_rtc_set_alarm,
532 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
533 };
534 
535 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
536 				   unsigned int flags)
537 {
538 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
539 
540 	/* Flags are cleared by writing 0 in RTC_ISR */
541 	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
542 		       rtc->base + regs->isr);
543 }
544 
545 static const struct stm32_rtc_data stm32_rtc_data = {
546 	.has_pclk = false,
547 	.need_dbp = true,
548 	.regs = {
549 		.tr = 0x00,
550 		.dr = 0x04,
551 		.cr = 0x08,
552 		.isr = 0x0C,
553 		.prer = 0x10,
554 		.alrmar = 0x1C,
555 		.wpr = 0x24,
556 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
557 		.scr = UNDEF_REG,
558 		.verr = UNDEF_REG,
559 	},
560 	.events = {
561 		.alra = STM32_RTC_ISR_ALRAF,
562 	},
563 	.clear_events = stm32_rtc_clear_events,
564 };
565 
566 static const struct stm32_rtc_data stm32h7_rtc_data = {
567 	.has_pclk = true,
568 	.need_dbp = true,
569 	.regs = {
570 		.tr = 0x00,
571 		.dr = 0x04,
572 		.cr = 0x08,
573 		.isr = 0x0C,
574 		.prer = 0x10,
575 		.alrmar = 0x1C,
576 		.wpr = 0x24,
577 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
578 		.scr = UNDEF_REG,
579 		.verr = UNDEF_REG,
580 	},
581 	.events = {
582 		.alra = STM32_RTC_ISR_ALRAF,
583 	},
584 	.clear_events = stm32_rtc_clear_events,
585 };
586 
587 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
588 				      unsigned int flags)
589 {
590 	struct stm32_rtc_registers regs = rtc->data->regs;
591 
592 	/* Flags are cleared by writing 1 in RTC_SCR */
593 	writel_relaxed(flags, rtc->base + regs.scr);
594 }
595 
596 static const struct stm32_rtc_data stm32mp1_data = {
597 	.has_pclk = true,
598 	.need_dbp = false,
599 	.regs = {
600 		.tr = 0x00,
601 		.dr = 0x04,
602 		.cr = 0x18,
603 		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
604 		.prer = 0x10,
605 		.alrmar = 0x40,
606 		.wpr = 0x24,
607 		.sr = 0x50,
608 		.scr = 0x5C,
609 		.verr = 0x3F4,
610 	},
611 	.events = {
612 		.alra = STM32_RTC_SR_ALRA,
613 	},
614 	.clear_events = stm32mp1_rtc_clear_events,
615 };
616 
617 static const struct of_device_id stm32_rtc_of_match[] = {
618 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
619 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
620 	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
621 	{}
622 };
623 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
624 
625 static int stm32_rtc_init(struct platform_device *pdev,
626 			  struct stm32_rtc *rtc)
627 {
628 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
629 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
630 	unsigned int rate;
631 	int ret = 0;
632 
633 	rate = clk_get_rate(rtc->rtc_ck);
634 
635 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
636 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
637 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
638 
639 	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
640 		pred_s = (rate / (pred_a + 1)) - 1;
641 
642 		if (((pred_s + 1) * (pred_a + 1)) == rate)
643 			break;
644 	}
645 
646 	/*
647 	 * Can't find a 1Hz, so give priority to RTC power consumption
648 	 * by choosing the higher possible value for prediv_a
649 	 */
650 	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
651 		pred_a = pred_a_max;
