xref: /linux/drivers/rtc/rtc-sh.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006, 2007, 2008  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <asm/rtc.h>
28 
29 #define DRV_NAME	"sh-rtc"
30 #define DRV_VERSION	"0.2.0"
31 
32 #define RTC_REG(r)	((r) * rtc_reg_size)
33 
34 #define R64CNT		RTC_REG(0)
35 
36 #define RSECCNT		RTC_REG(1)	/* RTC sec */
37 #define RMINCNT		RTC_REG(2)	/* RTC min */
38 #define RHRCNT		RTC_REG(3)	/* RTC hour */
39 #define RWKCNT		RTC_REG(4)	/* RTC week */
40 #define RDAYCNT		RTC_REG(5)	/* RTC day */
41 #define RMONCNT		RTC_REG(6)	/* RTC month */
42 #define RYRCNT		RTC_REG(7)	/* RTC year */
43 #define RSECAR		RTC_REG(8)	/* ALARM sec */
44 #define RMINAR		RTC_REG(9)	/* ALARM min */
45 #define RHRAR		RTC_REG(10)	/* ALARM hour */
46 #define RWKAR		RTC_REG(11)	/* ALARM week */
47 #define RDAYAR		RTC_REG(12)	/* ALARM day */
48 #define RMONAR		RTC_REG(13)	/* ALARM month */
49 #define RCR1		RTC_REG(14)	/* Control */
50 #define RCR2		RTC_REG(15)	/* Control */
51 
52 /*
53  * Note on RYRAR and RCR3: Up until this point most of the register
54  * definitions are consistent across all of the available parts. However,
55  * the placement of the optional RYRAR and RCR3 (the RYRAR control
56  * register used to control RYRCNT/RYRAR compare) varies considerably
57  * across various parts, occasionally being mapped in to a completely
58  * unrelated address space. For proper RYRAR support a separate resource
59  * would have to be handed off, but as this is purely optional in
60  * practice, we simply opt not to support it, thereby keeping the code
61  * quite a bit more simplified.
62  */
63 
64 /* ALARM Bits - or with BCD encoded value */
65 #define AR_ENB		0x80	/* Enable for alarm cmp   */
66 
67 /* Period Bits */
68 #define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
69 #define PF_COUNT	0x200	/* Half periodic counter */
70 #define PF_OXS		0x400	/* Periodic One x Second */
71 #define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
72 #define PF_MASK		0xf00
73 
74 /* RCR1 Bits */
75 #define RCR1_CF		0x80	/* Carry Flag             */
76 #define RCR1_CIE	0x10	/* Carry Interrupt Enable */
77 #define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
78 #define RCR1_AF		0x01	/* Alarm Flag             */
79 
80 /* RCR2 Bits */
81 #define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
82 #define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
83 #define RCR2_RTCEN	0x08	/* ENable RTC              */
84 #define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
85 #define RCR2_RESET	0x02	/* Reset bit               */
86 #define RCR2_START	0x01	/* Start bit               */
87 
88 struct sh_rtc {
89 	void __iomem *regbase;
90 	unsigned long regsize;
91 	struct resource *res;
92 	unsigned int alarm_irq, periodic_irq, carry_irq;
93 	struct rtc_device *rtc_dev;
94 	spinlock_t lock;
95 	unsigned long capabilities;	/* See asm-sh/rtc.h for cap bits */
96 	unsigned short periodic_freq;
97 };
98 
99 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
100 {
101 	struct sh_rtc *rtc = dev_id;
102 	unsigned int tmp;
103 
104 	spin_lock(&rtc->lock);
105 
106 	tmp = readb(rtc->regbase + RCR1);
107 	tmp &= ~RCR1_CF;
108 	writeb(tmp, rtc->regbase + RCR1);
109 
110 	/* Users have requested One x Second IRQ */
111 	if (rtc->periodic_freq & PF_OXS)
112 		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
113 
114 	spin_unlock(&rtc->lock);
115 
116 	return IRQ_HANDLED;
117 }
118 
119 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
120 {
121 	struct sh_rtc *rtc = dev_id;
