1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006, 2007, 2008 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <asm/rtc.h> 29 30 #define DRV_NAME "sh-rtc" 31 #define DRV_VERSION "0.2.0" 32 33 #define RTC_REG(r) ((r) * rtc_reg_size) 34 35 #define R64CNT RTC_REG(0) 36 37 #define RSECCNT RTC_REG(1) /* RTC sec */ 38 #define RMINCNT RTC_REG(2) /* RTC min */ 39 #define RHRCNT RTC_REG(3) /* RTC hour */ 40 #define RWKCNT RTC_REG(4) /* RTC week */ 41 #define RDAYCNT RTC_REG(5) /* RTC day */ 42 #define RMONCNT RTC_REG(6) /* RTC month */ 43 #define RYRCNT RTC_REG(7) /* RTC year */ 44 #define RSECAR RTC_REG(8) /* ALARM sec */ 45 #define RMINAR RTC_REG(9) /* ALARM min */ 46 #define RHRAR RTC_REG(10) /* ALARM hour */ 47 #define RWKAR RTC_REG(11) /* ALARM week */ 48 #define RDAYAR RTC_REG(12) /* ALARM day */ 49 #define RMONAR RTC_REG(13) /* ALARM month */ 50 #define RCR1 RTC_REG(14) /* Control */ 51 #define RCR2 RTC_REG(15) /* Control */ 52 53 /* 54 * Note on RYRAR and RCR3: Up until this point most of the register 55 * definitions are consistent across all of the available parts. However, 56 * the placement of the optional RYRAR and RCR3 (the RYRAR control 57 * register used to control RYRCNT/RYRAR compare) varies considerably 58 * across various parts, occasionally being mapped in to a completely 59 * unrelated address space. For proper RYRAR support a separate resource 60 * would have to be handed off, but as this is purely optional in 61 * practice, we simply opt not to support it, thereby keeping the code 62 * quite a bit more simplified. 63 */ 64 65 /* ALARM Bits - or with BCD encoded value */ 66 #define AR_ENB 0x80 /* Enable for alarm cmp */ 67 68 /* Period Bits */ 69 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 70 #define PF_COUNT 0x200 /* Half periodic counter */ 71 #define PF_OXS 0x400 /* Periodic One x Second */ 72 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 73 #define PF_MASK 0xf00 74 75 /* RCR1 Bits */ 76 #define RCR1_CF 0x80 /* Carry Flag */ 77 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 78 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 79 #define RCR1_AF 0x01 /* Alarm Flag */ 80 81 /* RCR2 Bits */ 82 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 83 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 84 #define RCR2_RTCEN 0x08 /* ENable RTC */ 85 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 86 #define RCR2_RESET 0x02 /* Reset bit */ 87 #define RCR2_START 0x01 /* Start bit */ 88 89 struct sh_rtc { 90 void __iomem *regbase; 91 unsigned long regsize; 92 struct resource *res; 93 int alarm_irq; 94 int periodic_irq; 95 int carry_irq; 96 struct rtc_device *rtc_dev; 97 spinlock_t lock; 98 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */ 99 unsigned short periodic_freq; 100 }; 101 102 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 103 { 104 unsigned int tmp, pending; 105 106 tmp = readb(rtc->regbase + RCR1); 107 pending = tmp & RCR1_CF; 108 tmp &= ~RCR1_CF; 109 writeb(tmp, rtc->regbase + RCR1); 110 111 /* Users have requested One x Second IRQ */ 112 if (pending && rtc->periodic_freq & PF_OXS) 113 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 114 115 return pending; 116 } 117 118 static int __sh_rtc_alarm(struct sh_rtc *rtc) 119 { 120 unsigned int tmp, pending; 121 122 tmp = readb(rtc->regbase + RCR1); 123 pending = tmp & RCR1_AF; 124 tmp &= ~(RCR1_AF | RCR1_AIE); 125 writeb(tmp, rtc->regbase + RCR1); 126 127 if (pending) 128 