xref: /linux/drivers/rtc/rtc-sa1100.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3  *
4  * Copyright (c) 2000 Nils Faerber
5  *
6  * Based on rtc.c by Paul Gortmaker
7  *
8  * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9  *
10  * Modifications from:
11  *   CIH <cih@coventive.com>
12  *   Nicolas Pitre <nico@cam.org>
13  *   Andrew Christian <andrew.christian@hp.com>
14  *
15  * Converted to the RTC subsystem and Driver Model
16  *   by Richard Purdie <rpurdie@rpsys.net>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
31 #include <linux/pm.h>
32 
33 #include <asm/bitops.h>
34 #include <asm/hardware.h>
35 #include <asm/irq.h>
36 #include <asm/rtc.h>
37 
38 #ifdef CONFIG_ARCH_PXA
39 #include <asm/arch/pxa-regs.h>
40 #endif
41 
42 #define TIMER_FREQ		CLOCK_TICK_RATE
43 #define RTC_DEF_DIVIDER		32768 - 1
44 #define RTC_DEF_TRIM		0
45 
46 static unsigned long rtc_freq = 1024;
47 static struct rtc_time rtc_alarm;
48 static spinlock_t sa1100_rtc_lock = SPIN_LOCK_UNLOCKED;
49 
50 static int rtc_update_alarm(struct rtc_time *alrm)
51 {
52 	struct rtc_time alarm_tm, now_tm;
53 	unsigned long now, time;
54 	int ret;
55 
56 	do {
57 		now = RCNR;
58 		rtc_time_to_tm(now, &now_tm);
59 		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
60 		ret = rtc_tm_to_time(&alarm_tm, &time);
61 		if (ret != 0)
62 			break;
63 
64 		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
65 		RTAR = time;
66 	} while (now != RCNR);
67 
68 	return ret;
69 }
70 
71 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id,
72 		struct pt_regs *regs)
73 {
74 	struct platform_device *pdev = to_platform_device(dev_id);
75 	struct rtc_device *rtc = platform_get_drvdata(pdev);
76 	unsigned int rtsr;
77 	unsigned long events = 0;
78 
79 	spin_lock(&sa1100_rtc_lock);
80 
81 	rtsr = RTSR;
82 	/* clear interrupt sources */
83 	RTSR = 0;
84 	RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
85 
86 	/* clear alarm interrupt if it has occurred */
87 	if (rtsr & RTSR_AL)
88 		rtsr &= ~RTSR_ALE;
89 	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
90 
91 	/* update irq data & counter */
92 	if (rtsr & RTSR_AL)
93 		events |= RTC_AF | RTC_IRQF;
94 	if (rtsr & RTSR_HZ)
95 		events |= RTC_UF | RTC_IRQF;
96 
97 	rtc_update_irq(&rtc->class_dev, 1, events);
98 
99 	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
100 		rtc_update_alarm(&rtc_alarm);
101 
102 	spin_unlock(&sa1100_rtc_lock);
103 
104 	return IRQ_HANDLED;
105 }
106 
107 static int rtc_timer1_count;
108 
109 static irqreturn_t timer1_interrupt(int irq, void *dev_id,
110 		struct pt_regs *regs)
111 {
112 	struct platform_device *pdev = to_platform_device(dev_id);
113 	struct rtc_device *rtc = platform_get_drvdata(pdev);
114 
115 	/*
116 	 * If we match for the first time, rtc_timer1_count will be 1.
117 	 * Otherwise, we wrapped around (very unlikely but
118 	 * still possible) so compute the amount of missed periods.
119 	 * The match reg is updated only when the data is actually retrieved
120 	 * to avoid unnecessary interrupts.
121 	 */
122 	OSSR = OSSR_M1;	/* clear match on timer1 */
123 
124 	rtc_update_irq(&rtc->class_dev, rtc_timer1_count, RTC_PF | RTC_IRQF);
125 
126 	if (rtc_timer1_count == 1)
127 		rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
128 
129 	return IRQ_HANDLED;
130 }
131 
132 static int sa1100_rtc_read_callback(struct device *dev, int data)
133 {
134 	if (data & RTC_PF) {
135 		/* interpolate missed periods and set match for the next */
136 		unsigned long period = TIMER_FREQ/rtc_freq;
137 		unsigned long oscr = OSCR;
138 		unsigned long osmr1 = OSMR1;
139 		unsigned long missed = (oscr - osmr1)/period;
140 		data += missed << 8;
141 		OSSR = OSSR_M1;	/* clear match on timer 1 */
142 		OSMR1 = osmr1 + (missed + 1)*period;
143 		/* Ensure we didn't miss another match in the mean time.
