xref: /linux/drivers/rtc/rtc-sh.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1  /*
2   * SuperH On-Chip RTC Support
3   *
4   * Copyright (C) 2006  Paul Mundt
5   * Copyright (C) 2006  Jamie Lenehan
6   *
7   * Based on the old arch/sh/kernel/cpu/rtc.c by:
8   *
9   *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
10   *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
11   *
12   * This file is subject to the terms and conditions of the GNU General Public
13   * License.  See the file "COPYING" in the main directory of this archive
14   * for more details.
15   */
16  #include <linux/module.h>
17  #include <linux/kernel.h>
18  #include <linux/bcd.h>
19  #include <linux/rtc.h>
20  #include <linux/init.h>
21  #include <linux/platform_device.h>
22  #include <linux/seq_file.h>
23  #include <linux/interrupt.h>
24  #include <linux/spinlock.h>
25  #include <linux/io.h>
26  
27  #define DRV_NAME	"sh-rtc"
28  #define DRV_VERSION	"0.1.2"
29  
30  #ifdef CONFIG_CPU_SH3
31  #define rtc_reg_size		sizeof(u16)
32  #define RTC_BIT_INVERTED	0	/* No bug on SH7708, SH7709A */
33  #elif defined(CONFIG_CPU_SH4)
34  #define rtc_reg_size		sizeof(u32)
35  #define RTC_BIT_INVERTED	0x40	/* bug on SH7750, SH7750S */
36  #endif
37  
38  #define RTC_REG(r)	((r) * rtc_reg_size)
39  
40  #define R64CNT		RTC_REG(0)
41  
42  #define RSECCNT		RTC_REG(1)	/* RTC sec */
43  #define RMINCNT		RTC_REG(2)	/* RTC min */
44  #define RHRCNT		RTC_REG(3)	/* RTC hour */
45  #define RWKCNT		RTC_REG(4)	/* RTC week */
46  #define RDAYCNT		RTC_REG(5)	/* RTC day */
47  #define RMONCNT		RTC_REG(6)	/* RTC month */
48  #define RYRCNT		RTC_REG(7)	/* RTC year */
49  #define RSECAR		RTC_REG(8)	/* ALARM sec */
50  #define RMINAR		RTC_REG(9)	/* ALARM min */
51  #define RHRAR		RTC_REG(10)	/* ALARM hour */
52  #define RWKAR		RTC_REG(11)	/* ALARM week */
53  #define RDAYAR		RTC_REG(12)	/* ALARM day */
54  #define RMONAR		RTC_REG(13)	/* ALARM month */
55  #define RCR1		RTC_REG(14)	/* Control */
56  #define RCR2		RTC_REG(15)	/* Control */
57  
58  /* ALARM Bits - or with BCD encoded value */
59  #define AR_ENB		0x80	/* Enable for alarm cmp   */
60  
61  /* RCR1 Bits */
62  #define RCR1_CF		0x80	/* Carry Flag             */
63  #define RCR1_CIE	0x10	/* Carry Interrupt Enable */
64  #define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
65  #define RCR1_AF		0x01	/* Alarm Flag             */
66  
67  /* RCR2 Bits */
68  #define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
69  #define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
70  #define RCR2_RTCEN	0x08	/* ENable RTC              */
71  #define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
72  #define RCR2_RESET	0x02	/* Reset bit               */
73  #define RCR2_START	0x01	/* Start bit               */
74  
75  struct sh_rtc {
76  	void __iomem *regbase;
77  	unsigned long regsize;
78  	struct resource *res;
79  	unsigned int alarm_irq, periodic_irq, carry_irq;
80  	struct rtc_device *rtc_dev;
81  	spinlock_t lock;
82  	int rearm_aie;
83  };
84  
85  static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
86  {
87  	struct platform_device *pdev = to_platform_device(dev_id);
88  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
89  	unsigned int tmp, events = 0;
90  
91  	spin_lock(&rtc->lock);
92  
93  	tmp = readb(rtc->regbase + RCR1);
94  	tmp &= ~RCR1_CF;
95  
96  	if (rtc->rearm_aie) {
97  		if (tmp & RCR1_AF)
98  			tmp &= ~RCR1_AF;	/* try to clear AF again */
99  		else {
100  			tmp |= RCR1_AIE;	/* AF has cleared, rearm IRQ */
101  			rtc->rearm_aie = 0;
102  		}
103  	}
104  
105  	writeb(tmp, rtc->regbase + RCR1);
106  
107  	rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
108  
109  	spin_unlock(&rtc->lock);
110  
111  	return IRQ_HANDLED;
112  }
113  
114  static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
115  {
116  	struct platform_device *pdev = to_platform_device(dev_id);
117  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
118  	unsigned int tmp, events = 0;
119  
120  	spin_lock(&rtc->lock);
121  
122  	tmp = readb(rtc->regbase + RCR1);
123  
124  	/*
125  	 * If AF is set then the alarm has triggered. If we clear AF while
126  	 * the alarm time still matches the RTC time then AF will
127  	 * immediately be set again, and if AIE is enabled then the alarm
128  	 * interrupt will immediately be retrigger. So we clear AIE here
129  	 * and use rtc->rearm_aie so that the carry interrupt will keep
130  	 * trying to clear AF and once it stays cleared it'll re-enable
131  	 * AIE.
