xref: /linux/drivers/rtc/rtc-sh.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
31 
32 #define DRV_NAME	"sh-rtc"
33 
34 #define RTC_REG(r)	((r) * rtc_reg_size)
35 
36 #define R64CNT		RTC_REG(0)
37 
38 #define RSECCNT		RTC_REG(1)	/* RTC sec */
39 #define RMINCNT		RTC_REG(2)	/* RTC min */
40 #define RHRCNT		RTC_REG(3)	/* RTC hour */
41 #define RWKCNT		RTC_REG(4)	/* RTC week */
42 #define RDAYCNT		RTC_REG(5)	/* RTC day */
43 #define RMONCNT		RTC_REG(6)	/* RTC month */
44 #define RYRCNT		RTC_REG(7)	/* RTC year */
45 #define RSECAR		RTC_REG(8)	/* ALARM sec */
46 #define RMINAR		RTC_REG(9)	/* ALARM min */
47 #define RHRAR		RTC_REG(10)	/* ALARM hour */
48 #define RWKAR		RTC_REG(11)	/* ALARM week */
49 #define RDAYAR		RTC_REG(12)	/* ALARM day */
50 #define RMONAR		RTC_REG(13)	/* ALARM month */
51 #define RCR1		RTC_REG(14)	/* Control */
52 #define RCR2		RTC_REG(15)	/* Control */
53 
54 /*
55  * Note on RYRAR and RCR3: Up until this point most of the register
56  * definitions are consistent across all of the available parts. However,
57  * the placement of the optional RYRAR and RCR3 (the RYRAR control
58  * register used to control RYRCNT/RYRAR compare) varies considerably
59  * across various parts, occasionally being mapped in to a completely
60  * unrelated address space. For proper RYRAR support a separate resource
61  * would have to be handed off, but as this is purely optional in
62  * practice, we simply opt not to support it, thereby keeping the code
63  * quite a bit more simplified.
64  */
65 
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB		0x80	/* Enable for alarm cmp   */
68 
69 /* Period Bits */
70 #define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT	0x200	/* Half periodic counter */
72 #define PF_OXS		0x400	/* Periodic One x Second */
73 #define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
74 #define PF_MASK		0xf00
75 
76 /* RCR1 Bits */
77 #define RCR1_CF		0x80	/* Carry Flag             */
78 #define RCR1_CIE	0x10	/* Carry Interrupt Enable */
79 #define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
80 #define RCR1_AF		0x01	/* Alarm Flag             */
81 
82 /* RCR2 Bits */
83 #define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
84 #define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
85 #define RCR2_RTCEN	0x08	/* ENable RTC              */
86 #define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
87 #define RCR2_RESET	0x02	/* Reset bit               */
88 #define RCR2_START	0x01	/* Start bit               */
89 
90 struct sh_rtc {
91 	void __iomem		*regbase;
92 	unsigned long		regsize;
93 	struct resource		*res;
94 	int			alarm_irq;
95 	int			periodic_irq;
96 	int			carry_irq;
97 	struct clk		*clk;
98 	struct rtc_device	*rtc_dev;
99 	spinlock_t		lock;
100 	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
101 	unsigned short		periodic_freq;
102 };
103 
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105 {
106 	unsigned int tmp, pending;
107 
108 	tmp = readb(rtc->regbase + RCR1);
109 	pending = tmp & RCR1_CF;
110 	tmp &= ~RCR1_CF;
111 	writeb(tmp, rtc->regbase + RCR1);
112 
113 	/* Users have requested One x Second IRQ */
114 	if (pending && rtc->periodic_freq & PF_OXS)
115 		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116 
117 	return pending;
118 }
119 
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
121 {
122 	unsigned int tmp, pending;
123 
124 	tmp = readb(rtc->regbase + RCR1);
125 	pending = tmp & RCR1_AF;
126 	tmp &= ~(RCR1_AF | RCR1_AIE);
127 	writeb(tmp, rtc->regbase + RCR1);
128 
129 	if (pending)
130 		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131 
132 	return pending;
133 }
134 
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
136 {
137 	struct rtc_device *rtc_dev = rtc->rtc_dev;
138 	struct rtc_task *irq_task;
139 	unsigned int tmp, pending;
140 
141 	tmp = readb(rtc->regbase + RCR2);
142 	pending = tmp & RCR2_PEF;
143 	tmp &= ~RCR2_PEF;
144 	writeb(tmp, rtc->regbase + RCR2);
145 
146 	if (!pending)
147 		return 0;
148 
149 	/* Half period enabled than one skipped and the next notified */
150 	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 		rtc->periodic_freq &= ~PF_COUNT;
152 	else {
