1 /* 2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx 3 * 4 * Copyright (c) 2000 Nils Faerber 5 * 6 * Based on rtc.c by Paul Gortmaker 7 * 8 * Original Driver by Nils Faerber <nils@kernelconcepts.de> 9 * 10 * Modifications from: 11 * CIH <cih@coventive.com> 12 * Nicolas Pitre <nico@fluxnic.net> 13 * Andrew Christian <andrew.christian@hp.com> 14 * 15 * Converted to the RTC subsystem and Driver Model 16 * by Richard Purdie <rpurdie@rpsys.net> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 #include <linux/platform_device.h> 25 #include <linux/module.h> 26 #include <linux/rtc.h> 27 #include <linux/init.h> 28 #include <linux/fs.h> 29 #include <linux/interrupt.h> 30 #include <linux/pm.h> 31 #include <linux/slab.h> 32 #include <linux/clk.h> 33 #include <linux/io.h> 34 35 #include <mach/hardware.h> 36 #include <asm/irq.h> 37 38 #define RTC_DEF_DIVIDER (32768 - 1) 39 #define RTC_DEF_TRIM 0 40 #define RTC_FREQ 1024 41 42 #define RCNR 0x00 /* RTC Count Register */ 43 #define RTAR 0x04 /* RTC Alarm Register */ 44 #define RTSR 0x08 /* RTC Status Register */ 45 #define RTTR 0x0c /* RTC Timer Trim Register */ 46 47 #define RTSR_HZE (1 << 3) /* HZ interrupt enable */ 48 #define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */ 49 #define RTSR_HZ (1 << 1) /* HZ rising-edge detected */ 50 #define RTSR_AL (1 << 0) /* RTC alarm detected */ 51 52 #define rtc_readl(sa1100_rtc, reg) \ 53 readl_relaxed((sa1100_rtc)->base + (reg)) 54 #define rtc_writel(sa1100_rtc, reg, value) \ 55 writel_relaxed((value), (sa1100_rtc)->base + (reg)) 56 57 struct sa1100_rtc { 58 struct resource *ress; 59 void __iomem *base; 60 struct clk *clk; 61 int irq_1Hz; 62 int irq_Alrm; 63 struct rtc_device *rtc; 64 spinlock_t lock; /* Protects this structure */ 65 }; 66 /* 67 * Calculate the next alarm time given the requested alarm time mask 68 * and the current time. 69 */ 70 static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, 71 struct rtc_time *alrm) 72 { 73 unsigned long next_time; 74 unsigned long now_time; 75 76 next->tm_year = now->tm_year; 77 next->tm_mon = now->tm_mon; 78 next->tm_mday = now->tm_mday; 79 next->tm_hour = alrm->tm_hour; 80 next->tm_min = alrm->tm_min; 81 next->tm_sec = alrm->tm_sec; 82 83 rtc_tm_to_time(now, &now_time); 84 rtc_tm_to_time(next, &next_time); 85 86 if (next_time < now_time) { 87 /* Advance one day */ 88 next_time += 60 * 60 * 24; 89 rtc_time_to_tm(next_time, next); 90 } 91 } 92 93 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) 94 { 95 struct platform_device *pdev = to_platform_device(dev_id); 96 struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev); 97 unsigned int rtsr; 98 unsigned long events = 0; 99 100 spin_lock(&sa1100_rtc->lock); 101 102 /* clear interrupt sources */ 103 rtsr = rtc_readl(sa1100_rtc, RTSR); 104 rtc_writel(sa1100_rtc, RTSR, 0); 105 106 /* Fix for a nasty initialization problem the in SA11xx RTSR register. 107 * See also the comments in sa1100_rtc_probe(). */ 108 if (rtsr & (RTSR_ALE | RTSR_HZE)) { 109 /* This is the original code, before there was the if test 110 * above. This code does not clear interrupts that were not 111 * enabled. */ 112 rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2)); 113 } else { 114 /* For some reason, it is possible to enter this routine 115 * without interruptions enabled, it has been tested with 116 * several units (Bug in SA11xx chip?). 117 * 118 * This situation leads to an infinite "loop" of interrupt 119 * routine calling and as a result the processor seems to 120 * lock on its first call to open(). */ 121 rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ)); 122 } 123 124 /* clear alarm interrupt if it has occurred */ 125 if (rtsr & RTSR_AL) 126 rtsr &= ~RTSR_ALE; 127 rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE)); 128 129 /* update irq data & counter */ 130 if (rtsr & RTSR_AL) 131 events |= RTC_AF | RTC_IRQF; 132 if (rtsr & RTSR_HZ) 133 events |= RTC_UF | RTC_IRQF; 134 135 rtc_update_irq(sa1100_rtc->rtc, 1, events); 136 137 spin_unlock(&sa1100_rtc->lock); 138 139 return IRQ_HANDLED; 140 } 141 142 static int sa1100_rtc_open(struct device *dev) 143 { 144 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 145 int ret; 146 147 ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt, 148 IRQF_DISABLED, "rtc 1Hz", dev); 149 if (ret) { 150 dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz); 151 goto fail_ui; 152 } 153 ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt, 154 IRQF_DISABLED, "rtc Alrm", dev); 155 if (ret) { 156 dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm); 157 goto fail_ai; 158 } 159 sa1100_rtc->rtc->max_user_freq = RTC_FREQ; 160 rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ); 161 162 return 0; 163 164 fail_ai: 165 free_irq(sa1100_rtc->irq_1Hz, dev); 166 fail_ui: 167 return ret; 168 } 169 170 static void sa1100_rtc_release(struct device *dev) 171 { 172 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 173 174 spin_lock_irq(&sa1100_rtc->lock); 175 rtc_writel(sa1100_rtc, RTSR, 0); 176 spin_unlock_irq(&sa1100_rtc->lock); 177 178 free_irq(sa1100_rtc->irq_Alrm, dev); 179 free_irq(sa1100_rtc->irq_1Hz, dev); 180 } 181 182 static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 183 { 184 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 185 unsigned int rtsr; 186 187 spin_lock_irq(&sa1100_rtc->lock); 188 189 rtsr = rtc_readl(sa1100_rtc, RTSR); 190 if (enabled) 191 rtsr |= RTSR_ALE; 192 else 193 rtsr &= ~RTSR_ALE; 194 rtc_writel(sa1100_rtc, RTSR, rtsr); 195 196 spin_unlock_irq(&sa1100_rtc->lock); 197 return 0; 198 } 199 200 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) 201 { 202 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 203 204 rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm); 205 return 0; 206 } 207 208 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) 209 { 210 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 211 unsigned long time; 212 int ret; 213 214 ret = rtc_tm_to_time(tm, &time); 215 if (ret == 0) 216 rtc_writel(sa1100_rtc, RCNR, time); 217 return ret; 218 } 219 220 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 221 { 222 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 223 unsigned long time; 224 unsigned int rtsr; 225 226 time = rtc_readl(sa1100_rtc, RCNR); 227 rtc_time_to_tm(time, &alrm->time); 228 rtsr = rtc_readl(sa1100_rtc, RTSR); 229 alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; 230 alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; 231 return 0; 232 } 233 234 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 235 { 236 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 237 struct rtc_time now_tm, alarm_tm; 238 unsigned long time, alarm; 239 unsigned int rtsr; 240 241 spin_lock_irq(&sa1100_rtc->lock); 242 243 time = rtc_readl(sa1100_rtc, RCNR); 244 rtc_time_to_tm(time, &now_tm); 245 rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time); 246 rtc_tm_to_time(&alarm_tm, &alarm); 247 rtc_writel(sa1100_rtc, RTAR, alarm); 248 249 rtsr = rtc_readl(sa1100_rtc, RTSR); 250 if (alrm->enabled) 251 rtsr |= RTSR_ALE; 252 else 253 rtsr &= ~RTSR_ALE; 254 rtc_writel(sa1100_rtc, RTSR, rtsr); 255 256 spin_unlock_irq(&sa1100_rtc->lock); 257 258 return 0; 259 } 260 261 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) 262 { 263 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 264 265 seq_printf(seq, "trim/divider\t\t: 0x%08x\n", 266 rtc_readl(sa1100_rtc, RTTR)); 267 seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", 268 rtc_readl(sa1100_rtc, RTSR)); 269 return 0; 270 } 271 272 static const struct rtc_class_ops sa1100_rtc_ops = { 273 .open = sa1100_rtc_open, 274 .release = sa1100_rtc_release, 275 .read_time = sa1100_rtc_read_time, 276 .set_time = sa1100_rtc_set_time, 277 .read_alarm = sa1100_rtc_read_alarm, 278 .set_alarm = sa1100_rtc_set_alarm, 279 .proc = sa1100_rtc_proc, 280 .alarm_irq_enable = sa1100_rtc_alarm_irq_enable, 281 }; 282 283 static int sa1100_rtc_probe(struct platform_device *pdev) 284 { 285 struct sa1100_rtc *sa1100_rtc; 286 unsigned int rttr; 287 int ret; 288 289 sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL); 290 if (!sa1100_rtc) 291 return -ENOMEM; 292 293 spin_lock_init(&sa1100_rtc->lock); 294 platform_set_drvdata(pdev, sa1100_rtc); 295 296 ret = -ENXIO; 297 sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 298 if (!sa1100_rtc->ress) { 299 dev_err(&pdev->dev, "No I/O memory resource defined\n"); 300 goto err_ress; 301 } 302 303 sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0); 304 if (sa1100_rtc->irq_1Hz < 0) { 305 dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n"); 306 goto err_ress; 307 } 308 sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1); 309 if (sa1100_rtc->irq_Alrm < 0) { 310 dev_err(&pdev->dev, "No alarm IRQ resource defined\n"); 311 goto err_ress; 312 } 313 314 ret = -ENOMEM; 315 sa1100_rtc->base = ioremap(sa1100_rtc->ress->start, 316 resource_size(sa1100_rtc->ress)); 317 if (!sa1100_rtc->base) { 318 dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n"); 319 goto err_map; 320 } 321 322 sa1100_rtc->clk = clk_get(&pdev->dev, NULL); 323 if (IS_ERR(sa1100_rtc->clk)) { 324 dev_err(&pdev->dev, "failed to find rtc clock source\n"); 325 ret = PTR_ERR(sa1100_rtc->clk); 326 goto err_clk; 327 } 328 clk_prepare(sa1100_rtc->clk); 329 clk_enable(sa1100_rtc->clk); 330 331 /* 332 * According to the manual we should be able to let RTTR be zero 333 * and then a default diviser for a 32.768KHz clock is used. 334 * Apparently this doesn't work, at least for my SA1110 rev 5. 335 * If the clock divider is uninitialized then reset it to the 336 * default value to get the 1Hz clock. 337 */ 338 if (rtc_readl(sa1100_rtc, RTTR) == 0) { 339 rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); 340 rtc_writel(sa1100_rtc, RTTR, rttr); 341 dev_warn(&pdev->dev, "warning: initializing default clock" 342 " divider/trim value\n"); 343 /* The current RTC value probably doesn't make sense either */ 344 rtc_writel(sa1100_rtc, RCNR, 0); 345 } 346 347 device_init_wakeup(&pdev->dev, 1); 348 349 sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev, 350 &sa1100_rtc_ops, THIS_MODULE); 351 if (IS_ERR(sa1100_rtc->rtc)) { 352 dev_err(&pdev->dev, "Failed to register RTC device -> %d\n", 353 ret); 354 goto err_rtc_reg; 355 } 356 /* Fix for a nasty initialization problem the in SA11xx RTSR register. 357 * See also the comments in sa1100_rtc_interrupt(). 358 * 359 * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an 360 * interrupt pending, even though interrupts were never enabled. 361 * In this case, this bit it must be reset before enabling 362 * interruptions to avoid a nonexistent interrupt to occur. 363 * 364 * In principle, the same problem would apply to bit 0, although it has 365 * never been observed to happen. 366 * 367 * This issue is addressed both here and in sa1100_rtc_interrupt(). 368 * If the issue is not addressed here, in the times when the processor 369 * wakes up with the bit set there will be one spurious interrupt. 370 * 371 * The issue is also dealt with in sa1100_rtc_interrupt() to be on the 372 * safe side, once the condition that lead to this strange 373 * initialization is unknown and could in principle happen during 374 * normal processing. 375 * 376 * Notice that clearing bit 1 and 0 is accomplished by writting ONES to 377 * the corresponding bits in RTSR. */ 378 rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ)); 379 380 return 0; 381 382 err_rtc_reg: 383 err_clk: 384 iounmap(sa1100_rtc->base); 385 err_ress: 386 err_map: 387 kfree(sa1100_rtc); 388 return ret; 389 } 390 391 static int sa1100_rtc_remove(struct platform_device *pdev) 392 { 393 struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev); 394 395 rtc_device_unregister(sa1100_rtc->rtc); 396 clk_disable(sa1100_rtc->clk); 397 clk_unprepare(sa1100_rtc->clk); 398 iounmap(sa1100_rtc->base); 399 return 0; 400 } 401 402 #ifdef CONFIG_PM 403 static int sa1100_rtc_suspend(struct device *dev) 404 { 405 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 406 407 if (device_may_wakeup(dev)) 408 enable_irq_wake(sa1100_rtc->irq_Alrm); 409 return 0; 410 } 411 412 static int sa1100_rtc_resume(struct device *dev) 413 { 414 struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev); 415 416 if (device_may_wakeup(dev)) 417 disable_irq_wake(sa1100_rtc->irq_Alrm); 418 return 0; 419 } 420 421 static const struct dev_pm_ops sa1100_rtc_pm_ops = { 422 .suspend = sa1100_rtc_suspend, 423 .resume = sa1100_rtc_resume, 424 }; 425 #endif 426 427 static struct platform_driver sa1100_rtc_driver = { 428 .probe = sa1100_rtc_probe, 429 .remove = sa1100_rtc_remove, 430 .driver = { 431 .name = "sa1100-rtc", 432 #ifdef CONFIG_PM 433 .pm = &sa1100_rtc_pm_ops, 434 #endif 435 }, 436 }; 437 438 module_platform_driver(sa1100_rtc_driver); 439 440 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); 441 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)"); 442 MODULE_LICENSE("GPL"); 443 MODULE_ALIAS("platform:sa1100-rtc"); 444