1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006 - 2009 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <linux/clk.h> 29 #include <asm/rtc.h> 30 31 #define DRV_NAME "sh-rtc" 32 #define DRV_VERSION "0.2.3" 33 34 #define RTC_REG(r) ((r) * rtc_reg_size) 35 36 #define R64CNT RTC_REG(0) 37 38 #define RSECCNT RTC_REG(1) /* RTC sec */ 39 #define RMINCNT RTC_REG(2) /* RTC min */ 40 #define RHRCNT RTC_REG(3) /* RTC hour */ 41 #define RWKCNT RTC_REG(4) /* RTC week */ 42 #define RDAYCNT RTC_REG(5) /* RTC day */ 43 #define RMONCNT RTC_REG(6) /* RTC month */ 44 #define RYRCNT RTC_REG(7) /* RTC year */ 45 #define RSECAR RTC_REG(8) /* ALARM sec */ 46 #define RMINAR RTC_REG(9) /* ALARM min */ 47 #define RHRAR RTC_REG(10) /* ALARM hour */ 48 #define RWKAR RTC_REG(11) /* ALARM week */ 49 #define RDAYAR RTC_REG(12) /* ALARM day */ 50 #define RMONAR RTC_REG(13) /* ALARM month */ 51 #define RCR1 RTC_REG(14) /* Control */ 52 #define RCR2 RTC_REG(15) /* Control */ 53 54 /* 55 * Note on RYRAR and RCR3: Up until this point most of the register 56 * definitions are consistent across all of the available parts. However, 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control 58 * register used to control RYRCNT/RYRAR compare) varies considerably 59 * across various parts, occasionally being mapped in to a completely 60 * unrelated address space. For proper RYRAR support a separate resource 61 * would have to be handed off, but as this is purely optional in 62 * practice, we simply opt not to support it, thereby keeping the code 63 * quite a bit more simplified. 64 */ 65 66 /* ALARM Bits - or with BCD encoded value */ 67 #define AR_ENB 0x80 /* Enable for alarm cmp */ 68 69 /* Period Bits */ 70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 71 #define PF_COUNT 0x200 /* Half periodic counter */ 72 #define PF_OXS 0x400 /* Periodic One x Second */ 73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 74 #define PF_MASK 0xf00 75 76 /* RCR1 Bits */ 77 #define RCR1_CF 0x80 /* Carry Flag */ 78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 80 #define RCR1_AF 0x01 /* Alarm Flag */ 81 82 /* RCR2 Bits */ 83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 85 #define RCR2_RTCEN 0x08 /* ENable RTC */ 86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 87 #define RCR2_RESET 0x02 /* Reset bit */ 88 #define RCR2_START 0x01 /* Start bit */ 89 90 struct sh_rtc { 91 void __iomem *regbase; 92 unsigned long regsize; 93 struct resource *res; 94 int alarm_irq; 95 int periodic_irq; 96 int carry_irq; 97 struct clk *clk; 98 struct rtc_device *rtc_dev; 99 spinlock_t lock; 100 unsigned long capabilities; /* See asm/rtc.h for cap bits */ 101 unsigned short periodic_freq; 102 }; 103 104 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 105 { 106 unsigned int tmp, pending; 107 108 tmp = readb(rtc->regbase + RCR1); 109 pending = tmp & RCR1_CF; 110 tmp &= ~RCR1_CF; 111 writeb(tmp, rtc->regbase + RCR1); 112 113 /* Users have requested One x Second IRQ */ 114 if (pending && rtc->periodic_freq & PF_OXS) 115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 116 117 return pending; 118 } 119 120 static int __sh_rtc_alarm(struct sh_rtc *rtc) 121 { 122 unsigned int tmp, pending; 123 124 tmp = readb(rtc->regbase + RCR1); 125 pending = tmp & RCR1_AF; 126 tmp &= ~(RCR1_AF | RCR1_AIE); 127 writeb(tmp, rtc->regbase + RCR1); 128 129 if (pending) 130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 131 132 return pending; 133 } 134 135 static int __sh_rtc_periodic(struct sh_rtc *rtc) 136 { 137 struct rtc_device *rtc_dev = rtc->rtc_dev; 138 struct rtc_task *irq_task; 139 unsigned int tmp, pending; 140 141 tmp = readb(rtc->regbase + RCR2); 142 pending = tmp & RCR2_PEF; 143 tmp &= ~RCR2_PEF; 144 writeb(tmp, rtc->regbase + RCR2); 145 146 if (!pending) 147 return 0; 148 149 /* Half period enabled than one skipped and the next notified */ 150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 151 rtc->periodic_freq &= ~PF_COUNT; 152 else { 153 if (rtc->periodic_freq & PF_HP) 154 rtc->periodic_freq |= PF_COUNT; 155 if (rtc->periodic_freq & PF_KOU) { 156 spin_lock(&rtc_dev->irq_task_lock); 157 irq_task = rtc_dev->irq_task; 158 if (irq_task) 159 irq_task->func(irq_task->private_data); 160 spin_unlock(&rtc_dev->irq_task_lock); 161 } else 162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 163 } 164 165 return pending; 166 } 167 168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 169 { 170 struct sh_rtc *rtc = dev_id; 171 int ret; 172 173 spin_lock(&rtc->lock); 174 ret = __sh_rtc_interrupt(rtc); 175 spin_unlock(&rtc->lock); 176 177 return IRQ_RETVAL(ret); 178 } 179 180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 181 { 182 struct sh_rtc *rtc = dev_id; 183 int ret; 184 185 spin_lock(&rtc->lock); 186 ret = __sh_rtc_alarm(rtc); 187 spin_unlock(&rtc->lock); 188 189 return IRQ_RETVAL(ret); 190 } 191 192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 193 { 194 struct sh_rtc *rtc = dev_id; 195 int ret; 196 197 spin_lock(&rtc->lock); 198 ret = __sh_rtc_periodic(rtc); 199 spin_unlock(&rtc->lock); 200 201 return IRQ_RETVAL(ret); 202 } 203 204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 205 { 206 struct sh_rtc *rtc = dev_id; 207 int ret; 208 209 spin_lock(&rtc->lock); 210 ret = __sh_rtc_interrupt(rtc); 211 ret |= __sh_rtc_alarm(rtc); 212 ret |= __sh_rtc_periodic(rtc); 213 spin_unlock(&rtc->lock); 214 215 return IRQ_RETVAL(ret); 216 } 217 218 static int sh_rtc_irq_set_state(struct device *dev, int enable) 219 { 220 struct sh_rtc *rtc = dev_get_drvdata(dev); 221 unsigned int tmp; 222 223 spin_lock_irq(&rtc->lock); 224 225 tmp = readb(rtc->regbase + RCR2); 226 227 if (enable) { 228 rtc->periodic_freq |= PF_KOU; 229 tmp &= ~RCR2_PEF; /* Clear PES bit */ 230 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 231 } else { 232 rtc->periodic_freq &= ~PF_KOU; 233 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 234 } 235 236 writeb(tmp, rtc->regbase + RCR2); 237 238 spin_unlock_irq(&rtc->lock); 239 240 return 0; 241 } 242 243 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 244 { 245 struct sh_rtc *rtc = dev_get_drvdata(dev); 246 int tmp, ret = 0; 247 248 spin_lock_irq(&rtc->lock); 249 tmp = rtc->periodic_freq & PF_MASK; 250 251 switch (freq) { 252 case 0: 253 rtc->periodic_freq = 0x00; 254 break; 255 case 1: 256 rtc->periodic_freq = 0x60; 257 break; 258 case 2: 259 rtc->periodic_freq = 0x50; 260 break; 261 case 4: 262 rtc->periodic_freq = 0x40; 263 break; 264 case 8: 265 rtc->periodic_freq = 0x30 | PF_HP; 266 break; 267 case 16: 268 rtc->periodic_freq = 0x30; 269 break; 270 case 32: 271 rtc->periodic_freq = 0x20 | PF_HP; 272 break; 273 case 64: 274 rtc->periodic_freq = 0x20; 275 break; 276 case 128: 277 rtc->periodic_freq = 0x10 | PF_HP; 278 break; 279 case 256: 280 rtc->periodic_freq = 0x10; 281 break; 282 default: 283 ret = -ENOTSUPP; 284 } 285 286 if (ret == 0) { 287 rtc->periodic_freq |= tmp; 288 rtc->rtc_dev->irq_freq = freq; 289 } 290 291 spin_unlock_irq(&rtc->lock); 292 return ret; 293 } 294 295 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 296 { 297 struct sh_rtc *rtc = dev_get_drvdata(dev); 298 unsigned int tmp; 299 300 spin_lock_irq(&rtc->lock); 301 302 tmp = readb(rtc->regbase + RCR1); 303 304 if (enable) 305 tmp |= RCR1_AIE; 306 else 307 tmp &= ~RCR1_AIE; 308 309 writeb(tmp, rtc->regbase + RCR1); 310 311 spin_unlock_irq(&rtc->lock); 312 } 313 314 