122 	unsigned int tmp;
123 
124 	spin_lock(&rtc->lock);
125 
126 	tmp = readb(rtc->regbase + RCR1);
127 	tmp &= ~(RCR1_AF | RCR1_AIE);
128 		writeb(tmp, rtc->regbase + RCR1);
129 
130 	rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131 
132 	spin_unlock(&rtc->lock);
133 
134 	return IRQ_HANDLED;
135 }
136 
137 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
138 {
139 	struct sh_rtc *rtc = dev_id;
140 	struct rtc_device *rtc_dev = rtc->rtc_dev;
141 	unsigned int tmp;
142 
143 	spin_lock(&rtc->lock);
144 
145 	tmp = readb(rtc->regbase + RCR2);
146 	tmp &= ~RCR2_PEF;
147 	writeb(tmp, rtc->regbase + RCR2);
148 
149 	/* Half period enabled than one skipped and the next notified */
150 	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 		rtc->periodic_freq &= ~PF_COUNT;
152 	else {
153 		if (rtc->periodic_freq & PF_HP)
154 			rtc->periodic_freq |= PF_COUNT;
155 		if (rtc->periodic_freq & PF_KOU) {
156 			spin_lock(&rtc_dev->irq_task_lock);
157 			if (rtc_dev->irq_task)
158 				rtc_dev->irq_task->func(rtc_dev->irq_task->private_data);
159 			spin_unlock(&rtc_dev->irq_task_lock);
160 		} else
161 			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
162 	}
163 
164 	spin_unlock(&rtc->lock);
165 
166 	return IRQ_HANDLED;
167 }
168 
169 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
170 {
171 	struct sh_rtc *rtc = dev_get_drvdata(dev);
172 	unsigned int tmp;
173 
174 	spin_lock_irq(&rtc->lock);
175 
176 	tmp = readb(rtc->regbase + RCR2);
177 
178 	if (enable) {
179 		tmp &= ~RCR2_PEF;	/* Clear PES bit */
180 		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
181 	} else
182 		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
183 
184 	writeb(tmp, rtc->regbase + RCR2);
185 
186 	spin_unlock_irq(&rtc->lock);
187 }
188 
189 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
190 {
191 	struct sh_rtc *rtc = dev_get_drvdata(dev);
192 	int tmp, ret = 0;
193 
194 	spin_lock_irq(&rtc->lock);
195 	tmp = rtc->periodic_freq & PF_MASK;
196 
197 	switch (freq) {
198 	case 0:
199 		rtc->periodic_freq = 0x00;
200 		break;
201 	case 1:
202 		rtc->periodic_freq = 0x60;
203 		break;
204 	case 2:
205 		rtc->periodic_freq = 0x50;
206 		break;
207 	case 4:
208 		rtc->periodic_freq = 0x40;
209 		break;
210 	case 8:
211 		rtc->periodic_freq = 0x30 | PF_HP;
212 		break;
213 	case 16:
214 		rtc->periodic_freq = 0x30;
215 		break;
216 	case 32:
217 		rtc->periodic_freq = 0x20 | PF_HP;
218 		break;
219 	case 64:
220 		rtc->periodic_freq = 0x20;
221 		break;
222 	case 128:
223 		rtc->periodic_freq = 0x10 | PF_HP;
224 		break;
225 	case 256:
226 		rtc->periodic_freq = 0x10;
227 		break;
228 	default:
229 		ret = -ENOTSUPP;
230 	}
231 
232 	if (ret == 0) {
233 		rtc->periodic_freq |= tmp;
234 		rtc->rtc_dev->irq_freq = freq;
235 	}
236 
237 	spin_unlock_irq(&rtc->lock);
238 	return ret;
239 }
240 
241 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
242 {
243 	struct sh_rtc *rtc = dev_get_drvdata(dev);
244 	unsigned int tmp;
245 
246 	spin_lock_irq(&rtc->lock);
247 
248 	tmp = readb(rtc->regbase + RCR1);
249 
250 	if (!enable)
251 		tmp &= ~RCR1_AIE;
252 	else
253 		tmp |= RCR1_AIE;
254 
255 	writeb(tmp, rtc->regbase + RCR1);
256 
257 	spin_unlock_irq(&rtc->lock);
258 }
259 
260 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
261 {
262 	struct sh_rtc *rtc = dev_get_drvdata(dev);
263 	unsigned int tmp;
264 
265 	tmp = readb(rtc->regbase + RCR1);
266 	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
267 
268 	tmp = readb(rtc->regbase + RCR2);
269 	seq_printf(seq, "periodic_IRQ\t: %s\n",