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 129 130 return pending; 131 } 132 133 static int __sh_rtc_periodic(struct sh_rtc *rtc) 134 { 135 struct rtc_device *rtc_dev = rtc->rtc_dev; 136 struct rtc_task *irq_task; 137 unsigned int tmp, pending; 138 139 tmp = readb(rtc->regbase + RCR2); 140 pending = tmp & RCR2_PEF; 141 tmp &= ~RCR2_PEF; 142 writeb(tmp, rtc->regbase + RCR2); 143 144 if (!pending) 145 return 0; 146 147 /* Half period enabled than one skipped and the next notified */ 148 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 149 rtc->periodic_freq &= ~PF_COUNT; 150 else { 151 if (rtc->periodic_freq & PF_HP) 152 rtc->periodic_freq |= PF_COUNT; 153 if (rtc->periodic_freq & PF_KOU) { 154 spin_lock(&rtc_dev->irq_task_lock); 155 irq_task = rtc_dev->irq_task; 156 if (irq_task) 157 irq_task->func(irq_task->private_data); 158 spin_unlock(&rtc_dev->irq_task_lock); 159 } else 160 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 161 } 162 163 return pending; 164 } 165 166 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 167 { 168 struct sh_rtc *rtc = dev_id; 169 int ret; 170 171 spin_lock(&rtc->lock); 172 ret = __sh_rtc_interrupt(rtc); 173 spin_unlock(&rtc->lock); 174 175 return IRQ_RETVAL(ret); 176 } 177 178 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 179 { 180 struct sh_rtc *rtc = dev_id; 181 int ret; 182 183 spin_lock(&rtc->lock); 184 ret = __sh_rtc_alarm(rtc); 185 spin_unlock(&rtc->lock); 186 187 return IRQ_RETVAL(ret); 188 } 189 190 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 191 { 192 struct sh_rtc *rtc = dev_id; 193 int ret; 194 195 spin_lock(&rtc->lock); 196 ret = __sh_rtc_periodic(rtc); 197 spin_unlock(&rtc->lock); 198 199 return IRQ_RETVAL(ret); 200 } 201 202 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 203 { 204 struct sh_rtc *rtc = dev_id; 205 int ret; 206 207 spin_lock(&rtc->lock); 208 ret = __sh_rtc_interrupt(rtc); 209 ret |= __sh_rtc_alarm(rtc); 210 ret |= __sh_rtc_periodic(rtc); 211 spin_unlock(&rtc->lock); 212 213 return IRQ_RETVAL(ret); 214 } 215 216 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable) 217 { 218 struct sh_rtc *rtc = dev_get_drvdata(dev); 219 unsigned int tmp; 220 221 spin_lock_irq(&rtc->lock); 222 223 tmp = readb(rtc->regbase + RCR2); 224 225 if (enable) { 226 tmp &= ~RCR2_PEF; /* Clear PES bit */ 227 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 228 } else 229 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 230 231 writeb(tmp, rtc->regbase + RCR2); 232 233 spin_unlock_irq(&rtc->lock); 234 } 235 236 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq) 237 { 238 struct sh_rtc *rtc = dev_get_drvdata(dev); 239 int tmp, ret = 0; 240 241 spin_lock_irq(&rtc->lock); 242 tmp = rtc->periodic_freq & PF_MASK; 243 244 switch (freq) { 245 case 0: 246 rtc->periodic_freq = 0x00; 247 break; 248 case 1: 249 rtc->periodic_freq = 0x60; 250 break; 251 case 2: 252 rtc->periodic_freq = 0x50; 253 break; 254 case 4: 255 rtc->periodic_freq = 0x40; 256 break; 257 case 8: 258 rtc->periodic_freq = 0x30 | PF_HP; 259 break; 260 case 16: 261 rtc->periodic_freq = 0x30; 262 break; 263 case 32: 264 rtc->periodic_freq = 0x20 | PF_HP; 265 break; 266 case 64: 267 rtc->periodic_freq = 0x20; 268 break; 269 case 128: 270 rtc->periodic_freq = 0x10 | PF_HP; 271 break; 272 case 256: 273 rtc->periodic_freq = 0x10; 274 break; 275 default: 276 ret = -ENOTSUPP; 277 } 278 279 if (ret == 0) { 280 rtc->periodic_freq |= tmp; 281 rtc->rtc_dev->irq_freq = freq; 282 } 283 284 spin_unlock_irq(&rtc->lock); 285 return ret; 286 } 287 288 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 289 { 290 struct sh_rtc *rtc = dev_get_drvdata(dev); 291 unsigned int tmp; 292 293 spin_lock_irq(&rtc->lock); 294 295 tmp = readb(rtc->regbase + RCR1); 296 297 if (!enable) 298 tmp &= ~RCR1_AIE; 299 else 300 tmp |= RCR1_AIE; 301 302 writeb(tmp, rtc->regbase + RCR1); 303 304 spin_unlock_irq(&rtc->lock); 305 } 306 307 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 308 { 309 struct sh_rtc *rtc = dev_get_drvdata(dev); 310 unsigned int tmp; 311 312 tmp = readb(rtc->regbase + RCR1); 313 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 314 315 tmp = readb(rtc->regbase + RCR2); 316 seq_printf(seq, "periodic_IRQ\t: %s\n", 317 (tmp & RCR2_PESMASK) ? "yes" : "no"); 318 319 return 0; 320 } 321 322 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 323 { 324 struct sh_rtc *rtc = dev_get_drvdata(dev); 325 unsigned int ret = 0; 326 327 switch (cmd) { 328 case RTC_PIE_OFF: 329 case RTC_PIE_ON: 330 sh_rtc_setpie(dev, cmd == RTC_PIE_ON); 331 break; 332 case RTC_AIE_OFF: 333 case RTC_AIE_ON: 334 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 335 break; 336 case RTC_UIE_OFF: 337 rtc->periodic_freq &= ~PF_OXS; 338 break; 339 case RTC_UIE_ON: 340 rtc->periodic_freq |= PF_OXS; 341 break; 342 case RTC_IRQP_READ: 343 ret = put_user(rtc->rtc_dev->irq_freq, 344 (unsigned long __user *)arg); 345 break; 346 case RTC_IRQP_SET: 347 ret = sh_rtc_setfreq(dev, arg); 348 break; 349 default: 350 ret = -ENOIOCTLCMD; 351 } 352 353 return ret; 354 } 355 356 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 357 { 358 struct platform_device *pdev = to_platform_device(dev); 359 struct sh_rtc *rtc = platform_get_drvdata(pdev); 360 unsigned int sec128, sec2, yr, yr100, cf_bit; 361 362 do { 363 unsigned int tmp; 364 365 spin_lock_irq(&rtc->lock); 366 367 tmp = readb(rtc->regbase + RCR1); 368 tmp &= ~RCR1_CF; /* Clear CF-bit */ 369 tmp |= RCR1_CIE; 370 writeb(tmp, rtc->regbase + RCR1); 371 372 sec128 = readb(rtc->regbase + R64CNT); 373 374 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 375 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 376 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 377 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 378 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 379 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 380 381 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 382 yr = readw(rtc->regbase + RYRCNT); 383 yr100 = bcd2bin(yr >> 8); 384 yr &= 0xff; 385 } else { 386 yr = readb(rtc->regbase + RYRCNT); 387 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 388 } 389 390 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 391 392 sec2 = readb(rtc->regbase + R64CNT); 393 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 394 395 spin_unlock_irq(&rtc->lock); 396 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 397 398 #if RTC_BIT_INVERTED != 0 399 if ((sec128 & RTC_BIT_INVERTED)) 400 tm->tm_sec--; 401 #endif 402 403 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 404 "mday=%d, mon=%d, year=%d, wday=%d\n", 405 __func__, 406 tm->tm_sec, tm->tm_min, tm->tm_hour, 407 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 408 409 if (rtc_valid_tm(tm) < 0) { 410 dev_err(dev, "invalid date\n"); 411 rtc_time_to_tm(0, tm); 412 } 413 414 return 0; 415 } 416 417 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 418 { 419 struct