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 315 { 316 struct sh_rtc *rtc = dev_get_drvdata(dev); 317 unsigned int tmp; 318 319 tmp = readb(rtc->regbase + RCR1); 320 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 321 322 tmp = readb(rtc->regbase + RCR2); 323 seq_printf(seq, "periodic_IRQ\t: %s\n", 324 (tmp & RCR2_PESMASK) ? "yes" : "no"); 325 326 return 0; 327 } 328 329 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 330 { 331 struct sh_rtc *rtc = dev_get_drvdata(dev); 332 unsigned int tmp; 333 334 spin_lock_irq(&rtc->lock); 335 336 tmp = readb(rtc->regbase + RCR1); 337 338 if (!enable) 339 tmp &= ~RCR1_CIE; 340 else 341 tmp |= RCR1_CIE; 342 343 writeb(tmp, rtc->regbase + RCR1); 344 345 spin_unlock_irq(&rtc->lock); 346 } 347 348 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 349 { 350 struct sh_rtc *rtc = dev_get_drvdata(dev); 351 unsigned int ret = 0; 352 353 switch (cmd) { 354 case RTC_AIE_OFF: 355 case RTC_AIE_ON: 356 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 357 break; 358 case RTC_UIE_OFF: 359 rtc->periodic_freq &= ~PF_OXS; 360 sh_rtc_setcie(dev, 0); 361 break; 362 case RTC_UIE_ON: 363 rtc->periodic_freq |= PF_OXS; 364 sh_rtc_setcie(dev, 1); 365 break; 366 default: 367 ret = -ENOIOCTLCMD; 368 } 369 370 return ret; 371 } 372 373 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 374 { 375 struct platform_device *pdev = to_platform_device(dev); 376 struct sh_rtc *rtc = platform_get_drvdata(pdev); 377 unsigned int sec128, sec2, yr, yr100, cf_bit; 378 379 do { 380 unsigned int tmp; 381 382 spin_lock_irq(&rtc->lock); 383 384 tmp = readb(rtc->regbase + RCR1); 385 tmp &= ~RCR1_CF; /* Clear CF-bit */ 386 tmp |= RCR1_CIE; 387 writeb(tmp, rtc->regbase + RCR1); 388 389 sec128 = readb(rtc->regbase + R64CNT); 390 391 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 392 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 393 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 394 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 395 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 396 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 397 398 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 399 yr = readw(rtc->regbase + RYRCNT); 400 yr100 = bcd2bin(yr >> 8); 401 yr &= 0xff; 402 } else { 403 yr = readb(rtc->regbase + RYRCNT); 404 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 405 } 406 407 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 408 409 sec2 = readb(rtc->regbase + R64CNT); 410 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 411 412 spin_unlock_irq(&rtc->lock); 413 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 414 415 #if RTC_BIT_INVERTED != 0 416 if ((sec128 & RTC_BIT_INVERTED)) 417 tm->tm_sec--; 418 #endif 419 420 /* only keep the carry interrupt enabled if UIE is on */ 421 if (!(rtc->periodic_freq & PF_OXS)) 422 sh_rtc_setcie(dev, 0); 423 424 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 425 "mday=%d, mon=%d, year=%d, wday=%d\n", 426 __func__, 427 tm->tm_sec, tm->tm_min, tm->tm_hour, 428 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 429 430 return rtc_valid_tm(tm); 431 } 432 433 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 434 { 435 struct platform_device *pdev = to_platform_device(dev); 436 struct sh_rtc *rtc = platform_get_drvdata(pdev); 437 unsigned int tmp; 438 int year; 439 440 spin_lock_irq(&rtc->lock); 441 442 /* Reset pre-scaler & stop RTC */ 443 tmp = readb(rtc->regbase + RCR2); 444 tmp |= RCR2_RESET; 445 tmp &= ~RCR2_START; 446 writeb(tmp, rtc->regbase + RCR2); 447 448 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 449 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 450 