1 /* 2 * SuperH On-Chip RTC Support 3 * 4 * Copyright (C) 2006 - 2009 Paul Mundt 5 * Copyright (C) 2006 Jamie Lenehan 6 * Copyright (C) 2008 Angelo Castello 7 * 8 * Based on the old arch/sh/kernel/cpu/rtc.c by: 9 * 10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> 11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka 12 * 13 * This file is subject to the terms and conditions of the GNU General Public 14 * License. See the file "COPYING" in the main directory of this archive 15 * for more details. 16 */ 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/bcd.h> 20 #include <linux/rtc.h> 21 #include <linux/init.h> 22 #include <linux/platform_device.h> 23 #include <linux/seq_file.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/io.h> 27 #include <linux/log2.h> 28 #include <linux/clk.h> 29 #include <asm/rtc.h> 30 31 #define DRV_NAME "sh-rtc" 32 #define DRV_VERSION "0.2.3" 33 34 #define RTC_REG(r) ((r) * rtc_reg_size) 35 36 #define R64CNT RTC_REG(0) 37 38 #define RSECCNT RTC_REG(1) /* RTC sec */ 39 #define RMINCNT RTC_REG(2) /* RTC min */ 40 #define RHRCNT RTC_REG(3) /* RTC hour */ 41 #define RWKCNT RTC_REG(4) /* RTC week */ 42 #define RDAYCNT RTC_REG(5) /* RTC day */ 43 #define RMONCNT RTC_REG(6) /* RTC month */ 44 #define RYRCNT RTC_REG(7) /* RTC year */ 45 #define RSECAR RTC_REG(8) /* ALARM sec */ 46 #define RMINAR RTC_REG(9) /* ALARM min */ 47 #define RHRAR RTC_REG(10) /* ALARM hour */ 48 #define RWKAR RTC_REG(11) /* ALARM week */ 49 #define RDAYAR RTC_REG(12) /* ALARM day */ 50 #define RMONAR RTC_REG(13) /* ALARM month */ 51 #define RCR1 RTC_REG(14) /* Control */ 52 #define RCR2 RTC_REG(15) /* Control */ 53 54 /* 55 * Note on RYRAR and RCR3: Up until this point most of the register 56 * definitions are consistent across all of the available parts. However, 57 * the placement of the optional RYRAR and RCR3 (the RYRAR control 58 * register used to control RYRCNT/RYRAR compare) varies considerably 59 * across various parts, occasionally being mapped in to a completely 60 * unrelated address space. For proper RYRAR support a separate resource 61 * would have to be handed off, but as this is purely optional in 62 * practice, we simply opt not to support it, thereby keeping the code 63 * quite a bit more simplified. 64 */ 65 66 /* ALARM Bits - or with BCD encoded value */ 67 #define AR_ENB 0x80 /* Enable for alarm cmp */ 68 69 /* Period Bits */ 70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */ 71 #define PF_COUNT 0x200 /* Half periodic counter */ 72 #define PF_OXS 0x400 /* Periodic One x Second */ 73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */ 74 #define PF_MASK 0xf00 75 76 /* RCR1 Bits */ 77 #define RCR1_CF 0x80 /* Carry Flag */ 78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ 79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ 80 #define RCR1_AF 0x01 /* Alarm Flag */ 81 82 /* RCR2 Bits */ 83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ 84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ 85 #define RCR2_RTCEN 0x08 /* ENable RTC */ 86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ 87 #define RCR2_RESET 0x02 /* Reset bit */ 88 #define RCR2_START 0x01 /* Start bit */ 89 90 struct sh_rtc { 91 void __iomem *regbase; 92 unsigned long regsize; 93 struct resource *res; 94 int alarm_irq; 95 