132  	 */
133  	if (tmp & RCR1_AF) {
134  		events |= RTC_AF | RTC_IRQF;
135  
136  		tmp &= ~(RCR1_AF|RCR1_AIE);
137  
138  		writeb(tmp, rtc->regbase + RCR1);
139  
140  		rtc->rearm_aie = 1;
141  
142  		rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
143  	}
144  
145  	spin_unlock(&rtc->lock);
146  	return IRQ_HANDLED;
147  }
148  
149  static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
150  {
151  	struct platform_device *pdev = to_platform_device(dev_id);
152  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
153  
154  	spin_lock(&rtc->lock);
155  
156  	rtc_update_irq(&rtc->rtc_dev->class_dev, 1, RTC_PF | RTC_IRQF);
157  
158  	spin_unlock(&rtc->lock);
159  
160  	return IRQ_HANDLED;
161  }
162  
163  static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
164  {
165  	struct sh_rtc *rtc = dev_get_drvdata(dev);
166  	unsigned int tmp;
167  
168  	spin_lock_irq(&rtc->lock);
169  
170  	tmp = readb(rtc->regbase + RCR2);
171  
172  	if (enable) {
173  		tmp &= ~RCR2_PESMASK;
174  		tmp |= RCR2_PEF | (2 << 4);
175  	} else
176  		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
177  
178  	writeb(tmp, rtc->regbase + RCR2);
179  
180  	spin_unlock_irq(&rtc->lock);
181  }
182  
183  static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
184  {
185  	struct sh_rtc *rtc = dev_get_drvdata(dev);
186  	unsigned int tmp;
187  
188  	spin_lock_irq(&rtc->lock);
189  
190  	tmp = readb(rtc->regbase + RCR1);
191  
192  	if (!enable) {
193  		tmp &= ~RCR1_AIE;
194  		rtc->rearm_aie = 0;
195  	} else if (rtc->rearm_aie == 0)
196  		tmp |= RCR1_AIE;
197  
198  	writeb(tmp, rtc->regbase + RCR1);
199  
200  	spin_unlock_irq(&rtc->lock);
201  }
202  
203  static int sh_rtc_open(struct device *dev)
204  {
205  	struct sh_rtc *rtc = dev_get_drvdata(dev);
206  	unsigned int tmp;
207  	int ret;
208  
209  	tmp = readb(rtc->regbase + RCR1);
210  	tmp &= ~RCR1_CF;
211  	tmp |= RCR1_CIE;
212  	writeb(tmp, rtc->regbase + RCR1);
213  
214  	ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
215  			  "sh-rtc period", dev);
216  	if (unlikely(ret)) {
217  		dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
218  			ret, rtc->periodic_irq);
219  		return ret;
220  	}
221  
222  	ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
223  			  "sh-rtc carry", dev);
224  	if (unlikely(ret)) {
225  		dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
226  			ret, rtc->carry_irq);
227  		free_irq(rtc->periodic_irq, dev);
228  		goto err_bad_carry;
229  	}
230  
231  	ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
232  			  "sh-rtc alarm", dev);
233  	if (unlikely(ret)) {
234  		dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
235  			ret, rtc->alarm_irq);
236  		goto err_bad_alarm;
237  	}
238  
239  	return 0;
240  
241  err_bad_alarm:
242  	free_irq(rtc->carry_irq, dev);
243  err_bad_carry:
244  	free_irq(rtc->periodic_irq, dev);
245  
246  	return ret;
247  }
248  
249  static void sh_rtc_release(struct device *dev)
250  {
251  	struct sh_rtc *rtc = dev_get_drvdata(dev);
252  
253  	sh_rtc_setpie(dev, 0);
254  	sh_rtc_setaie(dev, 0);
255  
256  	free_irq(rtc->periodic_irq, dev);
257  	free_irq(rtc->carry_irq, dev);
258  	free_irq(rtc->alarm_irq, dev);
259  }
260  
261  static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
262  {
263  	struct sh_rtc *rtc = dev_get_drvdata(dev);
264  	unsigned int tmp;
265  
266  	tmp = readb(rtc->regbase + RCR1);
267  	seq_printf(seq, "carry_IRQ\t: %s\n",
268  		   (tmp & RCR1_CIE) ? "yes" : "no");
269  
270  	tmp = readb(rtc->regbase + RCR2);
271  	seq_printf(seq, "periodic_IRQ\t: %s\n",