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 451 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 452 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 453 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 454 455 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 456 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 457 bin2bcd(tm->tm_year % 100); 458 writew(year, rtc->regbase + RYRCNT); 459 } else { 460 year = tm->tm_year % 100; 461 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 462 } 463 464 /* Start RTC */ 465 tmp = readb(rtc->regbase + RCR2); 466 tmp &= ~RCR2_RESET; 467 tmp |= RCR2_RTCEN | RCR2_START; 468 writeb(tmp, rtc->regbase + RCR2); 469 470 spin_unlock_irq(&rtc->lock); 471 472 return 0; 473 } 474 475 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 476 { 477 unsigned int byte; 478 int value = 0xff; /* return 0xff for ignored values */ 479 480 byte = readb(rtc->regbase + reg_off); 481 if (byte & AR_ENB) { 482 byte &= ~AR_ENB; /* strip the enable bit */ 483 value = bcd2bin(byte); 484 } 485 486 return value; 487 } 488 489 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 490 { 491 struct platform_device *pdev = to_platform_device(dev); 492 struct sh_rtc *rtc = platform_get_drvdata(pdev); 493 struct rtc_time *tm = &wkalrm->time; 494 495 spin_lock_irq(&rtc->lock); 496 497 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 498 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 499 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 500 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 501 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 502 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 503 if (tm->tm_mon > 0) 504 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 505 tm->tm_year = 0xffff; 506 507 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 508 509 spin_unlock_irq(&rtc->lock); 510 511 return 0; 512 } 513 514 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 515 int value, int reg_off) 516 { 517 /* < 0 for a value that is ignored */ 518 if (value < 0) 519 writeb(0, rtc->regbase + reg_off); 520 else 521 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 522 } 523 524 static int sh_rtc_check_alarm(struct rtc_time *tm) 525 { 526 /* 527 * The original rtc says anything > 0xc0 is "don't care" or "match 528 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 529 * The original rtc doesn't support years - some things use -1 and 530 * some 0xffff. We use -1 to make out tests easier. 531 */ 532 if (tm->tm_year == 0xffff) 533 tm->tm_year = -1; 534 if (tm->tm_mon >= 0xff) 535 tm->tm_mon = -1; 536 if (tm->tm_mday >= 0xff) 537 tm->tm_mday = -1; 538 if (tm->tm_wday >= 0xff) 539 tm->tm_wday = -1; 540 if (tm->tm_hour >= 0xff) 541 tm->tm_hour = -1; 542 if (tm->tm_min >= 0xff) 543 tm->tm_min = -1; 544 if (tm->tm_sec >= 0xff) 545 tm->tm_sec = -1; 546 547 if (tm->tm_year > 9999 || 548 tm->tm_mon >= 12 || 549 tm->tm_mday == 0 || tm->tm_mday >= 32 || 550 tm->tm_wday >= 7 || 551 tm->tm_hour >= 24 || 552 tm->tm_min >= 60 || 553 tm->tm_sec >= 60) 554 return -EINVAL; 555 556 return 0; 557 } 558 559 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 560 { 561 struct platform_device *pdev = to_platform_device(dev); 562 struct sh_rtc *rtc = platform_get_drvdata(pdev); 563 unsigned int rcr1; 564 struct rtc_time *tm = &wkalrm->time; 565 int mon, err; 566 567 err = sh_rtc_check_alarm(tm); 568 if (unlikely(err < 0)) 569 return err; 570 571 spin_lock_irq(&rtc->lock); 572 573 /* disable alarm interrupt and clear the alarm flag */ 574 rcr1 = readb(rtc->regbase + RCR1); 575 rcr1 &= ~(RCR1_AF | RCR1_AIE); 576 writeb(rcr1, rtc->regbase + RCR1); 577 578 /* set alarm time */ 579 