xref: /linux/drivers/rtc/rtc-rzn1.c (revision 0b6da785130d9e8cf33d001a7bf08a979c87d019)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Renesas RZ/N1 Real Time Clock interface for Linux
4  *
5  * Copyright:
6  * - 2014 Renesas Electronics Europe Limited
7  * - 2022 Schneider Electric
8  *
9  * Authors:
10  * - Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
11  * - Miquel Raynal <miquel.raynal@bootlin.com>
12  */
13 
14 #include <linux/bcd.h>
15 #include <linux/init.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/rtc.h>
22 
23 #define RZN1_RTC_CTL0 0x00
24 #define   RZN1_RTC_CTL0_SLSB_SUBU 0
25 #define   RZN1_RTC_CTL0_SLSB_SCMP BIT(4)
26 #define   RZN1_RTC_CTL0_AMPM BIT(5)
27 #define   RZN1_RTC_CTL0_CE BIT(7)
28 
29 #define RZN1_RTC_CTL1 0x04
30 #define   RZN1_RTC_CTL1_ALME BIT(4)
31 
32 #define RZN1_RTC_CTL2 0x08
33 #define   RZN1_RTC_CTL2_WAIT BIT(0)
34 #define   RZN1_RTC_CTL2_WST BIT(1)
35 #define   RZN1_RTC_CTL2_WUST BIT(5)
36 #define   RZN1_RTC_CTL2_STOPPED (RZN1_RTC_CTL2_WAIT | RZN1_RTC_CTL2_WST)
37 
38 #define RZN1_RTC_SEC 0x14
39 #define RZN1_RTC_MIN 0x18
40 #define RZN1_RTC_HOUR 0x1c
41 #define RZN1_RTC_WEEK 0x20
42 #define RZN1_RTC_DAY 0x24
43 #define RZN1_RTC_MONTH 0x28
44 #define RZN1_RTC_YEAR 0x2c
45 
46 #define RZN1_RTC_SUBU 0x38
47 #define   RZN1_RTC_SUBU_DEV BIT(7)
48 #define   RZN1_RTC_SUBU_DECR BIT(6)
49 
50 #define RZN1_RTC_ALM 0x40
51 #define RZN1_RTC_ALH 0x44
52 #define RZN1_RTC_ALW 0x48
53 
54 #define RZN1_RTC_SECC 0x4c
55 #define RZN1_RTC_MINC 0x50
56 #define RZN1_RTC_HOURC 0x54
57 #define RZN1_RTC_WEEKC 0x58
58 #define RZN1_RTC_DAYC 0x5c
59 #define RZN1_RTC_MONTHC 0x60
60 #define RZN1_RTC_YEARC 0x64
61 
62 struct rzn1_rtc {
63 	struct rtc_device *rtcdev;
64 	void __iomem *base;
65 };
66 
67 static void rzn1_rtc_get_time_snapshot(struct rzn1_rtc *rtc, struct rtc_time *tm)
68 {
69 	tm->tm_sec = readl(rtc->base + RZN1_RTC_SECC);
70 	tm->tm_min = readl(rtc->base + RZN1_RTC_MINC);
71 	tm->tm_hour = readl(rtc->base + RZN1_RTC_HOURC);
72 	tm->tm_wday = readl(rtc->base + RZN1_RTC_WEEKC);
73 	tm->tm_mday = readl(rtc->base + RZN1_RTC_DAYC);
74 	tm->tm_mon = readl(rtc->base + RZN1_RTC_MONTHC);
75 	tm->tm_year = readl(rtc->base + RZN1_RTC_YEARC);
76 }
77 
78 static unsigned int rzn1_rtc_tm_to_wday(struct rtc_time *tm)
79 {
80 	time64_t time;
81 	unsigned int days;
82 	u32 secs;
83 
84 	time = rtc_tm_to_time64(tm);
85 	days = div_s64_rem(time, 86400, &secs);
86 
87 	/* day of the week, 1970-01-01 was a Thursday */
88 	return (days + 4) % 7;
89 }
90 
91 static int rzn1_rtc_read_time(struct device *dev, struct rtc_time *tm)
92 {
93 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
94 	u32 val, secs;
95 
96 	/*
97 	 * The RTC was not started or is stopped and thus does not carry the
98 	 * proper time/date.