272  		   (tmp & RCR2_PEF) ? "yes" : "no");
273  
274  	return 0;
275  }
276  
277  static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
278  {
279  	unsigned int ret = -ENOIOCTLCMD;
280  
281  	switch (cmd) {
282  	case RTC_PIE_OFF:
283  	case RTC_PIE_ON:
284  		sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
285  		ret = 0;
286  		break;
287  	case RTC_AIE_OFF:
288  	case RTC_AIE_ON:
289  		sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
290  		ret = 0;
291  		break;
292  	}
293  
294  	return ret;
295  }
296  
297  static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
298  {
299  	struct platform_device *pdev = to_platform_device(dev);
300  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
301  	unsigned int sec128, sec2, yr, yr100, cf_bit;
302  
303  	do {
304  		unsigned int tmp;
305  
306  		spin_lock_irq(&rtc->lock);
307  
308  		tmp = readb(rtc->regbase + RCR1);
309  		tmp &= ~RCR1_CF; /* Clear CF-bit */
310  		tmp |= RCR1_CIE;
311  		writeb(tmp, rtc->regbase + RCR1);
312  
313  		sec128 = readb(rtc->regbase + R64CNT);
314  
315  		tm->tm_sec	= BCD2BIN(readb(rtc->regbase + RSECCNT));
316  		tm->tm_min	= BCD2BIN(readb(rtc->regbase + RMINCNT));
317  		tm->tm_hour	= BCD2BIN(readb(rtc->regbase + RHRCNT));
318  		tm->tm_wday	= BCD2BIN(readb(rtc->regbase + RWKCNT));
319  		tm->tm_mday	= BCD2BIN(readb(rtc->regbase + RDAYCNT));
320  		tm->tm_mon	= BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
321  
322  #if defined(CONFIG_CPU_SH4)
323  		yr  = readw(rtc->regbase + RYRCNT);
324  		yr100 = BCD2BIN(yr >> 8);
325  		yr &= 0xff;
326  #else
327  		yr  = readb(rtc->regbase + RYRCNT);
328  		yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
329  #endif
330  
331  		tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
332  
333  		sec2 = readb(rtc->regbase + R64CNT);
334  		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
335  
336  		spin_unlock_irq(&rtc->lock);
337  	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
338  
339  #if RTC_BIT_INVERTED != 0
340  	if ((sec128 & RTC_BIT_INVERTED))
341  		tm->tm_sec--;
342  #endif
343  
344  	dev_dbg(&dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
345  		"mday=%d, mon=%d, year=%d, wday=%d\n",
346  		__FUNCTION__,
347  		tm->tm_sec, tm->tm_min, tm->tm_hour,
348  		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
349  
350  	if (rtc_valid_tm(tm) < 0)
351  		dev_err(dev, "invalid date\n");
352  
353  	return 0;
354  }
355  
356  static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
357  {
358  	struct platform_device *pdev = to_platform_device(dev);
359  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
360  	unsigned int tmp;
361  	int year;
362  
363  	spin_lock_irq(&rtc->lock);
364  
365  	/* Reset pre-scaler & stop RTC */
366  	tmp = readb(rtc->regbase + RCR2);
367  	tmp |= RCR2_RESET;
368  	writeb(tmp, rtc->regbase + RCR2);
369  
370  	writeb(BIN2BCD(tm->tm_sec),  rtc->regbase + RSECCNT);
371  	writeb(BIN2BCD(tm->tm_min),  rtc->regbase + RMINCNT);
372  	writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
373  	writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
374  	writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
375  	writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
376  
377  #ifdef CONFIG_CPU_SH3
378  	year = tm->tm_year % 100;
379  	writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
380  #else
381  	year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
382  		BIN2BCD(tm->tm_year % 100);
383  	writew(year, rtc->regbase + RYRCNT);
384  #endif
385  
386  	/* Start RTC */
387  	tmp = readb(rtc->regbase + RCR2);
388  	tmp &= ~RCR2_RESET;
