xref: /linux/drivers/rtc/rtc-sa1100.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3  *
4  * Copyright (c) 2000 Nils Faerber
5  *
6  * Based on rtc.c by Paul Gortmaker
7  *
8  * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9  *
10  * Modifications from:
11  *   CIH <cih@coventive.com>
12  *   Nicolas Pitre <nico@fluxnic.net>
13  *   Andrew Christian <andrew.christian@hp.com>
14  *
15  * Converted to the RTC subsystem and Driver Model
16  *   by Richard Purdie <rpurdie@rpsys.net>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm.h>
31 #include <linux/slab.h>
32 #include <linux/clk.h>
33 #include <linux/io.h>
34 
35 #include <mach/hardware.h>
36 #include <asm/irq.h>
37 
38 #define RTC_DEF_DIVIDER		(32768 - 1)
39 #define RTC_DEF_TRIM		0
40 #define RTC_FREQ		1024
41 
42 #define RCNR		0x00	/* RTC Count Register */
43 #define RTAR		0x04	/* RTC Alarm Register */
44 #define RTSR		0x08	/* RTC Status Register */
45 #define RTTR		0x0c	/* RTC Timer Trim Register */
46 
47 #define RTSR_HZE	(1 << 3)	/* HZ interrupt enable */
48 #define RTSR_ALE	(1 << 2)	/* RTC alarm interrupt enable */
49 #define RTSR_HZ		(1 << 1)	/* HZ rising-edge detected */
50 #define RTSR_AL		(1 << 0)	/* RTC alarm detected */
51 
52 #define rtc_readl(sa1100_rtc, reg)	\
53 	readl_relaxed((sa1100_rtc)->base + (reg))
54 #define rtc_writel(sa1100_rtc, reg, value)	\
55 	writel_relaxed((value), (sa1100_rtc)->base + (reg))
56 
57 struct sa1100_rtc {
58 	struct resource		*ress;
59 	void __iomem		*base;
60 	struct clk		*clk;
61 	int			irq_1Hz;
62 	int			irq_Alrm;
63 	struct rtc_device	*rtc;
64 	spinlock_t		lock;		/* Protects this structure */
65 };
66 /*
67  * Calculate the next alarm time given the requested alarm time mask
68  * and the current time.
69  */
70 static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
71 	struct rtc_time *alrm)
72 {
73 	unsigned long next_time;
74 	unsigned long now_time;
75 
76 	next->tm_year = now->tm_year;
77 	next->tm_mon = now->tm_mon;
78 	next->tm_mday = now->tm_mday;
79 	next->tm_hour = alrm->tm_hour;
80 	next->tm_min = alrm->tm_min;
81 	next->tm_sec = alrm->tm_sec;
82 
83 	rtc_tm_to_time(now, &now_time);
84 	rtc_tm_to_time(next, &next_time);
85 
86 	if (next_time < now_time) {
87 		/* Advance one day */
88 		next_time += 60 * 60 * 24;
89 		rtc_time_to_tm(next_time, next);
90 	}
91 }
92 
93 static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
94 {
95 	struct platform_device *pdev = to_platform_device(dev_id);
96 	struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
97 	unsigned int rtsr;
98 	unsigned long events = 0;
99 
100 	spin_lock(&sa1100_rtc->lock);
101 
102 	/* clear interrupt sources */
103 	rtsr = rtc_readl(sa1100_rtc, RTSR);
104 	rtc_writel(sa1100_rtc, RTSR, 0);
105 
106 	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
107 	 * See also the comments in sa1100_rtc_probe(). */
108 	if (rtsr & (RTSR_ALE | RTSR_HZE)) {
109 		/* This is the original code, before there was the if test
110 		 * above. This code does not clear interrupts that were not
111 		 * enabled. */
112 		rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2));
113 	} else {
114 		/* For some reason, it is possible to enter this routine
115 		 * without interruptions enabled, it has been tested with
116 		 * several units (Bug in SA11xx chip?).