int periodic_irq; 96 int carry_irq; 97 struct clk *clk; 98 struct rtc_device *rtc_dev; 99 spinlock_t lock; 100 unsigned long capabilities; /* See asm/rtc.h for cap bits */ 101 unsigned short periodic_freq; 102 }; 103 104 static int __sh_rtc_interrupt(struct sh_rtc *rtc) 105 { 106 unsigned int tmp, pending; 107 108 tmp = readb(rtc->regbase + RCR1); 109 pending = tmp & RCR1_CF; 110 tmp &= ~RCR1_CF; 111 writeb(tmp, rtc->regbase + RCR1); 112 113 /* Users have requested One x Second IRQ */ 114 if (pending && rtc->periodic_freq & PF_OXS) 115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF); 116 117 return pending; 118 } 119 120 static int __sh_rtc_alarm(struct sh_rtc *rtc) 121 { 122 unsigned int tmp, pending; 123 124 tmp = readb(rtc->regbase + RCR1); 125 pending = tmp & RCR1_AF; 126 tmp &= ~(RCR1_AF | RCR1_AIE); 127 writeb(tmp, rtc->regbase + RCR1); 128 129 if (pending) 130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF); 131 132 return pending; 133 } 134 135 static int __sh_rtc_periodic(struct sh_rtc *rtc) 136 { 137 struct rtc_device *rtc_dev = rtc->rtc_dev; 138 struct rtc_task *irq_task; 139 unsigned int tmp, pending; 140 141 tmp = readb(rtc->regbase + RCR2); 142 pending = tmp & RCR2_PEF; 143 tmp &= ~RCR2_PEF; 144 writeb(tmp, rtc->regbase + RCR2); 145 146 if (!pending) 147 return 0; 148 149 /* Half period enabled than one skipped and the next notified */ 150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT)) 151 rtc->periodic_freq &= ~PF_COUNT; 152 else { 153 if (rtc->periodic_freq & PF_HP) 154 rtc->periodic_freq |= PF_COUNT; 155 if (rtc->periodic_freq & PF_KOU) { 156 spin_lock(&rtc_dev->irq_task_lock); 157 irq_task = rtc_dev->irq_task; 158 if (irq_task) 159 irq_task->func(irq_task->private_data); 160 spin_unlock(&rtc_dev->irq_task_lock); 161 } else 162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF); 163 } 164 165 return pending; 166 } 167 168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id) 169 { 170 struct sh_rtc *rtc = dev_id; 171 int ret; 172 173 spin_lock(&rtc->lock); 174 ret = __sh_rtc_interrupt(rtc); 175 spin_unlock(&rtc->lock); 176 177 return IRQ_RETVAL(ret); 178 } 179 180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id) 181 { 182 struct sh_rtc *rtc = dev_id; 183 int ret; 184 185 spin_lock(&rtc->lock); 186 ret = __sh_rtc_alarm(rtc); 187 spin_unlock(&rtc->lock); 188 189 return IRQ_RETVAL(ret); 190 } 191 192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id) 193 { 194 struct sh_rtc *rtc = dev_id; 195 int ret; 196 197 spin_lock(&rtc->lock); 198 ret = __sh_rtc_periodic(rtc); 199 spin_unlock(&rtc->lock); 200 201 return IRQ_RETVAL(ret); 202 } 203 204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id) 205 { 206 struct sh_rtc *rtc = dev_id; 207 int ret; 208 209 spin_lock(&rtc->lock); 210 ret = __sh_rtc_interrupt(rtc); 211 ret |= __sh_rtc_alarm(rtc); 212 ret |= __sh_rtc_periodic(rtc); 213 spin_unlock(&rtc->lock); 214 215 return IRQ_RETVAL(ret); 216 } 217 218 static int sh_rtc_irq_set_state(struct device *dev, int enable) 219 { 220 struct sh_rtc *rtc = dev_get_drvdata(dev); 221 unsigned int tmp; 222 223 spin_lock_irq(&rtc->lock); 224 225 tmp = readb(rtc->regbase + RCR2); 226 227 if (enable) { 228 rtc->periodic_freq |= PF_KOU; 229 tmp &= ~RCR2_PEF; /* Clear PES bit */ 230 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */ 231 } else { 232 rtc->periodic_freq &= ~PF_KOU; 233 tmp &= ~(RCR2_PESMASK | RCR2_PEF); 234 } 235 236 writeb(tmp, rtc->regbase + RCR2); 237 238 spin_unlock_irq(&rtc->lock); 239 240 return 0; 241 } 242 243 static int sh_rtc_irq_set_freq(struct device *dev, int freq) 244 { 245 struct sh_rtc *rtc = dev_get_drvdata(dev); 246 int tmp, ret = 0; 247 248 spin_lock_irq(&rtc->lock); 249 tmp = rtc->periodic_freq & PF_MASK; 250 251 switch (freq) { 252 case 0: 253 rtc->periodic_freq = 0x00; 254 break; 255 case 1: 256 rtc->periodic_freq = 0x60; 257 break; 258 case 2: 259 rtc->periodic_freq = 0x50; 260 break; 261 case 4: 262 rtc->periodic_freq = 0x40; 263 break; 264 case 8: 265 rtc->periodic_freq = 0x30 | PF_HP; 266 break; 267 case 16: 268 rtc->periodic_freq = 0x30; 269 break; 270 case 32: 271 rtc->periodic_freq = 0x20 | PF_HP; 272 break; 273 case 64: 274 rtc->periodic_freq = 0x20; 275 break; 276 case 128: 277 rtc->periodic_freq = 0x10 | PF_HP; 278 break; 279 case 256: 280 rtc->periodic_freq = 0x10; 281 break; 282 default: 283 ret = -ENOTSUPP; 284 } 285 286 if (ret == 0) 287 rtc->periodic_freq |= tmp; 288 289 spin_unlock_irq(&rtc->lock); 290 return ret; 291 } 292 293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable) 294 { 295 struct sh_rtc *rtc = dev_get_drvdata(dev); 296 unsigned int tmp; 297 298 spin_lock_irq(&rtc->lock); 299 300 tmp = readb(rtc->regbase + RCR1); 301 302 if (enable) 303 tmp |= RCR1_AIE; 304 else 305 tmp &= ~RCR1_AIE; 306 307 writeb(tmp, rtc->regbase + RCR1); 308 309 spin_unlock_irq(&rtc->lock); 310 } 311 312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq) 313 { 314 struct sh_rtc *rtc = dev_get_drvdata(dev); 315 unsigned int tmp; 316 317 tmp = readb(rtc->regbase + RCR1); 318 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no"); 319 320 tmp = readb(rtc->regbase + RCR2); 321 seq_printf(seq, "periodic_IRQ\t: %s\n", 322 (tmp & RCR2_PESMASK) ? "yes" : "no"); 323 324 return 0; 325 } 326 327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable) 328 { 329 struct sh_rtc *rtc = dev_get_drvdata(dev); 330 unsigned int tmp; 331 332 spin_lock_irq(&rtc->lock); 333 334 tmp = readb(rtc->regbase + RCR1); 335 336 if (!enable) 337 tmp &= ~RCR1_CIE; 338 else 339 tmp |= RCR1_CIE; 340 341 writeb(tmp, rtc->regbase + RCR1); 342 343 spin_unlock_irq(&rtc->lock); 344 } 345 346 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 347 { 348 struct sh_rtc *rtc = dev_get_drvdata(dev); 349 unsigned int ret = 0; 350 351 switch (cmd) { 352 case RTC_AIE_OFF: 353 case RTC_AIE_ON: 354 sh_rtc_setaie(dev, cmd == RTC_AIE_ON); 355 break; 356 case RTC_UIE_OFF: 357 rtc->periodic_freq &= ~PF_OXS; 358 sh_rtc_setcie(dev, 0); 359 break; 360 case RTC_UIE_ON: 361 rtc->periodic_freq |= PF_OXS; 362 sh_rtc_setcie(dev, 1); 363 break; 364 default: 365 ret = -ENOIOCTLCMD; 366 } 367 368 return ret; 369 } 370 371 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm) 372 { 373 struct platform_device *pdev = to_platform_device(dev); 374 struct sh_rtc *rtc = platform_get_drvdata(pdev); 375 unsigned int sec128, sec2, yr, yr100, cf_bit; 376 377 do { 378 unsigned int tmp; 379 380 spin_lock_irq(&rtc->lock); 381 382 tmp = readb(rtc->regbase + RCR1); 383 tmp &= ~RCR1_CF; /* Clear CF-bit */ 384 tmp |= RCR1_CIE; 385 writeb(tmp, rtc->regbase + RCR1); 386 387 