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 580 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 581 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 582 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 583 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 584 mon = tm->tm_mon; 585 if (mon >= 0) 586 mon += 1; 587 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 588 589 if (wkalrm->enabled) { 590 rcr1 |= RCR1_AIE; 591 writeb(rcr1, rtc->regbase + RCR1); 592 } 593 594 spin_unlock_irq(&rtc->lock); 595 596 return 0; 597 } 598 599 static struct rtc_class_ops sh_rtc_ops = { 600 .ioctl = sh_rtc_ioctl, 601 .read_time = sh_rtc_read_time, 602 .set_time = sh_rtc_set_time, 603 .read_alarm = sh_rtc_read_alarm, 604 .set_alarm = sh_rtc_set_alarm, 605 .irq_set_state = sh_rtc_irq_set_state, 606 .irq_set_freq = sh_rtc_irq_set_freq, 607 .proc = sh_rtc_proc, 608 }; 609 610 static int __init sh_rtc_probe(struct platform_device *pdev) 611 { 612 struct sh_rtc *rtc; 613 struct resource *res; 614 struct rtc_time r; 615 char clk_name[6]; 616 int clk_id, ret; 617 618 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 619 if (unlikely(!rtc)) 620 return -ENOMEM; 621 622 spin_lock_init(&rtc->lock); 623 624 /* get periodic/carry/alarm irqs */ 625 ret = platform_get_irq(pdev, 0); 626 if (unlikely(ret <= 0)) { 627 ret = -ENOENT; 628 dev_err(&pdev->dev, "No IRQ resource\n"); 629 goto err_badres; 630 } 631 632 rtc->periodic_irq = ret; 633 rtc->carry_irq = platform_get_irq(pdev, 1); 634 rtc->alarm_irq = platform_get_irq(pdev, 2); 635 636 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 637 if (unlikely(res == NULL)) { 638 ret = -ENOENT; 639 dev_err(&pdev->dev, "No IO resource\n"); 640 goto err_badres; 641 } 642 643 rtc->regsize = resource_size(res); 644 645 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 646 if (unlikely(!rtc->res)) { 647 ret = -EBUSY; 648 goto err_badres; 649 } 650 651 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize); 652 if (unlikely(!rtc->regbase)) { 653 ret = -EINVAL; 654 goto err_badmap; 655 } 656 657 clk_id = pdev->id; 658 /* With a single device, the clock id is still "rtc0" */ 659 if (clk_id < 0) 660 clk_id = 0; 661 662 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id); 663 664 rtc->clk = clk_get(&pdev->dev, clk_name); 665 if (IS_ERR(rtc->clk)) { 666 /* 667 * No error handling for rtc->clk intentionally, not all 668 * platforms will have a unique clock for the RTC, and 669 * the clk API can handle the struct clk pointer being 670 * NULL. 671 */ 672 rtc->clk = NULL; 673 } 674 675 clk_enable(rtc->clk); 676 677 rtc->capabilities = RTC_DEF_CAPABILITIES; 678 if (pdev->dev.platform_data) { 679 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 680 681 /* 682 * Some CPUs have special capabilities in addition to the 683 * default set. Add those in here. 684 */ 685 rtc->capabilities |= pinfo->capabilities; 686 } 687 688 if (rtc->carry_irq <= 0) { 689 /* register shared periodic/carry/alarm irq */ 690 ret = request_irq(rtc->periodic_irq, sh_rtc_shared, 691 IRQF_DISABLED, "sh-rtc", rtc); 692 if (unlikely(ret)) { 693 dev_err(&pdev->dev, 694 "request IRQ failed with %d, IRQ %d\n", ret, 695 rtc->periodic_irq); 696 goto err_unmap; 697 } 698 } else { 699 /* register periodic/carry/alarm irqs */ 700 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, 701 IRQF_DISABLED, "sh-rtc period", rtc); 702 if (unlikely(ret)) { 703 dev_err(&pdev->dev, 704 "request period IRQ failed with %d, IRQ %d\n", 705 ret, rtc->periodic_irq); 706 goto err_unmap; 707 } 708 709 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, 710 IRQF_DISABLED, "sh-rtc carry", rtc); 711 if (unlikely(ret)) { 712 dev_err(&pdev->dev, 713 "request carry