144 		 * Here we compare (match - OSCR) 8 instead of 0 --
145 		 * see comment in pxa_timer_interrupt() for explanation.
146 		 */
147 		while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
148 			data += 0x100;
149 			OSSR = OSSR_M1;	/* clear match on timer 1 */
150 			OSMR1 = osmr1 + period;
151 		}
152 	}
153 	return data;
154 }
155 
156 static int sa1100_rtc_open(struct device *dev)
157 {
158 	int ret;
159 
160 	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, SA_INTERRUPT,
161 				"rtc 1Hz", dev);
162 	if (ret) {
163 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
164 		goto fail_ui;
165 	}
166 	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, SA_INTERRUPT,
167 				"rtc Alrm", dev);
168 	if (ret) {
169 		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
170 		goto fail_ai;
171 	}
172 	ret = request_irq(IRQ_OST1, timer1_interrupt, SA_INTERRUPT,
173 				"rtc timer", dev);
174 	if (ret) {
175 		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
176 		goto fail_pi;
177 	}
178 	return 0;
179 
180  fail_pi:
181 	free_irq(IRQ_RTCAlrm, dev);
182  fail_ai:
183 	free_irq(IRQ_RTC1Hz, dev);
184  fail_ui:
185 	return ret;
186 }
187 
188 static void sa1100_rtc_release(struct device *dev)
189 {
190 	spin_lock_irq(&sa1100_rtc_lock);
191 	RTSR = 0;
192 	OIER &= ~OIER_E1;
193 	OSSR = OSSR_M1;
194 	spin_unlock_irq(&sa1100_rtc_lock);
195 
196 	free_irq(IRQ_OST1, dev);
197 	free_irq(IRQ_RTCAlrm, dev);
198 	free_irq(IRQ_RTC1Hz, dev);
199 }
200 
201 
202 static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
203 		unsigned long arg)
204 {
205 	switch(cmd) {
206 	case RTC_AIE_OFF:
207 		spin_lock_irq(&sa1100_rtc_lock);
208 		RTSR &= ~RTSR_ALE;
209 		spin_unlock_irq(&sa1100_rtc_lock);
210 		return 0;
211 	case RTC_AIE_ON:
212 		spin_lock_irq(&sa1100_rtc_lock);
213 		RTSR |= RTSR_ALE;
214 		spin_unlock_irq(&sa1100_rtc_lock);
215 		return 0;
216 	case RTC_UIE_OFF:
217 		spin_lock_irq(&sa1100_rtc_lock);
218 		RTSR &= ~RTSR_HZE;
219 		spin_unlock_irq(&sa1100_rtc_lock);
220 		return 0;
221 	case RTC_UIE_ON:
222 		spin_lock_irq(&sa1100_rtc_lock);
223 		RTSR |= RTSR_HZE;
224 		spin_unlock_irq(&sa1100_rtc_lock);
225 		return 0;
226 	case RTC_PIE_OFF:
227 		spin_lock_irq(&sa1100_rtc_lock);
228 		OIER &= ~OIER_E1;
229 		spin_unlock_irq(&sa1100_rtc_lock);
230 		return 0;
231 	case RTC_PIE_ON:
232 		if ((rtc_freq > 64) && !capable(CAP_SYS_RESOURCE))
233 			return -EACCES;
234 		spin_lock_irq(&sa1100_rtc_lock);
235 		OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
236 		OIER |= OIER_E1;
237 		rtc_timer1_count = 1;
238 		spin_unlock_irq(&sa1100_rtc_lock);
239 		return 0;
240 	case RTC_IRQP_READ:
241 		return put_user(rtc_freq, (unsigned long *)arg);
242 	case RTC_IRQP_SET:
243 		if (arg < 1 || arg > TIMER_FREQ)
244 			return -EINVAL;
245 		if ((arg > 64) && (!capable(CAP_SYS_RESOURCE)))
246 			return -EACCES;
247 		rtc_freq = arg;
248 		return 0;
249 	}
250 	return -ENOIOCTLCMD;
251 }
252 
253 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
254 {
255 	rtc_time_to_tm(RCNR, tm);
256 	return 0;
257 }
258 
259 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
260 {
261 	unsigned long time;
262 	int ret;
263 
264 	ret = rtc_tm_to_time(tm, &time);
265 	if (ret == 0)
266 		RCNR = time;