sec128 = readb(rtc->regbase + R64CNT); 388 389 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT)); 390 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT)); 391 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT)); 392 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT)); 393 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT)); 394 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1; 395 396 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 397 yr = readw(rtc->regbase + RYRCNT); 398 yr100 = bcd2bin(yr >> 8); 399 yr &= 0xff; 400 } else { 401 yr = readb(rtc->regbase + RYRCNT); 402 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20); 403 } 404 405 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900; 406 407 sec2 = readb(rtc->regbase + R64CNT); 408 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF; 409 410 spin_unlock_irq(&rtc->lock); 411 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0); 412 413 #if RTC_BIT_INVERTED != 0 414 if ((sec128 & RTC_BIT_INVERTED)) 415 tm->tm_sec--; 416 #endif 417 418 /* only keep the carry interrupt enabled if UIE is on */ 419 if (!(rtc->periodic_freq & PF_OXS)) 420 sh_rtc_setcie(dev, 0); 421 422 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 423 "mday=%d, mon=%d, year=%d, wday=%d\n", 424 __func__, 425 tm->tm_sec, tm->tm_min, tm->tm_hour, 426 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday); 427 428 return rtc_valid_tm(tm); 429 } 430 431 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm) 432 { 433 struct platform_device *pdev = to_platform_device(dev); 434 struct sh_rtc *rtc = platform_get_drvdata(pdev); 435 unsigned int tmp; 436 int year; 437 438 spin_lock_irq(&rtc->lock); 439 440 /* Reset pre-scaler & stop RTC */ 441 tmp = readb(rtc->regbase + RCR2); 442 tmp |= RCR2_RESET; 443 tmp &= ~RCR2_START; 444 writeb(tmp, rtc->regbase + RCR2); 445 446 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT); 447 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT); 448 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT); 449 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT); 450 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT); 451 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT); 452 453 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) { 454 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) | 455 bin2bcd(tm->tm_year % 100); 456 writew(year, rtc->regbase + RYRCNT); 457 } else { 458 year = tm->tm_year % 100; 459 writeb(bin2bcd(year), rtc->regbase + RYRCNT); 460 } 461 462 /* Start RTC */ 463 tmp = readb(rtc->regbase + RCR2); 464 tmp &= ~RCR2_RESET; 465 tmp |= RCR2_RTCEN | RCR2_START; 466 writeb(tmp, rtc->regbase + RCR2); 467 468 spin_unlock_irq(&rtc->lock); 469 470 return 0; 471 } 472 473 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off) 474 { 475 unsigned int byte; 476 int value = 0xff; /* return 0xff for ignored values */ 477 478 byte = readb(rtc->regbase + reg_off); 479 if (byte & AR_ENB) { 480 byte &= ~AR_ENB; /* strip the enable bit */ 481 value = bcd2bin(byte); 482 } 483 484 return value; 485 } 486 487 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 488 { 489 struct platform_device *pdev = to_platform_device(dev); 490 struct sh_rtc *rtc = platform_get_drvdata(pdev); 491 struct rtc_time *tm = &wkalrm->time; 