IRQ failed with %d, IRQ %d\n", 714 ret, rtc->carry_irq); 715 free_irq(rtc->periodic_irq, rtc); 716 goto err_unmap; 717 } 718 719 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, 720 IRQF_DISABLED, "sh-rtc alarm", rtc); 721 if (unlikely(ret)) { 722 dev_err(&pdev->dev, 723 "request alarm IRQ failed with %d, IRQ %d\n", 724 ret, rtc->alarm_irq); 725 free_irq(rtc->carry_irq, rtc); 726 free_irq(rtc->periodic_irq, rtc); 727 goto err_unmap; 728 } 729 } 730 731 platform_set_drvdata(pdev, rtc); 732 733 /* everything disabled by default */ 734 sh_rtc_irq_set_freq(&pdev->dev, 0); 735 sh_rtc_irq_set_state(&pdev->dev, 0); 736 sh_rtc_setaie(&pdev->dev, 0); 737 sh_rtc_setcie(&pdev->dev, 0); 738 739 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 740 &sh_rtc_ops, THIS_MODULE); 741 if (IS_ERR(rtc->rtc_dev)) { 742 ret = PTR_ERR(rtc->rtc_dev); 743 free_irq(rtc->periodic_irq, rtc); 744 free_irq(rtc->carry_irq, rtc); 745 free_irq(rtc->alarm_irq, rtc); 746 goto err_unmap; 747 } 748 749 rtc->rtc_dev->max_user_freq = 256; 750 751 /* reset rtc to epoch 0 if time is invalid */ 752 if (rtc_read_time(rtc->rtc_dev, &r) < 0) { 753 rtc_time_to_tm(0, &r); 754 rtc_set_time(rtc->rtc_dev, &r); 755 } 756 757 device_init_wakeup(&pdev->dev, 1); 758 return 0; 759 760 err_unmap: 761 clk_disable(rtc->clk); 762 clk_put(rtc->clk); 763 iounmap(rtc->regbase); 764 err_badmap: 765 release_resource(rtc->res); 766 err_badres: 767 kfree(rtc); 768 769 return ret; 770 } 771 772 static int __exit sh_rtc_remove(struct platform_device *pdev) 773 { 774 struct sh_rtc *rtc = platform_get_drvdata(pdev); 775 776 rtc_device_unregister(rtc->rtc_dev); 777 sh_rtc_irq_set_state(&pdev->dev, 0); 778 779 sh_rtc_setaie(&pdev->dev, 0); 780 sh_rtc_setcie(&pdev->dev, 0); 781 782 free_irq(rtc->periodic_irq, rtc); 783 784 if (rtc->carry_irq > 0) { 785 free_irq(rtc->carry_irq, rtc); 786 free_irq(rtc->alarm_irq, rtc); 787 } 788 789 iounmap(rtc->regbase); 790 release_resource(rtc->res); 791 792 clk_disable(rtc->clk); 793 clk_put(rtc->clk); 794 795 platform_set_drvdata(pdev, NULL); 796 797 kfree(rtc); 798 799 return 0; 800 } 801 802 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 803 { 804 struct platform_device *pdev = to_platform_device(dev); 805 struct sh_rtc *rtc = platform_get_drvdata(pdev); 806 807 set_irq_wake(rtc->periodic_irq, enabled); 808 809 if (rtc->carry_irq > 0) { 810 set_irq_wake(rtc->carry_irq, enabled); 811 set_irq_wake(rtc->alarm_irq, enabled); 812 } 813 } 814 815 static int sh_rtc_suspend(struct device *dev) 816 { 817 if (device_may_wakeup(dev)) 818 sh_rtc_set_irq_wake(dev, 1); 819 820 return 0; 821 } 822 823 static int sh_rtc_resume(struct device *dev) 824 { 825 if (device_may_wakeup(dev)) 826 sh_rtc_set_irq_wake(dev, 0); 827 828 return 0; 829 } 830 831 static struct dev_pm_ops sh_rtc_dev_pm_ops = { 832 .suspend = sh_rtc_suspend, 833 .resume = sh_rtc_resume, 834 }; 835 836 static struct platform_driver sh_rtc_platform_driver = { 837 .driver = { 838 .name = DRV_NAME, 839 .owner = THIS_MODULE, 840 .pm = &sh_rtc_dev_pm_ops, 841 }, 842 .remove = __exit_p(sh_rtc_remove), 843 }; 844 845 static int __init sh_rtc_init(void) 846 { 847 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe); 848 } 849 850 static void __exit sh_rtc_exit(void) 851 { 852 platform_driver_unregister(&sh_rtc_platform_driver); 853 } 854 855 module_init(sh_rtc_init); 856 module_exit(sh_rtc_exit); 857 858 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 859 MODULE_VERSION(DRV_VERSION); 860 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 861 "Jamie Lenehan <lenehan@twibble.org>, " 862 "Angelo Castello <angelo.castello@st.com>"); 863 MODULE_LICENSE("GPL"); 864 MODULE_ALIAS("platform:" DRV_NAME); 865