270 		   (tmp & RCR2_PESMASK) ? "yes" : "no");
271 
272 	return 0;
273 }
274 
275 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
276 {
277 	struct sh_rtc *rtc = dev_get_drvdata(dev);
278 	unsigned int ret = 0;
279 
280 	switch (cmd) {
281 	case RTC_PIE_OFF:
282 	case RTC_PIE_ON:
283 		sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
284 		break;
285 	case RTC_AIE_OFF:
286 	case RTC_AIE_ON:
287 		sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
288 		break;
289 	case RTC_UIE_OFF:
290 		rtc->periodic_freq &= ~PF_OXS;
291 		break;
292 	case RTC_UIE_ON:
293 		rtc->periodic_freq |= PF_OXS;
294 		break;
295 	case RTC_IRQP_READ:
296 		ret = put_user(rtc->rtc_dev->irq_freq,
297 			       (unsigned long __user *)arg);
298 		break;
299 	case RTC_IRQP_SET:
300 		ret = sh_rtc_setfreq(dev, arg);
301 		break;
302 	default:
303 		ret = -ENOIOCTLCMD;
304 	}
305 
306 	return ret;
307 }
308 
309 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
310 {
311 	struct platform_device *pdev = to_platform_device(dev);
312 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
313 	unsigned int sec128, sec2, yr, yr100, cf_bit;
314 
315 	do {
316 		unsigned int tmp;
317 
318 		spin_lock_irq(&rtc->lock);
319 
320 		tmp = readb(rtc->regbase + RCR1);
321 		tmp &= ~RCR1_CF; /* Clear CF-bit */
322 		tmp |= RCR1_CIE;
323 		writeb(tmp, rtc->regbase + RCR1);
324 
325 		sec128 = readb(rtc->regbase + R64CNT);
326 
327 		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
328 		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
329 		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
330 		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
331 		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
332 		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
333 
334 		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
335 			yr  = readw(rtc->regbase + RYRCNT);
336 			yr100 = bcd2bin(yr >> 8);
337 			yr &= 0xff;
338 		} else {
339 			yr  = readb(rtc->regbase + RYRCNT);
340 			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
341 		}
342 
343 		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
344 
345 		sec2 = readb(rtc->regbase + R64CNT);
346 		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
347 
348 		spin_unlock_irq(&rtc->lock);
349 	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
350 
351 #if RTC_BIT_INVERTED != 0
352 	if ((sec128 & RTC_BIT_INVERTED))
353 		tm->tm_sec--;
354 #endif
355 
356 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
357 		"mday=%d, mon=%d, year=%d, wday=%d\n",
358 		__func__,
359 		tm->tm_sec, tm->tm_min, tm->tm_hour,
360 		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
361 
362 	if (rtc_valid_tm(tm) < 0) {
363 		dev_err(dev, "invalid date\n");
364 		rtc_time_to_tm(0, tm);
365 	}
366 
367 	return 0;
368 }
369 
370 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
371 {
372 	struct platform_device *pdev = to_platform_device(dev);
373 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
374 	unsigned int tmp;
375 	int year;
376 
377 	spin_lock_irq(&rtc->lock);
378 
379 	/* Reset pre-scaler & stop RTC */
380 	tmp = readb(rtc->regbase + RCR2);
381 	tmp |= RCR2_RESET;
382 	tmp &= ~RCR2_START;
383 	writeb(tmp, rtc->regbase + RCR2);
384 
385 	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
386 	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
387 	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
388 	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
389 	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
390 	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