652 		pred_s = (rate / (pred_a + 1)) - 1;
653 
654 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
655 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
656 			 "fast" : "slow");
657 	}
658 
659 	stm32_rtc_wpr_unlock(rtc);
660 
661 	ret = stm32_rtc_enter_init_mode(rtc);
662 	if (ret) {
663 		dev_err(&pdev->dev,
664 			"Can't enter in init mode. Prescaler config failed.\n");
665 		goto end;
666 	}
667 
668 	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
669 	writel_relaxed(prer, rtc->base + regs->prer);
670 	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
671 	writel_relaxed(prer, rtc->base + regs->prer);
672 
673 	/* Force 24h time format */
674 	cr = readl_relaxed(rtc->base + regs->cr);
675 	cr &= ~STM32_RTC_CR_FMT;
676 	writel_relaxed(cr, rtc->base + regs->cr);
677 
678 	stm32_rtc_exit_init_mode(rtc);
679 
680 	ret = stm32_rtc_wait_sync(rtc);
681 end:
682 	stm32_rtc_wpr_lock(rtc);
683 
684 	return ret;
685 }
686 
687 static int stm32_rtc_probe(struct platform_device *pdev)
688 {
689 	struct stm32_rtc *rtc;
690 	const struct stm32_rtc_registers *regs;
691 	int ret;
692 
693 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
694 	if (!rtc)
695 		return -ENOMEM;
696 
697 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
698 	if (IS_ERR(rtc->base))
699 		return PTR_ERR(rtc->base);
700 
701 	rtc->data = (struct stm32_rtc_data *)
702 		    of_device_get_match_data(&pdev->dev);
703 	regs = &rtc->data->regs;
704 
705 	if (rtc->data->need_dbp) {
706 		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
707 							   "st,syscfg");
708 		if (IS_ERR(rtc->dbp)) {
709 			dev_err(&pdev->dev, "no st,syscfg\n");
710 			return PTR_ERR(rtc->dbp);
711 		}
712 
713 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
714 						 1, &rtc->dbp_reg);
715 		if (ret) {
716 			dev_err(&pdev->dev, "can't read DBP register offset\n");
717 			return ret;
718 		}
719 
720 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
721 						 2, &rtc->dbp_mask);
722 		if (ret) {
723 			dev_err(&pdev->dev, "can't read DBP register mask\n");
724 			return ret;
725 		}
726 	}
727 
728 	if (!rtc->data->has_pclk) {
729 		rtc->pclk = NULL;
730 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
731 	} else {
732 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
733 		if (IS_ERR(rtc->pclk)) {
734 			dev_err(&pdev->dev, "no pclk clock");
735 			return PTR_ERR(rtc->pclk);
736 		}
737 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
738 	}
739 	if (IS_ERR(rtc->rtc_ck)) {
740 		dev_err(&pdev->dev, "no rtc_ck clock");
741 		return PTR_ERR(rtc->rtc_ck);
742 	}
743 
744 	if (rtc->data->has_pclk) {
745 		ret = clk_prepare_enable(rtc->pclk);
746 		if (ret)
747 			return ret;
748 	}
749 
750 	ret = clk_prepare_enable(rtc->rtc_ck);
751 	if (ret)
752 		goto err_no_rtc_ck;
753 
754 	if (rtc->data->need_dbp)
755 		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
756 				   rtc->dbp_mask, rtc->dbp_mask);
757 
758 	/*
759 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
760 	 * the calendar has been initialized or not. INITS flag is reset by a
761 	 * power-on reset (no vbat, no power-supply). It is not reset if
762 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
763 	 * changed). That's why we cannot rely on this flag to know if RTC
764 	 * init has to be done.