117 		 *
118 		 * This situation leads to an infinite "loop" of interrupt
119 		 * routine calling and as a result the processor seems to
120 		 * lock on its first call to open(). */
121 		rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
122 	}
123 
124 	/* clear alarm interrupt if it has occurred */
125 	if (rtsr & RTSR_AL)
126 		rtsr &= ~RTSR_ALE;
127 	rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE));
128 
129 	/* update irq data & counter */
130 	if (rtsr & RTSR_AL)
131 		events |= RTC_AF | RTC_IRQF;
132 	if (rtsr & RTSR_HZ)
133 		events |= RTC_UF | RTC_IRQF;
134 
135 	rtc_update_irq(sa1100_rtc->rtc, 1, events);
136 
137 	spin_unlock(&sa1100_rtc->lock);
138 
139 	return IRQ_HANDLED;
140 }
141 
142 static int sa1100_rtc_open(struct device *dev)
143 {
144 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
145 	int ret;
146 
147 	ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt,
148 				IRQF_DISABLED, "rtc 1Hz", dev);
149 	if (ret) {
150 		dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz);
151 		goto fail_ui;
152 	}
153 	ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt,
154 				IRQF_DISABLED, "rtc Alrm", dev);
155 	if (ret) {
156 		dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm);
157 		goto fail_ai;
158 	}
159 	sa1100_rtc->rtc->max_user_freq = RTC_FREQ;
160 	rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ);
161 
162 	return 0;
163 
164  fail_ai:
165 	free_irq(sa1100_rtc->irq_1Hz, dev);
166  fail_ui:
167 	return ret;
168 }
169 
170 static void sa1100_rtc_release(struct device *dev)
171 {
172 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
173 
174 	spin_lock_irq(&sa1100_rtc->lock);
175 	rtc_writel(sa1100_rtc, RTSR, 0);
176 	spin_unlock_irq(&sa1100_rtc->lock);
177 
178 	free_irq(sa1100_rtc->irq_Alrm, dev);
179 	free_irq(sa1100_rtc->irq_1Hz, dev);
180 }
181 
182 static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
183 {
184 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
185 	unsigned int rtsr;
186 
187 	spin_lock_irq(&sa1100_rtc->lock);
188 
189 	rtsr = rtc_readl(sa1100_rtc, RTSR);
190 	if (enabled)
191 		rtsr |= RTSR_ALE;
192 	else
193 		rtsr &= ~RTSR_ALE;
194 	rtc_writel(sa1100_rtc, RTSR, rtsr);
195 
196 	spin_unlock_irq(&sa1100_rtc->lock);
197 	return 0;
198 }
199 
200 static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
201 {
202 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
203 
204 	rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm);
205 	return 0;
206 }
207 
208 static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
209 {
210 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
211 	unsigned long time;
212 	int ret;
213 
214 	ret = rtc_tm_to_time(tm, &time);
215 	if (ret == 0)
216 		rtc_writel(sa1100_rtc, RCNR, time);
217 	return ret;
218 }
219 
220 static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
221 {
222 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
223 	unsigned long time;
224 	unsigned int rtsr;
225 
226 	time = rtc_readl(sa1100_rtc, RCNR);
227 	rtc_time_to_tm(time, &alrm->time);
228 	rtsr = rtc_readl(sa1100_rtc, RTSR);
229 	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
230 	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
231 	return 0;
232 }
233 
234 static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
235 {
236 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
237 	struct rtc_time now_tm, alarm_tm;
238 	unsigned long time, alarm;
239 	unsigned int rtsr;
240 
241 	spin_lock_irq(&sa1100_rtc->lock);
242 
243 	time = rtc_readl(sa1100_rtc, RCNR);
244 	rtc_time_to_tm(time, &now_tm);
245 	rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
246 	rtc_tm_to_time(&alarm_tm, &alarm);
247 	rtc_writel(sa1100_rtc, RTAR, alarm);
248 
249 	rtsr = rtc_readl(sa1100_rtc, RTSR);
250 	if (alrm->enabled)
251 		rtsr |= RTSR_ALE;
252 	else
253 		rtsr &= ~RTSR_ALE;
254 	rtc_writel(sa1100_rtc, RTSR, rtsr);
255 
256 	spin_unlock_irq(&sa1100_rtc->lock);
257 
258 	return 0;
259 }
260 
261 static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
262 {
263 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
264 
265 	seq_printf(seq, "trim/divider\t\t: 0x%08x\n",
266 			rtc_readl(sa1100_rtc, RTTR));
267 	seq_printf(seq, "RTSR\t\t\t: 0x%08x\n",
268 			rtc_readl(sa1100_rtc, RTSR));
269 	return 0;
270 }
271 
272 static const struct rtc_class_ops sa1100_rtc_ops = {
273 	.open = sa1100_rtc_open,
274 	.release = sa1100_rtc_release,
275 	.read_time = sa1100_rtc_read_time,
276 	.set_time = sa1100_rtc_set_time,
277 	.read_alarm = sa1100_rtc_read_alarm,
278 	.set_alarm = sa1100_rtc_set_alarm,
279 	.proc = sa1100_rtc_proc,
280 	.alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
281 };
282 
283 static int sa1100_rtc_probe(struct platform_device *pdev)
284 {
285 	struct sa1100_rtc *sa1100_rtc;
286 	unsigned int rttr;
287 	int ret;
288 
289 	sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL);
290 	if (!sa1100_rtc)
291 		return -ENOMEM;
292 
293 	spin_lock_init(&sa1100_rtc->lock);
294 	platform_set_drvdata(pdev, sa1100_rtc);
295 
296 	ret = -ENXIO;
297 	sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
298 	if (!sa1100_rtc->ress) {
299 		dev_err(&pdev->dev, "No I/O memory resource defined\n");
300 		goto err_ress;
301 	}
302 
303 	sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0);
304 	if (sa1100_rtc->irq_1Hz < 0) {
305 		dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n");
306 		goto err_ress;
307 	}
308 	sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1);
309 	if (sa1100_rtc->irq_Alrm < 0) {
310 		dev_err(&pdev->dev, "No alarm IRQ resource defined\n");
311 		goto err_ress;
312 	}
313 
314 	ret = -ENOMEM;
315 	sa1100_rtc->base = ioremap(sa1100_rtc->ress->start,
316 				resource_size(sa1100_rtc->ress));
317 	if (!sa1100_rtc->base) {
318 		dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
319 		goto err_map;
320 	}
321 
322 	sa1100_rtc->clk = clk_get(&pdev->dev, NULL);
323 	if (IS_ERR(sa1100_rtc->clk)) {
324 		dev_err(&pdev->dev, "failed to find rtc clock source\n");
325 		ret = PTR_ERR(sa1100_rtc->clk);
326 		goto err_clk;
327 	}
328 	clk_prepare(sa1100_rtc->clk);
329 	clk_enable(sa1100_rtc->clk);
330 
331 	/*
332 	 * According to the manual we should be able to let RTTR be zero
333 	 * and then a default diviser for a 32.768KHz clock is used.