platform_device *pdev = to_platform_device(dev); 420 struct sh_rtc *rtc = platform_get_drvdata(pdev); 421 unsigned int tmp; 422 int year; 423 424 spin_lock_irq(&rtc->lock); 425 426 /* Reset pre-scaler & stop RTC */ 427 tmp = readb(rtc->regbase + RCR2); 428 tmp |= RCR2_RESET; 429 tmp &= ~RCR2_START; 430 writeb(tmp, rtc->regbase + RCR2); 431 432 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 433 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 434 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 435 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 436 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 437 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 438 439 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 440 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 441 bin2bcd(tm->tm_year % 100); 442 writew(year, rtc->regbase + RYRCNT); 443 } else { 444 year = tm->tm_year % 100; 445 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 446 } 447 448 /* Start RTC */ 449 tmp = readb(rtc->regbase + RCR2); 450 tmp &= ~RCR2_RESET; 451 tmp |= RCR2_RTCEN | RCR2_START; 452 writeb(tmp, rtc->regbase + RCR2); 453 454 spin_unlock_irq(&rtc->lock); 455 456 return 0; 457 } 458 459 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 460 { 461 unsigned int byte; 462 int value = 0xff; /* return 0xff for ignored values */ 463 464 byte = readb(rtc->regbase + reg_off); 465 if (byte & AR_ENB) { 466 byte &= ~AR_ENB; /* strip the enable bit */ 467 value = bcd2bin(byte); 468 } 469 470 return value; 471 } 472 473 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 474 { 475 struct platform_device *pdev = to_platform_device(dev); 476 struct sh_rtc *rtc = platform_get_drvdata(pdev); 477 struct rtc_time *tm = &wkalrm->time; 478 479 spin_lock_irq(&rtc->lock); 480 481 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 482 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 483 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 484 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 485 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 486 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 487 if (tm->tm_mon > 0) 488 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 489 tm->tm_year = 0xffff; 490 491 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 492 493 spin_unlock_irq(&rtc->lock); 494 495 return 0; 496 } 497 498 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 499 int value, int reg_off) 500 { 501 /* < 0 for a value that is ignored */ 502 if (value < 0) 503 writeb(0, rtc->regbase + reg_off); 504 else 505 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 506 } 507 508 static int sh_rtc_check_alarm(struct rtc_time *tm) 509 { 510 /* 511 * The original rtc says anything > 0xc0 is "don't care" or "match 512 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 513 * The original rtc doesn't support years - some things use -1 and 514 * some 0xffff. We use -1 to make out tests easier. 