267 	return ret;
268 }
269 
270 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
271 {
272 	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
273 	alrm->pending = RTSR & RTSR_AL ? 1 : 0;
274 	return 0;
275 }
276 
277 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
278 {
279 	int ret;
280 
281 	spin_lock_irq(&sa1100_rtc_lock);
282 	ret = rtc_update_alarm(&alrm->time);
283 	if (ret == 0) {
284 		memcpy(&rtc_alarm, &alrm->time, sizeof(struct rtc_time));
285 
286 		if (alrm->enabled)
287 			enable_irq_wake(IRQ_RTCAlrm);
288 		else
289 			disable_irq_wake(IRQ_RTCAlrm);
290 	}
291 	spin_unlock_irq(&sa1100_rtc_lock);
292 
293 	return ret;
294 }
295 
296 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
297 {
298 	seq_printf(seq, "trim/divider\t: 0x%08lx\n", RTTR);
299 	seq_printf(seq, "alarm_IRQ\t: %s\n",
300 			(RTSR & RTSR_ALE) ? "yes" : "no" );
301 	seq_printf(seq, "update_IRQ\t: %s\n",
302 			(RTSR & RTSR_HZE) ? "yes" : "no");
303 	seq_printf(seq, "periodic_IRQ\t: %s\n",
304 			(OIER & OIER_E1) ? "yes" : "no");
305 	seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
306 
307 	return 0;
308 }
309 
310 static struct rtc_class_ops sa1100_rtc_ops = {
311 	.open = sa1100_rtc_open,
312 	.read_callback = sa1100_rtc_read_callback,
313 	.release = sa1100_rtc_release,
314 	.ioctl = sa1100_rtc_ioctl,
315 	.read_time = sa1100_rtc_read_time,
316 	.set_time = sa1100_rtc_set_time,
317 	.read_alarm = sa1100_rtc_read_alarm,
318 	.set_alarm = sa1100_rtc_set_alarm,
319 	.proc = sa1100_rtc_proc,
320 };
321 
322 static int sa1100_rtc_probe(struct platform_device *pdev)
323 {
324 	struct rtc_device *rtc;
325 
326 	/*
327 	 * According to the manual we should be able to let RTTR be zero
328 	 * and then a default diviser for a 32.768KHz clock is used.
329 	 * Apparently this doesn't work, at least for my SA1110 rev 5.
330 	 * If the clock divider is uninitialized then reset it to the
331 	 * default value to get the 1Hz clock.
332 	 */
333 	if (RTTR == 0) {
334 		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
335 		dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
336 		/* The current RTC value probably doesn't make sense either */
337 		RCNR = 0;
338 	}
339 
340 	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
341 				THIS_MODULE);
342 
343 	if (IS_ERR(rtc))
344 		return PTR_ERR(rtc);
345 
346 	platform_set_drvdata(pdev, rtc);
347 
348 	return 0;
349 }
350 
351 static int sa1100_rtc_remove(struct platform_device *pdev)
352 {
353 	struct rtc_device *rtc = platform_get_drvdata(pdev);
354 
355  	if (rtc)
356 		rtc_device_unregister(rtc);
357 
358 	return 0;
359 }
360 
361 static struct platform_driver sa1100_rtc_driver = {
362 	.probe		= sa1100_rtc_probe,
363 	.remove		= sa1100_rtc_remove,
364 	.driver		= {
365 		.name		= "sa1100-rtc",
366 	},
367 };
368 
369 static int __init sa1100_rtc_init(void)
370 {
371 	return platform_driver_register(&sa1100_rtc_driver);
372 }
373 
374 static void __exit sa1100_rtc_exit(void)
375 {
376 	platform_driver_unregister(&sa1100_rtc_driver);
377 }
378 
379 module_init(sa1100_rtc_init);
380 module_exit(sa1100_rtc_exit);
381 
382 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
383 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
384 MODULE_LICENSE("GPL");
385