99 	 */
100 	val = readl(rtc->base + RZN1_RTC_CTL2);
101 	if (val & RZN1_RTC_CTL2_STOPPED)
102 		return -EINVAL;
103 
104 	rzn1_rtc_get_time_snapshot(rtc, tm);
105 	secs = readl(rtc->base + RZN1_RTC_SECC);
106 	if (tm->tm_sec != secs)
107 		rzn1_rtc_get_time_snapshot(rtc, tm);
108 
109 	tm->tm_sec = bcd2bin(tm->tm_sec);
110 	tm->tm_min = bcd2bin(tm->tm_min);
111 	tm->tm_hour = bcd2bin(tm->tm_hour);
112 	tm->tm_wday = bcd2bin(tm->tm_wday);
113 	tm->tm_mday = bcd2bin(tm->tm_mday);
114 	tm->tm_mon = bcd2bin(tm->tm_mon);
115 	tm->tm_year = bcd2bin(tm->tm_year);
116 
117 	return 0;
118 }
119 
120 static int rzn1_rtc_set_time(struct device *dev, struct rtc_time *tm)
121 {
122 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
123 	u32 val;
124 	int ret;
125 
126 	tm->tm_sec = bin2bcd(tm->tm_sec);
127 	tm->tm_min = bin2bcd(tm->tm_min);
128 	tm->tm_hour = bin2bcd(tm->tm_hour);
129 	tm->tm_wday = bin2bcd(rzn1_rtc_tm_to_wday(tm));
130 	tm->tm_mday = bin2bcd(tm->tm_mday);
131 	tm->tm_mon = bin2bcd(tm->tm_mon);
132 	tm->tm_year = bin2bcd(tm->tm_year);
133 
134 	val = readl(rtc->base + RZN1_RTC_CTL2);
135 	if (!(val & RZN1_RTC_CTL2_STOPPED)) {
136 		/* Hold the counter if it was counting up */
137 		writel(RZN1_RTC_CTL2_WAIT, rtc->base + RZN1_RTC_CTL2);
138 
139 		/* Wait for the counter to stop: two 32k clock cycles */
140 		usleep_range(61, 100);
141 		ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, val,
142 					 val & RZN1_RTC_CTL2_WST, 0, 100);
143 		if (ret)
144 			return ret;
145 	}
146 
147 	writel(tm->tm_sec, rtc->base + RZN1_RTC_SEC);
148 	writel(tm->tm_min, rtc->base + RZN1_RTC_MIN);
149 	writel(tm->tm_hour, rtc->base + RZN1_RTC_HOUR);
150 	writel(tm->tm_wday, rtc->base + RZN1_RTC_WEEK);
151 	writel(tm->tm_mday, rtc->base + RZN1_RTC_DAY);
152 	writel(tm->tm_mon, rtc->base + RZN1_RTC_MONTH);
153 	writel(tm->tm_year, rtc->base + RZN1_RTC_YEAR);
154 	writel(0, rtc->base + RZN1_RTC_CTL2);
155 
156 	return 0;
157 }
158 
159 static irqreturn_t rzn1_rtc_alarm_irq(int irq, void *dev_id)
160 {
161 	struct rzn1_rtc *rtc = dev_id;
162 
163 	rtc_update_irq(rtc->rtcdev, 1, RTC_AF | RTC_IRQF);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static int rzn1_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
169 {
170 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
171 	u32 ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
172 
173 	if (enable)
174 		ctl1 |= RZN1_RTC_CTL1_ALME;
175 	else
176 		ctl1 &= ~RZN1_RTC_CTL1_ALME;
177 
178 	writel(ctl1, rtc->base + RZN1_RTC_CTL1);
179 
180 	return 0;
181 }
182 
183 static int rzn1_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
184 {
185 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
186 	struct rtc_time *tm = &alrm->time;
187 	unsigned int min, hour, wday, delta_days;