334 	 * Apparently this doesn't work, at least for my SA1110 rev 5.
335 	 * If the clock divider is uninitialized then reset it to the
336 	 * default value to get the 1Hz clock.
337 	 */
338 	if (rtc_readl(sa1100_rtc, RTTR) == 0) {
339 		rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
340 		rtc_writel(sa1100_rtc, RTTR, rttr);
341 		dev_warn(&pdev->dev, "warning: initializing default clock"
342 			 " divider/trim value\n");
343 		/* The current RTC value probably doesn't make sense either */
344 		rtc_writel(sa1100_rtc, RCNR, 0);
345 	}
346 
347 	device_init_wakeup(&pdev->dev, 1);
348 
349 	sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev,
350 						&sa1100_rtc_ops, THIS_MODULE);
351 	if (IS_ERR(sa1100_rtc->rtc)) {
352 		dev_err(&pdev->dev, "Failed to register RTC device -> %d\n",
353 			ret);
354 		goto err_rtc_reg;
355 	}
356 	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
357 	 * See also the comments in sa1100_rtc_interrupt().
358 	 *
359 	 * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
360 	 * interrupt pending, even though interrupts were never enabled.
361 	 * In this case, this bit it must be reset before enabling
362 	 * interruptions to avoid a nonexistent interrupt to occur.
363 	 *
364 	 * In principle, the same problem would apply to bit 0, although it has
365 	 * never been observed to happen.
366 	 *
367 	 * This issue is addressed both here and in sa1100_rtc_interrupt().
368 	 * If the issue is not addressed here, in the times when the processor
369 	 * wakes up with the bit set there will be one spurious interrupt.
370 	 *
371 	 * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
372 	 * safe side, once the condition that lead to this strange
373 	 * initialization is unknown and could in principle happen during
374 	 * normal processing.
375 	 *
376 	 * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
377 	 * the corresponding bits in RTSR. */
378 	rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
379 
380 	return 0;
381 
382 err_rtc_reg:
383 err_clk:
384 	iounmap(sa1100_rtc->base);
385 err_ress:
386 err_map:
387 	kfree(sa1100_rtc);
388 	return ret;
389 }
390 
391 static int sa1100_rtc_remove(struct platform_device *pdev)
392 {
393 	struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
394 
395 	rtc_device_unregister(sa1100_rtc->rtc);
396 	clk_disable(sa1100_rtc->clk);
397 	clk_unprepare(sa1100_rtc->clk);
398 	iounmap(sa1100_rtc->base);
399 	return 0;
400 }
401 
402 #ifdef CONFIG_PM
403 static int sa1100_rtc_suspend(struct device *dev)
404 {
405 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
406 
407 	if (device_may_wakeup(dev))
408 		enable_irq_wake(sa1100_rtc->irq_Alrm);
409 	return 0;
410 }
411 
412 static int sa1100_rtc_resume(struct device *dev)
413 {
414 	struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
415 
416 	if (device_may_wakeup(dev))
417 		disable_irq_wake(sa1100_rtc->irq_Alrm);
418 	return 0;
419 }
420 
421 static const struct dev_pm_ops sa1100_rtc_pm_ops = {
422 	.suspend	= sa1100_rtc_suspend,
423 	.resume		= sa1100_rtc_resume,
424 };
425 #endif
426 
427 static struct platform_driver sa1100_rtc_driver = {
428 	.probe		= sa1100_rtc_probe,
429 	.remove		= sa1100_rtc_remove,
430 	.driver		= {
431 		.name	= "sa1100-rtc",
432 #ifdef CONFIG_PM
433 		.pm	= &sa1100_rtc_pm_ops,
434 #endif
435 	},
436 };
437 
438 module_platform_driver(sa1100_rtc_driver);
439 
440 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
441 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
442 MODULE_LICENSE("GPL");
443 MODULE_ALIAS("platform:sa1100-rtc");
444