492 493 spin_lock_irq(&rtc->lock); 494 495 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR); 496 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR); 497 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR); 498 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR); 499 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR); 500 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR); 501 if (tm->tm_mon > 0) 502 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */ 503 tm->tm_year = 0xffff; 504 505 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0; 506 507 spin_unlock_irq(&rtc->lock); 508 509 return 0; 510 } 511 512 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc, 513 int value, int reg_off) 514 { 515 /* < 0 for a value that is ignored */ 516 if (value < 0) 517 writeb(0, rtc->regbase + reg_off); 518 else 519 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off); 520 } 521 522 static int sh_rtc_check_alarm(struct rtc_time *tm) 523 { 524 /* 525 * The original rtc says anything > 0xc0 is "don't care" or "match 526 * all" - most users use 0xff but rtc-dev uses -1 for the same thing. 527 * The original rtc doesn't support years - some things use -1 and 528 * some 0xffff. We use -1 to make out tests easier. 529 */ 530 if (tm->tm_year == 0xffff) 531 tm->tm_year = -1; 532 if (tm->tm_mon >= 0xff) 533 tm->tm_mon = -1; 534 if (tm->tm_mday >= 0xff) 535 tm->tm_mday = -1; 536 if (tm->tm_wday >= 0xff) 537 tm->tm_wday = -1; 538 if (tm->tm_hour >= 0xff) 539 tm->tm_hour = -1; 540 if (tm->tm_min >= 0xff) 541 tm->tm_min = -1; 542 if (tm->tm_sec >= 0xff) 543 tm->tm_sec = -1; 544 545 if (tm->tm_year > 9999 || 546 tm->tm_mon >= 12 || 547 tm->tm_mday == 0 || tm->tm_mday >= 32 || 548 tm->tm_wday >= 7 || 549 tm->tm_hour >= 24 || 550 tm->tm_min >= 60 || 551 tm->tm_sec >= 60) 552 return -EINVAL; 553 554 return 0; 555 } 556 557 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm) 558 { 559 struct platform_device *pdev = to_platform_device(dev); 560 struct sh_rtc *rtc = platform_get_drvdata(pdev); 561 unsigned int rcr1; 562 struct rtc_time *tm = &wkalrm->time; 563 int mon, err; 564 565 err = sh_rtc_check_alarm(tm); 566 if (unlikely(err < 0)) 567 return err; 568 569 spin_lock_irq(&rtc->lock); 570 571 /* disable alarm interrupt and clear the alarm flag */ 572 rcr1 = readb(rtc->regbase + RCR1); 573 rcr1 &= ~(RCR1_AF | RCR1_AIE); 574 writeb(rcr1, rtc->regbase + RCR1); 575 576 /* set alarm time */ 577 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR); 578 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR); 579 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR); 580 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR); 581 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR); 582 mon = tm->tm_mon; 583 if (mon >= 0) 584 mon += 1; 585 sh_rtc_write_alarm_value(rtc, mon, RMONAR); 586 587 if (wkalrm->enabled) { 588 rcr1 |= RCR1_AIE; 589 writeb(rcr1, rtc->regbase + RCR1); 590 } 591 592 spin_unlock_irq(&rtc->lock); 593 594 return 0; 595 } 596 597 static struct rtc_class_ops sh_rtc_ops = { 598 .ioctl = sh_rtc_ioctl, 599 .read_time = sh_rtc_read_time, 600 .set_time = sh_rtc_set_time, 601 .read_alarm = sh_rtc_read_alarm, 602 .set_alarm = sh_rtc_set_alarm, 603 .irq_set_state = sh_rtc_irq_set_state, 604 .irq_set_freq = sh_rtc_irq_set_freq, 605 .proc = sh_rtc_proc, 606 }; 607 608 static int __init sh_rtc_probe(struct platform_device *pdev) 609 { 610 struct sh_rtc *rtc; 611 struct resource *res; 612 struct rtc_time r; 613 char clk_name[6]; 614 int clk_id, ret; 615 616 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL); 617 if (unlikely(!rtc)) 618 return -ENOMEM; 619 620 spin_lock_init(&rtc->lock); 621 622 /* get periodic/carry/alarm irqs */ 623 ret = platform_get_irq(pdev, 0); 624 if (unlikely(ret <= 0)) { 625 ret = -ENOENT; 626 dev_err(&pdev->dev, "No IRQ resource\n"); 627 goto err_badres; 628 } 629 630 rtc->periodic_irq = ret; 631 rtc->carry_irq = platform_get_irq(pdev, 1); 632 rtc->alarm_irq = platform_get_irq(pdev, 2); 633 634 res = platform_get_resource(pdev, IORESOURCE_IO, 0); 635 if (unlikely(res == NULL)) { 636 ret = -ENOENT; 637 dev_err(&pdev->dev, "No IO resource\n"); 638 goto err_badres; 639 } 640 641 rtc->regsize = resource_size(res); 642 643 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name); 644 if (unlikely(!rtc->res)) { 645 ret = -EBUSY; 646 goto err_badres; 647 } 648 649 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize); 650 if (unlikely(!rtc->regbase)) { 651 ret = -EINVAL; 652 goto err_badmap; 653 } 654 655 clk_id = pdev->id; 656 /* With a single device, the clock id is still "rtc0" */ 657 if (clk_id < 0) 658 clk_id = 0; 659 660 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id); 661 662 rtc->clk = clk_get(&pdev->dev, clk_name); 663 if (IS_ERR(rtc->clk)) { 664 /* 665 * No error handling for rtc->clk intentionally, not all 666 * platforms will have a unique clock for the RTC, and 667 * the clk API can handle the struct clk pointer being 668 * NULL. 669 */ 670 rtc->clk = NULL; 671 } 672 673 clk_enable(rtc->clk); 674 675 rtc->capabilities = RTC_DEF_CAPABILITIES; 676 if (pdev->dev.platform_data) { 677 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data; 678 679 /* 680 * Some CPUs have special capabilities in addition to the 681 * default set. Add those in here. 682 */ 683 rtc->capabilities |= pinfo->capabilities; 684 } 685 686 if (rtc->carry_irq <= 0) { 687 /* register shared periodic/carry/alarm irq */ 688 ret = request_irq(rtc->periodic_irq, sh_rtc_shared, 689 IRQF_DISABLED, "sh-rtc", rtc); 690 if (unlikely(ret)) { 691 dev_err(&pdev->dev, 692 "request IRQ failed with %d, IRQ %d\n", ret, 693 rtc->periodic_irq); 694 goto err_unmap; 695 } 696 } else { 697 /* register periodic/carry/alarm irqs */ 698 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, 699 IRQF_DISABLED, "sh-rtc period", rtc); 700 if (unlikely(ret)) { 701 dev_err(&pdev->dev, 702 "request period IRQ failed with %d, IRQ %d\n", 703 ret, rtc->periodic_irq); 704 goto err_unmap; 705 } 706 707 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, 708 IRQF_DISABLED, "sh-rtc carry", rtc); 709 if (unlikely(ret)) { 710 dev_err(&pdev->dev, 711 "request carry IRQ failed with %d, IRQ %d\n", 712 ret, rtc->carry_irq); 713 free_irq(rtc->periodic_irq, rtc); 714 goto err_unmap; 715 } 716 717 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, 718 IRQF_DISABLED, "sh-rtc alarm", rtc); 719 if (unlikely(ret)) { 720 dev_err(&pdev->dev, 721 "request alarm IRQ failed with %d, IRQ %d\n", 722 ret, rtc->alarm_irq); 723 free_irq(rtc->carry_irq, rtc); 724 free_irq(rtc->periodic_irq, rtc); 