188 	time64_t alarm;
189 	u32 ctl1;
190 	int ret;
191 
192 	ret = rzn1_rtc_read_time(dev, tm);
193 	if (ret)
194 		return ret;
195 
196 	min = readl(rtc->base + RZN1_RTC_ALM);
197 	hour = readl(rtc->base + RZN1_RTC_ALH);
198 	wday = readl(rtc->base + RZN1_RTC_ALW);
199 
200 	tm->tm_sec = 0;
201 	tm->tm_min = bcd2bin(min);
202 	tm->tm_hour = bcd2bin(hour);
203 	delta_days = ((fls(wday) - 1) - tm->tm_wday + 7) % 7;
204 	tm->tm_wday = fls(wday) - 1;
205 
206 	if (delta_days) {
207 		alarm = rtc_tm_to_time64(tm) + (delta_days * 86400);
208 		rtc_time64_to_tm(alarm, tm);
209 	}
210 
211 	ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
212 	alrm->enabled = !!(ctl1 & RZN1_RTC_CTL1_ALME);
213 
214 	return 0;
215 }
216 
217 static int rzn1_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
218 {
219 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
220 	struct rtc_time *tm = &alrm->time, tm_now;
221 	unsigned long alarm, farest;
222 	unsigned int days_ahead, wday;
223 	int ret;
224 
225 	ret = rzn1_rtc_read_time(dev, &tm_now);
226 	if (ret)
227 		return ret;
228 
229 	/* We cannot set alarms more than one week ahead */
230 	farest = rtc_tm_to_time64(&tm_now) + (7 * 86400);
231 	alarm = rtc_tm_to_time64(tm);
232 	if (time_after(alarm, farest))
233 		return -ERANGE;
234 
235 	/* Convert alarm day into week day */
236 	days_ahead = tm->tm_mday - tm_now.tm_mday;
237 	wday = (tm_now.tm_wday + days_ahead) % 7;
238 
239 	writel(bin2bcd(tm->tm_min), rtc->base + RZN1_RTC_ALM);
240 	writel(bin2bcd(tm->tm_hour), rtc->base + RZN1_RTC_ALH);
241 	writel(BIT(wday), rtc->base + RZN1_RTC_ALW);
242 
243 	rzn1_rtc_alarm_irq_enable(dev, alrm->enabled);
244 
245 	return 0;
246 }
247 
248 static int rzn1_rtc_read_offset(struct device *dev, long *offset)
249 {
250 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
251 	unsigned int ppb_per_step;
252 	bool subtract;
253 	u32 val;
254 
255 	val = readl(rtc->base + RZN1_RTC_SUBU);
256 	ppb_per_step = val & RZN1_RTC_SUBU_DEV ? 1017 : 3051;
257 	subtract = val & RZN1_RTC_SUBU_DECR;
258 	val &= 0x3F;
259 
260 	if (!val)
261 		*offset = 0;
262 	else if (subtract)
263 		*offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
264 	else
265 		*offset = (val - 1) * ppb_per_step;
266 
267 	return 0;
268 }
269 
270 static int rzn1_rtc_set_offset(struct device *dev, long offset)
271 {
272 	struct rzn1_rtc *rtc = dev_get_drvdata(dev);
273 	unsigned int steps;
274 	int stepsh, stepsl;
275 	u32 subu = 0, ctl2;
276 	int ret;
277 
278 	/*
279 	 * Check which resolution mode (every 20 or 60s) can be used.
280 	 * Between 2 and 124 clock pulses can be added or substracted.
281 	 *
282 	 * In 20s mode, the minimum resolution is 2 / (32768 * 20) which is
283 	 * close to 3051 ppb. In 60s mode, the resolution is closer to 1017.