391 
392 	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
393 		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
394 			bin2bcd(tm->tm_year % 100);
395 		writew(year, rtc->regbase + RYRCNT);
396 	} else {
397 		year = tm->tm_year % 100;
398 		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
399 	}
400 
401 	/* Start RTC */
402 	tmp = readb(rtc->regbase + RCR2);
403 	tmp &= ~RCR2_RESET;
404 	tmp |= RCR2_RTCEN | RCR2_START;
405 	writeb(tmp, rtc->regbase + RCR2);
406 
407 	spin_unlock_irq(&rtc->lock);
408 
409 	return 0;
410 }
411 
412 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
413 {
414 	unsigned int byte;
415 	int value = 0xff;	/* return 0xff for ignored values */
416 
417 	byte = readb(rtc->regbase + reg_off);
418 	if (byte & AR_ENB) {
419 		byte &= ~AR_ENB;	/* strip the enable bit */
420 		value = bcd2bin(byte);
421 	}
422 
423 	return value;
424 }
425 
426 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
427 {
428 	struct platform_device *pdev = to_platform_device(dev);
429 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
430 	struct rtc_time *tm = &wkalrm->time;
431 
432 	spin_lock_irq(&rtc->lock);
433 
434 	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
435 	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
436 	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
437 	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
438 	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
439 	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
440 	if (tm->tm_mon > 0)
441 		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
442 	tm->tm_year     = 0xffff;
443 
444 	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
445 
446 	spin_unlock_irq(&rtc->lock);
447 
448 	return 0;
449 }
450 
451 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
452 					    int value, int reg_off)
453 {
454 	/* < 0 for a value that is ignored */
455 	if (value < 0)
456 		writeb(0, rtc->regbase + reg_off);
457 	else
458 		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
459 }
460 
461 static int sh_rtc_check_alarm(struct rtc_time *tm)
462 {
463 	/*
464 	 * The original rtc says anything > 0xc0 is "don't care" or "match
465 	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
466 	 * The original rtc doesn't support years - some things use -1 and
467 	 * some 0xffff. We use -1 to make out tests easier.
468 	 */
469 	if (tm->tm_year == 0xffff)
470 		tm->tm_year = -1;
471 	if (tm->tm_mon >= 0xff)
472 		tm->tm_mon = -1;
473 	if (tm->tm_mday >= 0xff)
474 		tm->tm_mday = -1;
475 	if (tm->tm_wday >= 0xff)
476 		tm->tm_wday = -1;
477 	if (tm->tm_hour >= 0xff)
478 		tm->tm_hour = -1;
479 	if (tm->tm_min >= 0xff)
480 		tm->tm_min = -1;
481 	if (tm->tm_sec >= 0xff)
482 		tm->tm_sec = -1;
483 
484 	if (tm->tm_year > 9999 ||
485 		tm->tm_mon >= 12 ||
486 		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
487 		tm->tm_wday >= 7 ||
488 		tm->tm_hour >= 24 ||
489 		tm->tm_min >= 60 ||
490 		tm->tm_sec >= 60)
491 		return -EINVAL;
492 
493 	return 0;
494 }
495 
496 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
497 {
498 	struct platform_device *pdev = to_platform_device(dev);
499 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
500 	unsigned int rcr1;
501 	struct rtc_time *tm = &wkalrm->time;
502 	int mon, err;
503 
504 	err = sh_rtc_check_alarm(tm);
505 	if (unlikely(err < 0))
506 		return err;
507 
508 	spin_lock_irq(&rtc->lock);
509 
510 	/* disable alarm interrupt and clear the alarm flag */
511 	rcr1 = readb(rtc->regbase + RCR1);
512 	rcr1 &= ~(RCR1_AF | RCR1_AIE);