389  	tmp |= RCR2_RTCEN | RCR2_START;
390  	writeb(tmp, rtc->regbase + RCR2);
391  
392  	spin_unlock_irq(&rtc->lock);
393  
394  	return 0;
395  }
396  
397  static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
398  {
399  	unsigned int byte;
400  	int value = 0xff;	/* return 0xff for ignored values */
401  
402  	byte = readb(rtc->regbase + reg_off);
403  	if (byte & AR_ENB) {
404  		byte &= ~AR_ENB;	/* strip the enable bit */
405  		value = BCD2BIN(byte);
406  	}
407  
408  	return value;
409  }
410  
411  static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
412  {
413  	struct platform_device *pdev = to_platform_device(dev);
414  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
415  	struct rtc_time* tm = &wkalrm->time;
416  
417  	spin_lock_irq(&rtc->lock);
418  
419  	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
420  	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
421  	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
422  	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
423  	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
424  	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
425  	if (tm->tm_mon > 0)
426  		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
427  	tm->tm_year     = 0xffff;
428  
429  	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
430  
431  	spin_unlock_irq(&rtc->lock);
432  
433  	return 0;
434  }
435  
436  static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
437  					    int value, int reg_off)
438  {
439  	/* < 0 for a value that is ignored */
440  	if (value < 0)
441  		writeb(0, rtc->regbase + reg_off);
442  	else
443  		writeb(BIN2BCD(value) | AR_ENB,  rtc->regbase + reg_off);
444  }
445  
446  static int sh_rtc_check_alarm(struct rtc_time* tm)
447  {
448  	/*
449  	 * The original rtc says anything > 0xc0 is "don't care" or "match
450  	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
451  	 * The original rtc doesn't support years - some things use -1 and
452  	 * some 0xffff. We use -1 to make out tests easier.
453  	 */
454  	if (tm->tm_year == 0xffff)
455  		tm->tm_year = -1;
456  	if (tm->tm_mon >= 0xff)
457  		tm->tm_mon = -1;
458  	if (tm->tm_mday >= 0xff)
459  		tm->tm_mday = -1;
460  	if (tm->tm_wday >= 0xff)
461  		tm->tm_wday = -1;
462  	if (tm->tm_hour >= 0xff)
463  		tm->tm_hour = -1;
464  	if (tm->tm_min >= 0xff)
465  		tm->tm_min = -1;
466  	if (tm->tm_sec >= 0xff)
467  		tm->tm_sec = -1;
468  
469  	if (tm->tm_year > 9999 ||
470  		tm->tm_mon >= 12 ||
471  		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
472  		tm->tm_wday >= 7 ||
473  		tm->tm_hour >= 24 ||
474  		tm->tm_min >= 60 ||
475  		tm->tm_sec >= 60)
476  		return -EINVAL;
477  
478  	return 0;
479  }
480  
481  static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
482  {
483  	struct platform_device *pdev = to_platform_device(dev);
484  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
485  	unsigned int rcr1;
486  	struct rtc_time *tm = &wkalrm->time;
487  	int mon, err;
488  
489  	err = sh_rtc_check_alarm(tm);
490  	if (unlikely(err < 0))
491  		return err;
492  
493  	spin_lock_irq(&rtc->lock);
494  
495  	/* disable alarm interrupt and clear the alarm flag */
496  	rcr1 = readb(rtc->regbase + RCR1);
497  	rcr1 &= ~(RCR1_AF|RCR1_AIE);
498  	writeb(rcr1, rtc->regbase + RCR1);
499  
500  	rtc->rearm_aie = 0;
501  
502  	/* set alarm time */
503  	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
504  	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
505  	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
506  	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