284 	 */
285 	stepsh = DIV_ROUND_CLOSEST(offset, 1017);
286 	stepsl = DIV_ROUND_CLOSEST(offset, 3051);
287 
288 	if (stepsh >= -0x3E && stepsh <= 0x3E) {
289 		/* 1017 ppb per step */
290 		steps = stepsh;
291 		subu |= RZN1_RTC_SUBU_DEV;
292 	} else if (stepsl >= -0x3E && stepsl <= 0x3E) {
293 		/* 3051 ppb per step */
294 		steps = stepsl;
295 	} else {
296 		return -ERANGE;
297 	}
298 
299 	if (!steps)
300 		return 0;
301 
302 	if (steps > 0) {
303 		subu |= steps + 1;
304 	} else {
305 		subu |= RZN1_RTC_SUBU_DECR;
306 		subu |= (~(-steps - 1)) & 0x3F;
307 	}
308 
309 	ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, ctl2,
310 				 !(ctl2 & RZN1_RTC_CTL2_WUST), 100, 2000000);
311 	if (ret)
312 		return ret;
313 
314 	writel(subu, rtc->base + RZN1_RTC_SUBU);
315 
316 	return 0;
317 }
318 
319 static const struct rtc_class_ops rzn1_rtc_ops = {
320 	.read_time = rzn1_rtc_read_time,
321 	.set_time = rzn1_rtc_set_time,
322 	.read_alarm = rzn1_rtc_read_alarm,
323 	.set_alarm = rzn1_rtc_set_alarm,
324 	.alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
325 	.read_offset = rzn1_rtc_read_offset,
326 	.set_offset = rzn1_rtc_set_offset,
327 };
328 
329 static int rzn1_rtc_probe(struct platform_device *pdev)
330 {
331 	struct rzn1_rtc *rtc;
332 	int alarm_irq;
333 	int ret;
334 
335 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
336 	if (!rtc)
337 		return -ENOMEM;
338 
339 	platform_set_drvdata(pdev, rtc);
340 
341 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
342 	if (IS_ERR(rtc->base))
343 		return dev_err_probe(&pdev->dev, PTR_ERR(rtc->base), "Missing reg\n");
344 
345 	alarm_irq = platform_get_irq(pdev, 0);
346 	if (alarm_irq < 0)
347 		return alarm_irq;
348 
349 	rtc->rtcdev = devm_rtc_allocate_device(&pdev->dev);
350 	if (IS_ERR(rtc->rtcdev))
351 		return PTR_ERR(rtc->rtcdev);
352 
353 	rtc->rtcdev->range_min = RTC_TIMESTAMP_BEGIN_2000;
354 	rtc->rtcdev->range_max = RTC_TIMESTAMP_END_2099;
355 	rtc->rtcdev->ops = &rzn1_rtc_ops;
356 	set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->rtcdev->features);
357 	clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->rtcdev->features);
358 
359 	devm_pm_runtime_enable(&pdev->dev);
360 	ret = pm_runtime_resume_and_get(&pdev->dev);
361 	if (ret < 0)
362 		return ret;
363 
364 	/*
365 	 * Ensure the clock counter is enabled.
366 	 * Set 24-hour mode and possible oscillator offset compensation in SUBU mode.
367 	 */
368 	writel(RZN1_RTC_CTL0_CE | RZN1_RTC_CTL0_AMPM | RZN1_RTC_CTL0_SLSB_SUBU,
369 	       rtc->base + RZN1_RTC_CTL0);
370 
371 	/* Disable all interrupts */
372 	writel(0, rtc->base + RZN1_RTC_CTL1);
373 
374 	ret = devm_request_irq(&pdev->dev, alarm_irq, rzn1_rtc_alarm_irq, 0,
375 			       dev_name(&pdev->dev), rtc);
376 	if (ret) {
377 		dev_err(&pdev->dev, "RTC timer interrupt not available\n");
378 		goto dis_runtime_pm;
379 	}
380 
381 	ret = devm_rtc_register_device(rtc->rtcdev);
382 	if (ret)
383 		goto dis_runtime_pm;
384 
385 	return 0;
386 
387 dis_runtime_pm:
388 	pm_runtime_put(&pdev->dev);
389 
390 	return ret;
391 }
392 
393 static int rzn1_rtc_remove(struct platform_device *pdev)
394 {
395 	pm_runtime_put(&pdev->dev);
396 
397 	return 0;
398 }
399 
400 static const struct of_device_id rzn1_rtc_of_match[] = {
401 	{ .compatible	= "renesas,rzn1-rtc" },
402 	{},
403 };
404 MODULE_DEVICE_TABLE(of, rzn1_rtc_of_match);
405 
406 static struct platform_driver rzn1_rtc_driver = {
407 	.probe = rzn1_rtc_probe,
408 	.remove = rzn1_rtc_remove,
409 	.driver = {
410 		.name	= "rzn1-rtc",
411 		.of_match_table = rzn1_rtc_of_match,
412 	},
413 };
414 module_platform_driver(rzn1_rtc_driver);
415 
416 MODULE_AUTHOR("Michel Pollet <Michel.Pollet@bp.renesas.com");
417 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com");
418 MODULE_DESCRIPTION("RZ/N1 RTC driver");
419 MODULE_LICENSE("GPL");
420