153 		if (rtc->periodic_freq & PF_HP)
154 			rtc->periodic_freq |= PF_COUNT;
155 		if (rtc->periodic_freq & PF_KOU) {
156 			spin_lock(&rtc_dev->irq_task_lock);
157 			irq_task = rtc_dev->irq_task;
158 			if (irq_task)
159 				irq_task->func(irq_task->private_data);
160 			spin_unlock(&rtc_dev->irq_task_lock);
161 		} else
162 			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163 	}
164 
165 	return pending;
166 }
167 
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170 	struct sh_rtc *rtc = dev_id;
171 	int ret;
172 
173 	spin_lock(&rtc->lock);
174 	ret = __sh_rtc_interrupt(rtc);
175 	spin_unlock(&rtc->lock);
176 
177 	return IRQ_RETVAL(ret);
178 }
179 
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182 	struct sh_rtc *rtc = dev_id;
183 	int ret;
184 
185 	spin_lock(&rtc->lock);
186 	ret = __sh_rtc_alarm(rtc);
187 	spin_unlock(&rtc->lock);
188 
189 	return IRQ_RETVAL(ret);
190 }
191 
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194 	struct sh_rtc *rtc = dev_id;
195 	int ret;
196 
197 	spin_lock(&rtc->lock);
198 	ret = __sh_rtc_periodic(rtc);
199 	spin_unlock(&rtc->lock);
200 
201 	return IRQ_RETVAL(ret);
202 }
203 
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206 	struct sh_rtc *rtc = dev_id;
207 	int ret;
208 
209 	spin_lock(&rtc->lock);
210 	ret = __sh_rtc_interrupt(rtc);
211 	ret |= __sh_rtc_alarm(rtc);
212 	ret |= __sh_rtc_periodic(rtc);
213 	spin_unlock(&rtc->lock);
214 
215 	return IRQ_RETVAL(ret);
216 }
217 
218 static int sh_rtc_irq_set_state(struct device *dev, int enable)
219 {
220 	struct sh_rtc *rtc = dev_get_drvdata(dev);
221 	unsigned int tmp;
222 
223 	spin_lock_irq(&rtc->lock);
224 
225 	tmp = readb(rtc->regbase + RCR2);
226 
227 	if (enable) {
228 		rtc->periodic_freq |= PF_KOU;
229 		tmp &= ~RCR2_PEF;	/* Clear PES bit */
230 		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
231 	} else {
232 		rtc->periodic_freq &= ~PF_KOU;
233 		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
234 	}
235 
236 	writeb(tmp, rtc->regbase + RCR2);
237 
238 	spin_unlock_irq(&rtc->lock);
239 
240 	return 0;
241 }
242 
243 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
244 {
245 	struct sh_rtc *rtc = dev_get_drvdata(dev);
246 	int tmp, ret = 0;
247 
248 	spin_lock_irq(&rtc->lock);
249 	tmp = rtc->periodic_freq & PF_MASK;
250 
251 	switch (freq) {
252 	case 0:
253 		rtc->periodic_freq = 0x00;
254 		break;
255 	case 1:
256 		rtc->periodic_freq = 0x60;
257 		break;
258 	case 2:
259 		rtc->periodic_freq = 0x50;
260 		break;
261 	case 4:
262 		rtc->periodic_freq = 0x40;
263 		break;
264 	case 8:
265 		rtc->periodic_freq = 0x30 | PF_HP;
266 		break;
267 	case 16:
268 		rtc->periodic_freq = 0x30;
269 		break;
270 	case 32:
271 		rtc->periodic_freq = 0x20 | PF_HP;
272 		break;
273 	case 64:
274 		rtc->periodic_freq = 0x20;
275 		break;
276 	case 128:
277 		rtc->periodic_freq = 0x10 | PF_HP;
278 		break;
279 	case 256:
280 		rtc->periodic_freq = 0x10;
281 		break;
282 	default:
283 		ret = -ENOTSUPP;
284 	}
285 
286 	if (ret == 0)
287 		rtc->periodic_freq |= tmp;
288 
289 	spin_unlock_irq(&rtc->lock);
290 	return ret;
291 }
292 
293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
294 {
295 	struct sh_rtc *rtc = dev_get_drvdata(dev);
296 	unsigned int tmp;
297 
298 	spin_lock_irq(&rtc->lock);
299 
300 	tmp = readb(rtc->regbase + RCR1);
301 
302 	if (enable)
303 		tmp |= RCR1_AIE;
304 	else
305 		tmp &= ~RCR1_AIE;
306 
307 	writeb(tmp, rtc->regbase + RCR1);
308 
309 	spin_unlock_irq(&rtc->lock);
310 }
311 
312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
313 {
314 	struct sh_rtc *rtc = dev_get_drvdata(dev);
315 	unsigned int tmp;
316 
317 	tmp = readb(rtc->regbase + RCR1);
318 	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
319 
320 	tmp = readb(rtc->regbase + RCR2);
321 	seq_printf(seq, "periodic_IRQ\t: %s\n",
322 		   (tmp & RCR2_PESMASK) ? "yes" : "no");
323 
324 	return 0;
325 }
326 
327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
328 {
329 	struct sh_rtc *rtc = dev_get_drvdata(dev);
330 	unsigned int tmp;
331 
332 	spin_lock_irq(&rtc->lock);
333 
334 	tmp = readb(rtc->regbase + RCR1);
335 
336 	if (!enable)
337 		tmp &= ~RCR1_CIE;
338 	else
339 		tmp |= RCR1_CIE;