515 */ 516 if (tm->tm_year == 0xffff) 517 tm->tm_year = -1; 518 if (tm->tm_mon >= 0xff) 519 tm->tm_mon = -1; 520 if (tm->tm_mday >= 0xff) 521 tm->tm_mday = -1; 522 if (tm->tm_wday >= 0xff) 523 tm->tm_wday = -1; 524 if (tm->tm_hour >= 0xff) 525 tm->tm_hour = -1; 526 if (tm->tm_min >= 0xff) 527 tm->tm_min = -1; 528 if (tm->tm_sec >= 0xff) 529 tm->tm_sec = -1; 530 531 if (tm->tm_year > 9999 || 532 tm->tm_mon >= 12 || 533 tm->tm_mday == 0 || tm->tm_mday >= 32 || 534 tm->tm_wday >= 7 || 535 tm->tm_hour >= 24 || 536 tm->tm_min >= 60 || 537 tm->tm_sec >= 60) 538 return -EINVAL; 539 540 return 0; 541 } 542 543 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 544 { 545 struct platform_device *pdev = to_platform_device(dev); 546 struct sh_rtc *rtc = platform_get_drvdata(pdev); 547 unsigned int rcr1; 548 struct rtc_time *tm = &wkalrm->time; 549 int mon, err; 550 551 err = sh_rtc_check_alarm(tm); 552 if (unlikely(err < 0)) 553 return err; 554 555 spin_lock_irq(&rtc->lock); 556 557 /* disable alarm interrupt and clear the alarm flag */ 558 rcr1 = readb(rtc->regbase + RCR1); 559 rcr1 &= ~(RCR1_AF | RCR1_AIE); 560 writeb(rcr1, rtc->regbase + RCR1); 561 562 /* set alarm time */ 563 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 564 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 565 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 566 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 567 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 568 mon = tm->tm_mon; 569 if (mon >= 0) 570 mon += 1; 571 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 572 573 if (wkalrm->enabled) { 574 rcr1 |= RCR1_AIE; 575 writeb(rcr1, rtc->regbase + RCR1); 576 } 577 578 spin_unlock_irq(&rtc->lock); 579 580 return 0; 581 } 582 583 static int sh_rtc_irq_set_state(struct device *dev, int enabled) 584 { 585 struct platform_device *pdev = to_platform_device(dev); 586 struct sh_rtc *rtc = platform_get_drvdata(pdev); 587 588 if (enabled) { 589 rtc->periodic_freq |= PF_KOU; 590 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0); 591 } else { 592 rtc->periodic_freq &= ~PF_KOU; 593 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0); 594 } 595 } 596 597 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 598 { 599 if (!is_power_of_2(freq)) 600 return -EINVAL; 601 return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq); 602 } 603 604 static struct rtc_class_ops sh_rtc_ops = { 605 .ioctl = sh_rtc_ioctl, 606 .read_time = sh_rtc_read_time, 607 .set_time = sh_rtc_set_time, 608 .read_alarm = sh_rtc_read_alarm, 609 .set_alarm = sh_rtc_set_alarm, 610 .irq_set_state = sh_rtc_irq_set_state, 611 .irq_set_freq = sh_rtc_irq_set_freq, 612 .proc = sh_rtc_proc, 613 }; 614 615 static int __devinit sh_rtc_probe(struct platform_device *pdev) 616 { 617 struct sh_rtc *rtc; 618 struct resource *res; 619 unsigned int tmp; 620 int ret; 621 622 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 623 if (unlikely(!rtc)) 624 return -ENOMEM; 625 626 spin_lock_init(&rtc->lock); 627 628 /* get periodic/carry/alarm irqs */ 629 ret = platform_get_irq(pdev, 0); 630 if (unlikely(ret <= 0)) { 631 ret = -ENOENT; 632 dev_err(&pdev->dev, "No IRQ resource\n"); 633 goto err_badres; 634 } 635 rtc->periodic_irq = ret; 636 rtc->carry_irq = platform_get_irq(pdev, 1); 637 rtc->alarm_irq = platform_get_irq(pdev, 2); 638 639 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 640 if (unlikely(res == NULL)) { 641 ret = -ENOENT; 642 dev_err(&pdev->dev, "No IO resource\n"); 643 goto err_badres; 644 } 645 646 rtc->regsize = res->end - res->start + 1; 647 648 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 649 if (unlikely(!rtc->res)) { 650 ret = -EBUSY; 651 goto err_badres; 652 } 653 654 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize); 655 if (unlikely(!rtc->regbase)) { 656 ret = -EINVAL; 657 goto err_badmap; 658 } 659 660 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 661 &sh_rtc_ops, THIS_MODULE); 662 if (IS_ERR(rtc->rtc_dev)) { 