513 	writeb(rcr1, rtc->regbase + RCR1);
514 
515 	/* set alarm time */
516 	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
517 	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
518 	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
519 	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
520 	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
521 	mon = tm->tm_mon;
522 	if (mon >= 0)
523 		mon += 1;
524 	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
525 
526 	if (wkalrm->enabled) {
527 		rcr1 |= RCR1_AIE;
528 		writeb(rcr1, rtc->regbase + RCR1);
529 	}
530 
531 	spin_unlock_irq(&rtc->lock);
532 
533 	return 0;
534 }
535 
536 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
537 {
538 	struct platform_device *pdev = to_platform_device(dev);
539 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
540 
541 	if (enabled) {
542 		rtc->periodic_freq |= PF_KOU;
543 		return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
544 	} else {
545 		rtc->periodic_freq &= ~PF_KOU;
546 		return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
547 	}
548 }
549 
550 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
551 {
552 	return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
553 }
554 
555 static struct rtc_class_ops sh_rtc_ops = {
556 	.ioctl		= sh_rtc_ioctl,
557 	.read_time	= sh_rtc_read_time,
558 	.set_time	= sh_rtc_set_time,
559 	.read_alarm	= sh_rtc_read_alarm,
560 	.set_alarm	= sh_rtc_set_alarm,
561 	.irq_set_state	= sh_rtc_irq_set_state,
562 	.irq_set_freq	= sh_rtc_irq_set_freq,
563 	.proc		= sh_rtc_proc,
564 };
565 
566 static int __devinit sh_rtc_probe(struct platform_device *pdev)
567 {
568 	struct sh_rtc *rtc;
569 	struct resource *res;
570 	unsigned int tmp;
571 	int ret;
572 
573 	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
574 	if (unlikely(!rtc))
575 		return -ENOMEM;
576 
577 	spin_lock_init(&rtc->lock);
578 
579 	/* get periodic/carry/alarm irqs */
580 	ret = platform_get_irq(pdev, 0);
581 	if (unlikely(ret < 0)) {
582 		ret = -ENOENT;
583 		dev_err(&pdev->dev, "No IRQ for period\n");
584 		goto err_badres;
585 	}
586 	rtc->periodic_irq = ret;
587 
588 	ret = platform_get_irq(pdev, 1);
589 	if (unlikely(ret < 0)) {
590 		ret = -ENOENT;
591 		dev_err(&pdev->dev, "No IRQ for carry\n");
592 		goto err_badres;
593 	}
594 	rtc->carry_irq = ret;
595 
596 	ret = platform_get_irq(pdev, 2);
597 	if (unlikely(ret < 0)) {
598 		ret = -ENOENT;
599 		dev_err(&pdev->dev, "No IRQ for alarm\n");
600 		goto err_badres;
601 	}
602 	rtc->alarm_irq = ret;
603 
604 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
605 	if (unlikely(res == NULL)) {
606 		ret = -ENOENT;
607 		dev_err(&pdev->dev, "No IO resource\n");
608 		goto err_badres;
609 	}
610 
611 	rtc->regsize = res->end - res->start + 1;
612 
613 	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
614 	if (unlikely(!rtc->res)) {
615 		ret = -EBUSY;
616 		goto err_badres;
617 	}
618 
619 	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
620 	if (unlikely(!rtc->regbase)) {
621 		ret = -EINVAL;
622 		goto err_badmap;
623 	}
624 
625 	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
626 					   &sh_rtc_ops, THIS_MODULE);
627 	if (IS_ERR(rtc->rtc_dev)) {
628 		ret = PTR_ERR(rtc->rtc_dev);
629 		goto err_unmap;
630 	}
631 
632 	rtc->capabilities = RTC_DEF_CAPABILITIES;
633 	if (pdev->dev.platform_data) {
634 		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
635 
636 		/*
637 		 * Some CPUs have special capabilities in addition to the
638 		 * default set. Add those in here.