340 
341 	writeb(tmp, rtc->regbase + RCR1);
342 
343 	spin_unlock_irq(&rtc->lock);
344 }
345 
346 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
347 {
348 	sh_rtc_setaie(dev, enabled);
349 	return 0;
350 }
351 
352 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
353 {
354 	struct platform_device *pdev = to_platform_device(dev);
355 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
356 	unsigned int sec128, sec2, yr, yr100, cf_bit;
357 
358 	do {
359 		unsigned int tmp;
360 
361 		spin_lock_irq(&rtc->lock);
362 
363 		tmp = readb(rtc->regbase + RCR1);
364 		tmp &= ~RCR1_CF; /* Clear CF-bit */
365 		tmp |= RCR1_CIE;
366 		writeb(tmp, rtc->regbase + RCR1);
367 
368 		sec128 = readb(rtc->regbase + R64CNT);
369 
370 		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
371 		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
372 		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
373 		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
374 		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
375 		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
376 
377 		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
378 			yr  = readw(rtc->regbase + RYRCNT);
379 			yr100 = bcd2bin(yr >> 8);
380 			yr &= 0xff;
381 		} else {
382 			yr  = readb(rtc->regbase + RYRCNT);
383 			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
384 		}
385 
386 		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
387 
388 		sec2 = readb(rtc->regbase + R64CNT);
389 		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
390 
391 		spin_unlock_irq(&rtc->lock);
392 	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
393 
394 #if RTC_BIT_INVERTED != 0
395 	if ((sec128 & RTC_BIT_INVERTED))
396 		tm->tm_sec--;
397 #endif
398 
399 	/* only keep the carry interrupt enabled if UIE is on */
400 	if (!(rtc->periodic_freq & PF_OXS))
401 		sh_rtc_setcie(dev, 0);
402 
403 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
404 		"mday=%d, mon=%d, year=%d, wday=%d\n",
405 		__func__,
406 		tm->tm_sec, tm->tm_min, tm->tm_hour,
407 		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
408 
409 	return rtc_valid_tm(tm);
410 }
411 
412 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
413 {
414 	struct platform_device *pdev = to_platform_device(dev);
415 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
416 	unsigned int tmp;
417 	int year;
418 
419 	spin_lock_irq(&rtc->lock);
420 
421 	/* Reset pre-scaler & stop RTC */
422 	tmp = readb(rtc->regbase + RCR2);
423 	tmp |= RCR2_RESET;
424 	tmp &= ~RCR2_START;
425 	writeb(tmp, rtc->regbase + RCR2);
426 
427 	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
428 	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
429 	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
430 	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
431 	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
432 	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
433 
434 	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
435 		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
436 			bin2bcd(tm->tm_year % 100);
437 		writew(year, rtc->regbase + RYRCNT);
438 	} else {
439 		year = tm->tm_year % 100;
440 		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
441 	}
442 
443 	/* Start RTC */
444 	tmp = readb(rtc->regbase + RCR2);
445 	tmp &= ~RCR2_RESET;
446 	tmp |= RCR2_RTCEN | RCR2_START;
447 	writeb(tmp, rtc->regbase + RCR2);
448 
449 	spin_unlock_irq(&rtc->lock);
450 
451 	return 0;
452 }
453 
454 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
455 {
456 	unsigned int byte;
457 	int value = 0xff;	/* return 0xff for ignored values */
458 
459 	byte = readb(rtc->regbase + reg_off);
460 	if (byte & AR_ENB) {
461 		byte &= ~AR_ENB;	/* strip the enable bit */
462 		value = bcd2bin(byte);
463 	}
464 
465 	return value;
466 }
467 
468 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
469 {
470 	struct platform_device *pdev = to_platform_device(dev);
471 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
472 	struct rtc_time *tm = &wkalrm->time;
473 
474 	spin_lock_irq(&rtc->lock);
475 
476 	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