663 ret = PTR_ERR(rtc->rtc_dev); 664 goto err_unmap; 665 } 666 667 rtc->capabilities = RTC_DEF_CAPABILITIES; 668 if (pdev->dev.platform_data) { 669 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 670 671 /* 672 * Some CPUs have special capabilities in addition to the 673 * default set. Add those in here. 674 */ 675 rtc->capabilities |= pinfo->capabilities; 676 } 677 678 rtc->rtc_dev->max_user_freq = 256; 679 rtc->rtc_dev->irq_freq = 1; 680 rtc->periodic_freq = 0x60; 681 682 platform_set_drvdata(pdev, rtc); 683 684 if (rtc->carry_irq <= 0) { 685 /* register shared periodic/carry/alarm irq */ 686 ret = request_irq(rtc->periodic_irq, sh_rtc_shared, 687 IRQF_DISABLED, "sh-rtc", rtc); 688 if (unlikely(ret)) { 689 dev_err(&pdev->dev, 690 "request IRQ failed with %d, IRQ %d\n", ret, 691 rtc->periodic_irq); 692 goto err_unmap; 693 } 694 } else { 695 /* register periodic/carry/alarm irqs */ 696 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, 697 IRQF_DISABLED, "sh-rtc period", rtc); 698 if (unlikely(ret)) { 699 dev_err(&pdev->dev, 700 "request period IRQ failed with %d, IRQ %d\n", 701 ret, rtc->periodic_irq); 702 goto err_unmap; 703 } 704 705 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, 706 IRQF_DISABLED, "sh-rtc carry", rtc); 707 if (unlikely(ret)) { 708 dev_err(&pdev->dev, 709 "request carry IRQ failed with %d, IRQ %d\n", 710 ret, rtc->carry_irq); 711 free_irq(rtc->periodic_irq, rtc); 712 goto err_unmap; 713 } 714 715 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, 716 IRQF_DISABLED, "sh-rtc alarm", rtc); 717 if (unlikely(ret)) { 718 dev_err(&pdev->dev, 719 "request alarm IRQ failed with %d, IRQ %d\n", 720 ret, rtc->alarm_irq); 721 free_irq(rtc->carry_irq, rtc); 722 free_irq(rtc->periodic_irq, rtc); 723 goto err_unmap; 724 } 725 } 726 727 tmp = readb(rtc->regbase + RCR1); 728 tmp &= ~RCR1_CF; 729 tmp |= RCR1_CIE; 730 writeb(tmp, rtc->regbase + RCR1); 731 732 return 0; 733 734 err_unmap: 735 iounmap(rtc->regbase); 736 err_badmap: 737 release_resource(rtc->res); 738 err_badres: 739 kfree(rtc); 740 741 return ret; 742 } 743 744 static int __devexit sh_rtc_remove(struct platform_device *pdev) 745 { 746 struct sh_rtc *rtc = platform_get_drvdata(pdev); 747 748 if (likely(rtc->rtc_dev)) 749 rtc_device_unregister(rtc->rtc_dev); 750 751 sh_rtc_setpie(&pdev->dev, 0); 752 sh_rtc_setaie(&pdev->dev, 0); 753 754 free_irq(rtc->periodic_irq, rtc); 755 if (rtc->carry_irq > 0) { 756 free_irq(rtc->carry_irq, rtc); 757 free_irq(rtc->alarm_irq, rtc); 758 } 759 760 release_resource(rtc->res); 761 762 iounmap(rtc->regbase); 763 764 platform_set_drvdata(pdev, NULL); 765 766 kfree(rtc); 767 768 return 0; 769 } 770 static struct platform_driver sh_rtc_platform_driver = { 771 .driver = { 772 .name = DRV_NAME, 773 .owner = THIS_MODULE, 774 }, 775 .probe = sh_rtc_probe, 776 .remove = __devexit_p(sh_rtc_remove), 777 }; 778 779 static int __init sh_rtc_init(void) 780 { 781 return platform_driver_register(&sh_rtc_platform_driver); 782 } 783 784 static void __exit sh_rtc_exit(void) 785 { 786 platform_driver_unregister(&sh_rtc_platform_driver); 787 } 788 789 module_init(sh_rtc_init); 790 module_exit(sh_rtc_exit); 791 792 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 793 MODULE_VERSION(DRV_VERSION); 794 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 795 "Jamie Lenehan <lenehan@twibble.org>, " 796 "Angelo Castello <angelo.castello@st.com>"); 797 MODULE_LICENSE("GPL"); 798 MODULE_ALIAS("platform:" DRV_NAME); 799