639 		 */
640 		rtc->capabilities |= pinfo->capabilities;
641 	}
642 
643 	rtc->rtc_dev->max_user_freq = 256;
644 	rtc->rtc_dev->irq_freq = 1;
645 	rtc->periodic_freq = 0x60;
646 
647 	platform_set_drvdata(pdev, rtc);
648 
649 	/* register periodic/carry/alarm irqs */
650 	ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
651 			  "sh-rtc period", rtc);
652 	if (unlikely(ret)) {
653 		dev_err(&pdev->dev,
654 			"request period IRQ failed with %d, IRQ %d\n", ret,
655 			rtc->periodic_irq);
656 		goto err_unmap;
657 	}
658 
659 	ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
660 			  "sh-rtc carry", rtc);
661 	if (unlikely(ret)) {
662 		dev_err(&pdev->dev,
663 			"request carry IRQ failed with %d, IRQ %d\n", ret,
664 			rtc->carry_irq);
665 		free_irq(rtc->periodic_irq, rtc);
666 		goto err_unmap;
667 	}
668 
669 	ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
670 			  "sh-rtc alarm", rtc);
671 	if (unlikely(ret)) {
672 		dev_err(&pdev->dev,
673 			"request alarm IRQ failed with %d, IRQ %d\n", ret,
674 			rtc->alarm_irq);
675 		free_irq(rtc->carry_irq, rtc);
676 		free_irq(rtc->periodic_irq, rtc);
677 		goto err_unmap;
678 	}
679 
680 	tmp = readb(rtc->regbase + RCR1);
681 	tmp &= ~RCR1_CF;
682 	tmp |= RCR1_CIE;
683 	writeb(tmp, rtc->regbase + RCR1);
684 
685 	return 0;
686 
687 err_unmap:
688 	iounmap(rtc->regbase);
689 err_badmap:
690 	release_resource(rtc->res);
691 err_badres:
692 	kfree(rtc);
693 
694 	return ret;
695 }
696 
697 static int __devexit sh_rtc_remove(struct platform_device *pdev)
698 {
699 	struct sh_rtc *rtc = platform_get_drvdata(pdev);
700 
701 	if (likely(rtc->rtc_dev))
702 		rtc_device_unregister(rtc->rtc_dev);
703 
704 	sh_rtc_setpie(&pdev->dev, 0);
705 	sh_rtc_setaie(&pdev->dev, 0);
706 
707 	free_irq(rtc->carry_irq, rtc);
708 	free_irq(rtc->periodic_irq, rtc);
709 	free_irq(rtc->alarm_irq, rtc);
710 
711 	release_resource(rtc->res);
712 
713 	iounmap(rtc->regbase);
714 
715 	platform_set_drvdata(pdev, NULL);
716 
717 	kfree(rtc);
718 
719 	return 0;
720 }
721 static struct platform_driver sh_rtc_platform_driver = {
722 	.driver		= {
723 		.name	= DRV_NAME,
724 		.owner	= THIS_MODULE,
725 	},
726 	.probe		= sh_rtc_probe,
727 	.remove		= __devexit_p(sh_rtc_remove),
728 };
729 
730 static int __init sh_rtc_init(void)
731 {
732 	return platform_driver_register(&sh_rtc_platform_driver);
733 }
734 
735 static void __exit sh_rtc_exit(void)
736 {
737 	platform_driver_unregister(&sh_rtc_platform_driver);
738 }
739 
740 module_init(sh_rtc_init);
741 module_exit(sh_rtc_exit);
742 
743 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
744 MODULE_VERSION(DRV_VERSION);
745 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
746 	      "Jamie Lenehan <lenehan@twibble.org>, "
747 	      "Angelo Castello <angelo.castello@st.com>");
748 MODULE_LICENSE("GPL");
749 MODULE_ALIAS("platform:" DRV_NAME);
750