477 	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
478 	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
479 	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
480 	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
481 	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
482 	if (tm->tm_mon > 0)
483 		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
484 
485 	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
486 
487 	spin_unlock_irq(&rtc->lock);
488 
489 	return 0;
490 }
491 
492 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
493 					    int value, int reg_off)
494 {
495 	/* < 0 for a value that is ignored */
496 	if (value < 0)
497 		writeb(0, rtc->regbase + reg_off);
498 	else
499 		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
500 }
501 
502 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503 {
504 	struct platform_device *pdev = to_platform_device(dev);
505 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
506 	unsigned int rcr1;
507 	struct rtc_time *tm = &wkalrm->time;
508 	int mon;
509 
510 	spin_lock_irq(&rtc->lock);
511 
512 	/* disable alarm interrupt and clear the alarm flag */
513 	rcr1 = readb(rtc->regbase + RCR1);
514 	rcr1 &= ~(RCR1_AF | RCR1_AIE);
515 	writeb(rcr1, rtc->regbase + RCR1);
516 
517 	/* set alarm time */
518 	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
519 	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
520 	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
521 	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
522 	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
523 	mon = tm->tm_mon;
524 	if (mon >= 0)
525 		mon += 1;
526 	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
527 
528 	if (wkalrm->enabled) {
529 		rcr1 |= RCR1_AIE;
530 		writeb(rcr1, rtc->regbase + RCR1);
531 	}
532 
533 	spin_unlock_irq(&rtc->lock);
534 
535 	return 0;
536 }
537 
538 static struct rtc_class_ops sh_rtc_ops = {
539 	.read_time	= sh_rtc_read_time,
540 	.set_time	= sh_rtc_set_time,
541 	.read_alarm	= sh_rtc_read_alarm,
542 	.set_alarm	= sh_rtc_set_alarm,
543 	.proc		= sh_rtc_proc,
544 	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
545 };
546 
547 static int __init sh_rtc_probe(struct platform_device *pdev)
548 {
549 	struct sh_rtc *rtc;
550 	struct resource *res;
551 	struct rtc_time r;
552 	char clk_name[6];
553 	int clk_id, ret;
554 
555 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
556 	if (unlikely(!rtc))
557 		return -ENOMEM;
558 
559 	spin_lock_init(&rtc->lock);
560 
561 	/* get periodic/carry/alarm irqs */
562 	ret = platform_get_irq(pdev, 0);
563 	if (unlikely(ret <= 0)) {
564 		dev_err(&pdev->dev, "No IRQ resource\n");
565 		return -ENOENT;
566 	}
567 
568 	rtc->periodic_irq = ret;
569 	rtc->carry_irq = platform_get_irq(pdev, 1);
570 	rtc->alarm_irq = platform_get_irq(pdev, 2);
571 
572 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
573 	if (unlikely(res == NULL)) {
574 		dev_err(&pdev->dev, "No IO resource\n");
575 		return -ENOENT;
576 	}
577 
578 	rtc->regsize = resource_size(res);
579 
580 	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
581 					rtc->regsize, pdev->name);
582 	if (unlikely(!rtc->res))
583 		return -EBUSY;
584 
585 	rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
586 					rtc->regsize);
587 	if (unlikely(!rtc->regbase))
588 		return -EINVAL;
589 
590 	clk_id = pdev->id;
591 	/* With a single device, the clock id is still "rtc0" */
592 	if (clk_id < 0)
593 		clk_id = 0;
594 
595 	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
596 
597 	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
598 	if (IS_ERR(rtc->clk)) {
599 		/*
600 		 * No error handling for rtc->clk intentionally, not all
601 		 * platforms will have a unique clock for the RTC, and
602 		 * the clk API can handle the struct clk pointer being
603 		 * NULL.
604 		 */
605 		rtc->clk = NULL;
606 	}
607 
608 	clk_enable(rtc->clk);
609 
610 	rtc->capabilities = RTC_DEF_CAPABILITIES;
611 	if (dev_get_platdata(&pdev->dev)) {
612 		struct sh_rtc_platform_info *pinfo =
613 			dev_get_platdata(&pdev->dev);
614 
615 		/*
616 		 * Some CPUs have special capabilities in addition to the
617 		 * default set. Add those in here.