507  	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
508  	mon = tm->tm_mon;
509  	if (mon >= 0)
510  		mon += 1;
511  	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
512  
513  	if (wkalrm->enabled) {
514  		rcr1 |= RCR1_AIE;
515  		writeb(rcr1, rtc->regbase + RCR1);
516  	}
517  
518  	spin_unlock_irq(&rtc->lock);
519  
520  	return 0;
521  }
522  
523  static struct rtc_class_ops sh_rtc_ops = {
524  	.open		= sh_rtc_open,
525  	.release	= sh_rtc_release,
526  	.ioctl		= sh_rtc_ioctl,
527  	.read_time	= sh_rtc_read_time,
528  	.set_time	= sh_rtc_set_time,
529  	.read_alarm	= sh_rtc_read_alarm,
530  	.set_alarm	= sh_rtc_set_alarm,
531  	.proc		= sh_rtc_proc,
532  };
533  
534  static int __devinit sh_rtc_probe(struct platform_device *pdev)
535  {
536  	struct sh_rtc *rtc;
537  	struct resource *res;
538  	int ret = -ENOENT;
539  
540  	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
541  	if (unlikely(!rtc))
542  		return -ENOMEM;
543  
544  	spin_lock_init(&rtc->lock);
545  
546  	rtc->periodic_irq = platform_get_irq(pdev, 0);
547  	if (unlikely(rtc->periodic_irq < 0)) {
548  		dev_err(&pdev->dev, "No IRQ for period\n");
549  		goto err_badres;
550  	}
551  
552  	rtc->carry_irq = platform_get_irq(pdev, 1);
553  	if (unlikely(rtc->carry_irq < 0)) {
554  		dev_err(&pdev->dev, "No IRQ for carry\n");
555  		goto err_badres;
556  	}
557  
558  	rtc->alarm_irq = platform_get_irq(pdev, 2);
559  	if (unlikely(rtc->alarm_irq < 0)) {
560  		dev_err(&pdev->dev, "No IRQ for alarm\n");
561  		goto err_badres;
562  	}
563  
564  	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
565  	if (unlikely(res == NULL)) {
566  		dev_err(&pdev->dev, "No IO resource\n");
567  		goto err_badres;
568  	}
569  
570  	rtc->regsize = res->end - res->start + 1;
571  
572  	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
573  	if (unlikely(!rtc->res)) {
574  		ret = -EBUSY;
575  		goto err_badres;
576  	}
577  
578  	rtc->regbase = (void __iomem *)rtc->res->start;
579  	if (unlikely(!rtc->regbase)) {
580  		ret = -EINVAL;
581  		goto err_badmap;
582  	}
583  
584  	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
585  					   &sh_rtc_ops, THIS_MODULE);
586  	if (IS_ERR(rtc)) {
587  		ret = PTR_ERR(rtc->rtc_dev);
588  		goto err_badmap;
589  	}
590  
591  	platform_set_drvdata(pdev, rtc);
592  
593  	return 0;
594  
595  err_badmap:
596  	release_resource(rtc->res);
597  err_badres:
598  	kfree(rtc);
599  
600  	return ret;
601  }
602  
603  static int __devexit sh_rtc_remove(struct platform_device *pdev)
604  {
605  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
606  
607  	if (likely(rtc->rtc_dev))
608  		rtc_device_unregister(rtc->rtc_dev);
609  
610  	sh_rtc_setpie(&pdev->dev, 0);
611  	sh_rtc_setaie(&pdev->dev, 0);
612  
613  	release_resource(rtc->res);
614  
615  	platform_set_drvdata(pdev, NULL);
616  
617  	kfree(rtc);
618  
619  	return 0;
620  }
621  static struct platform_driver sh_rtc_platform_driver = {
622  	.driver		= {
623  		.name	= DRV_NAME,
624  		.owner	= THIS_MODULE,
625  	},
626  	.probe		= sh_rtc_probe,
627  	.remove		= __devexit_p(sh_rtc_remove),
628  };
629  
630  static int __init sh_rtc_init(void)
631  {
632  	return platform_driver_register(&sh_rtc_platform_driver);
633  }
634  
635  static void __exit sh_rtc_exit(void)
636  {
637  	platform_driver_unregister(&sh_rtc_platform_driver);
638  }
639  
640  module_init(sh_rtc_init);
641  module_exit(sh_rtc_exit);
642  
643  MODULE_DESCRIPTION("SuperH on-chip RTC driver");
644  MODULE_VERSION(DRV_VERSION);
645  MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
646  MODULE_LICENSE("GPL");
647