725 goto err_unmap; 726 } 727 } 728 729 platform_set_drvdata(pdev, rtc); 730 731 /* everything disabled by default */ 732 sh_rtc_irq_set_freq(&pdev->dev, 0); 733 sh_rtc_irq_set_state(&pdev->dev, 0); 734 sh_rtc_setaie(&pdev->dev, 0); 735 sh_rtc_setcie(&pdev->dev, 0); 736 737 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev, 738 &sh_rtc_ops, THIS_MODULE); 739 if (IS_ERR(rtc->rtc_dev)) { 740 ret = PTR_ERR(rtc->rtc_dev); 741 free_irq(rtc->periodic_irq, rtc); 742 free_irq(rtc->carry_irq, rtc); 743 free_irq(rtc->alarm_irq, rtc); 744 goto err_unmap; 745 } 746 747 rtc->rtc_dev->max_user_freq = 256; 748 749 /* reset rtc to epoch 0 if time is invalid */ 750 if (rtc_read_time(rtc->rtc_dev, &r) < 0) { 751 rtc_time_to_tm(0, &r); 752 rtc_set_time(rtc->rtc_dev, &r); 753 } 754 755 device_init_wakeup(&pdev->dev, 1); 756 return 0; 757 758 err_unmap: 759 clk_disable(rtc->clk); 760 clk_put(rtc->clk); 761 iounmap(rtc->regbase); 762 err_badmap: 763 release_resource(rtc->res); 764 err_badres: 765 kfree(rtc); 766 767 return ret; 768 } 769 770 static int __exit sh_rtc_remove(struct platform_device *pdev) 771 { 772 struct sh_rtc *rtc = platform_get_drvdata(pdev); 773 774 rtc_device_unregister(rtc->rtc_dev); 775 sh_rtc_irq_set_state(&pdev->dev, 0); 776 777 sh_rtc_setaie(&pdev->dev, 0); 778 sh_rtc_setcie(&pdev->dev, 0); 779 780 free_irq(rtc->periodic_irq, rtc); 781 782 if (rtc->carry_irq > 0) { 783 free_irq(rtc->carry_irq, rtc); 784 free_irq(rtc->alarm_irq, rtc); 785 } 786 787 iounmap(rtc->regbase); 788 release_resource(rtc->res); 789 790 clk_disable(rtc->clk); 791 clk_put(rtc->clk); 792 793 platform_set_drvdata(pdev, NULL); 794 795 kfree(rtc); 796 797 return 0; 798 } 799 800 static void sh_rtc_set_irq_wake(struct device *dev, int enabled) 801 { 802 struct platform_device *pdev = to_platform_device(dev); 803 struct sh_rtc *rtc = platform_get_drvdata(pdev); 804 805 set_irq_wake(rtc->periodic_irq, enabled); 806 807 if (rtc->carry_irq > 0) { 808 set_irq_wake(rtc->carry_irq, enabled); 809 set_irq_wake(rtc->alarm_irq, enabled); 810 } 811 } 812 813 static int sh_rtc_suspend(struct device *dev) 814 { 815 if (device_may_wakeup(dev)) 816 sh_rtc_set_irq_wake(dev, 1); 817 818 return 0; 819 } 820 821 static int sh_rtc_resume(struct device *dev) 822 { 823 if (device_may_wakeup(dev)) 824 sh_rtc_set_irq_wake(dev, 0); 825 826 return 0; 827 } 828 829 static const struct dev_pm_ops sh_rtc_dev_pm_ops = { 830 .suspend = sh_rtc_suspend, 831 .resume = sh_rtc_resume, 832 }; 833 834 static struct platform_driver sh_rtc_platform_driver = { 835 .driver = { 836 .name = DRV_NAME, 837 .owner = THIS_MODULE, 838 .pm = &sh_rtc_dev_pm_ops, 839 }, 840 .remove = __exit_p(sh_rtc_remove), 841 }; 842 843 static int __init sh_rtc_init(void) 844 { 845 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe); 846 } 847 848 static void __exit sh_rtc_exit(void) 849 { 850 platform_driver_unregister(&sh_rtc_platform_driver); 851 } 852 853 module_init(sh_rtc_init); 854 module_exit(sh_rtc_exit); 855 856 MODULE_DESCRIPTION("SuperH on-chip RTC driver"); 857 MODULE_VERSION(DRV_VERSION); 858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, " 859 "Jamie Lenehan <lenehan@twibble.org>, " 860 "Angelo Castello <angelo.castello@st.com>"); 861 MODULE_LICENSE("GPL"); 862 MODULE_ALIAS("platform:" DRV_NAME); 863