618 		 */
619 		rtc->capabilities |= pinfo->capabilities;
620 	}
621 
622 	if (rtc->carry_irq <= 0) {
623 		/* register shared periodic/carry/alarm irq */
624 		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
625 				sh_rtc_shared, 0, "sh-rtc", rtc);
626 		if (unlikely(ret)) {
627 			dev_err(&pdev->dev,
628 				"request IRQ failed with %d, IRQ %d\n", ret,
629 				rtc->periodic_irq);
630 			goto err_unmap;
631 		}
632 	} else {
633 		/* register periodic/carry/alarm irqs */
634 		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
635 				sh_rtc_periodic, 0, "sh-rtc period", rtc);
636 		if (unlikely(ret)) {
637 			dev_err(&pdev->dev,
638 				"request period IRQ failed with %d, IRQ %d\n",
639 				ret, rtc->periodic_irq);
640 			goto err_unmap;
641 		}
642 
643 		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
644 				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
645 		if (unlikely(ret)) {
646 			dev_err(&pdev->dev,
647 				"request carry IRQ failed with %d, IRQ %d\n",
648 				ret, rtc->carry_irq);
649 			goto err_unmap;
650 		}
651 
652 		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
653 				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
654 		if (unlikely(ret)) {
655 			dev_err(&pdev->dev,
656 				"request alarm IRQ failed with %d, IRQ %d\n",
657 				ret, rtc->alarm_irq);
658 			goto err_unmap;
659 		}
660 	}
661 
662 	platform_set_drvdata(pdev, rtc);
663 
664 	/* everything disabled by default */
665 	sh_rtc_irq_set_freq(&pdev->dev, 0);
666 	sh_rtc_irq_set_state(&pdev->dev, 0);
667 	sh_rtc_setaie(&pdev->dev, 0);
668 	sh_rtc_setcie(&pdev->dev, 0);
669 
670 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
671 					   &sh_rtc_ops, THIS_MODULE);
672 	if (IS_ERR(rtc->rtc_dev)) {
673 		ret = PTR_ERR(rtc->rtc_dev);
674 		goto err_unmap;
675 	}
676 
677 	rtc->rtc_dev->max_user_freq = 256;
678 
679 	/* reset rtc to epoch 0 if time is invalid */
680 	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
681 		rtc_time_to_tm(0, &r);
682 		rtc_set_time(rtc->rtc_dev, &r);
683 	}
684 
685 	device_init_wakeup(&pdev->dev, 1);
686 	return 0;
687 
688 err_unmap:
689 	clk_disable(rtc->clk);
690 
691 	return ret;
692 }
693 
694 static int __exit sh_rtc_remove(struct platform_device *pdev)
695 {
696 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
697 
698 	sh_rtc_irq_set_state(&pdev->dev, 0);
699 
700 	sh_rtc_setaie(&pdev->dev, 0);
701 	sh_rtc_setcie(&pdev->dev, 0);
702 
703 	clk_disable(rtc->clk);
704 
705 	return 0;
706 }
707 
708 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
709 {
710 	struct platform_device *pdev = to_platform_device(dev);
711 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
712 
713 	irq_set_irq_wake(rtc->periodic_irq, enabled);
714 
715 	if (rtc->carry_irq > 0) {
716 		irq_set_irq_wake(rtc->carry_irq, enabled);
717 		irq_set_irq_wake(rtc->alarm_irq, enabled);
718 	}
719 }
720 
721 #ifdef CONFIG_PM_SLEEP
722 static int sh_rtc_suspend(struct device *dev)
723 {
724 	if (device_may_wakeup(dev))
725 		sh_rtc_set_irq_wake(dev, 1);
726 
727 	return 0;
728 }
729 
730 static int sh_rtc_resume(struct device *dev)
731 {
732 	if (device_may_wakeup(dev))
733 		sh_rtc_set_irq_wake(dev, 0);
734 
735 	return 0;
736 }
737 #endif
738 
739 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
740 
741 static struct platform_driver sh_rtc_platform_driver = {
742 	.driver		= {
743 		.name	= DRV_NAME,
744 		.pm	= &sh_rtc_pm_ops,
745 	},
746 	.remove		= __exit_p(sh_rtc_remove),
747 };
748 
749 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
750 
751 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
752 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
753 	      "Jamie Lenehan <lenehan@twibble.org>, "
754 	      "Angelo Castello <angelo.castello@st.com>");
755 MODULE_LICENSE("GPL");
756 MODULE_ALIAS("platform:" DRV_NAME);
757