765 	 */
766 	ret = stm32_rtc_init(pdev, rtc);
767 	if (ret)
768 		goto err;
769 
770 	rtc->irq_alarm = platform_get_irq(pdev, 0);
771 	if (rtc->irq_alarm <= 0) {
772 		ret = rtc->irq_alarm;
773 		goto err;
774 	}
775 
776 	ret = device_init_wakeup(&pdev->dev, true);
777 	if (ret)
778 		goto err;
779 
780 	ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm);
781 	if (ret)
782 		goto err;
783 
784 	platform_set_drvdata(pdev, rtc);
785 
786 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
787 						&stm32_rtc_ops, THIS_MODULE);
788 	if (IS_ERR(rtc->rtc_dev)) {
789 		ret = PTR_ERR(rtc->rtc_dev);
790 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
791 			ret);
792 		goto err;
793 	}
794 
795 	/* Handle RTC alarm interrupts */
796 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
797 					stm32_rtc_alarm_irq, IRQF_ONESHOT,
798 					pdev->name, rtc);
799 	if (ret) {
800 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
801 			rtc->irq_alarm);
802 		goto err;
803 	}
804 
805 	/*
806 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
807 	 * must be initialized
808 	 */
809 	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
810 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
811 
812 	if (regs->verr != UNDEF_REG) {
813 		u32 ver = readl_relaxed(rtc->base + regs->verr);
814 
815 		dev_info(&pdev->dev, "registered rev:%d.%d\n",
816 			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
817 			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
818 	}
819 
820 	return 0;
821 
822 err:
823 	clk_disable_unprepare(rtc->rtc_ck);
824 err_no_rtc_ck:
825 	if (rtc->data->has_pclk)
826 		clk_disable_unprepare(rtc->pclk);
827 
828 	if (rtc->data->need_dbp)
829 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
830 
831 	dev_pm_clear_wake_irq(&pdev->dev);
832 	device_init_wakeup(&pdev->dev, false);
833 
834 	return ret;
835 }
836 
837 static void stm32_rtc_remove(struct platform_device *pdev)
838 {
839 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
840 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
841 	unsigned int cr;
842 
843 	/* Disable interrupts */
844 	stm32_rtc_wpr_unlock(rtc);
845 	cr = readl_relaxed(rtc->base + regs->cr);
846 	cr &= ~STM32_RTC_CR_ALRAIE;
847 	writel_relaxed(cr, rtc->base + regs->cr);
848 	stm32_rtc_wpr_lock(rtc);
849 
850 	clk_disable_unprepare(rtc->rtc_ck);
851 	if (rtc->data->has_pclk)
852 		clk_disable_unprepare(rtc->pclk);
853 
854 	/* Enable backup domain write protection if needed */
855 	if (rtc->data->need_dbp)
856 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
857 
858 	dev_pm_clear_wake_irq(&pdev->dev);
859 	device_init_wakeup(&pdev->dev, false);
860 }
861 
862 #ifdef CONFIG_PM_SLEEP
863 static int stm32_rtc_suspend(struct device *dev)
864 {
865 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
866 
867 	if (rtc->data->has_pclk)
868 		clk_disable_unprepare(rtc->pclk);
869 
870 	return 0;
871 }
872 
873 static int stm32_rtc_resume(struct device *dev)
874 {
875 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
876 	int ret = 0;
877 
878 	if (rtc->data->has_pclk) {
879 		ret = clk_prepare_enable(rtc->pclk);
880 		if (ret)
881 			return ret;
882 	}
883 
884 	ret = stm32_rtc_wait_sync(rtc);
885 	if (ret < 0) {
886 		if (rtc->data->has_pclk)
887 			clk_disable_unprepare(rtc->pclk);
888 		return ret;
889 	}
890 
891 	return ret;
892 }
893 #endif
894 
895 static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
896 			 stm32_rtc_suspend, stm32_rtc_resume);
897 
898 static struct platform_driver stm32_rtc_driver = {
899 	.probe		= stm32_rtc_probe,
900 	.remove_new	= stm32_rtc_remove,
901 	.driver		= {
902 		.name	= DRIVER_NAME,
903 		.pm	= &stm32_rtc_pm_ops,
904 		.of_match_table = stm32_rtc_of_match,
905 	},
906 };
907 
908 module_platform_driver(stm32_rtc_driver);
909 
910 MODULE_ALIAS("platform:" DRIVER_NAME);
911 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
912 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
913 MODULE_LICENSE("GPL v2");
914