1 /* 2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs 3 * 4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net> 5 * Copyright (C) 2006 Tower Technologies 6 * Copyright (C) 2008 Paul Mundt 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/i2c.h> 14 #include <linux/rtc.h> 15 #include <linux/bcd.h> 16 #include <linux/slab.h> 17 18 #define DRV_VERSION "0.6" 19 20 21 /* 22 * Ricoh has a family of I2C based RTCs, which differ only slightly from 23 * each other. Differences center on pinout (e.g. how many interrupts, 24 * output clock, etc) and how the control registers are used. The '372 25 * is significant only because that's the one this driver first supported. 26 */ 27 #define RS5C372_REG_SECS 0 28 #define RS5C372_REG_MINS 1 29 #define RS5C372_REG_HOURS 2 30 #define RS5C372_REG_WDAY 3 31 #define RS5C372_REG_DAY 4 32 #define RS5C372_REG_MONTH 5 33 #define RS5C372_REG_YEAR 6 34 #define RS5C372_REG_TRIM 7 35 # define RS5C372_TRIM_XSL 0x80 36 # define RS5C372_TRIM_MASK 0x7F 37 38 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */ 39 #define RS5C_REG_ALARM_A_HOURS 9 40 #define RS5C_REG_ALARM_A_WDAY 10 41 42 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */ 43 #define RS5C_REG_ALARM_B_HOURS 12 44 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */ 45 46 #define RS5C_REG_CTRL1 14 47 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */ 48 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */ 49 # define RV5C387_CTRL1_24 (1 << 5) 50 # define RS5C372A_CTRL1_SL1 (1 << 5) 51 # define RS5C_CTRL1_CT_MASK (7 << 0) 52 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */ 53 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */ 54 #define RS5C_REG_CTRL2 15 55 # define RS5C372_CTRL2_24 (1 << 5) 56 # define R2025_CTRL2_XST (1 << 5) 57 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */ 58 # define RS5C_CTRL2_CTFG (1 << 2) 59 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */ 60 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */ 61 62 63 /* to read (style 1) or write registers starting at R */ 64 #define RS5C_ADDR(R) (((R) << 4) | 0) 65 66 67 enum rtc_type { 68 rtc_undef = 0, 69 rtc_r2025sd, 70 rtc_rs5c372a, 71 rtc_rs5c372b, 72 rtc_rv5c386, 73 rtc_rv5c387a, 74 }; 75 76 static const struct i2c_device_id rs5c372_id[] = { 77 { "r2025sd", rtc_r2025sd }, 78 { "rs5c372a", rtc_rs5c372a }, 79 { "rs5c372b", rtc_rs5c372b }, 80 { "rv5c386", rtc_rv5c386 }, 81 { "rv5c387a", rtc_rv5c387a }, 82 { } 83 }; 84 MODULE_DEVICE_TABLE(i2c, rs5c372_id); 85 86 /* REVISIT: this assumes that: 87 * - we're in the 21st century, so it's safe to ignore the century 88 * bit for rv5c38[67] (REG_MONTH bit 7); 89 * - we should use ALARM_A not ALARM_B (may be wrong on some boards) 90 */ 91 struct rs5c372 { 92 struct i2c_client *client; 93 struct rtc_device *rtc; 94 enum rtc_type type; 95 unsigned time24:1; 96 unsigned has_irq:1; 97 unsigned smbus:1; 98 char buf[17]; 99 char *regs; 100 }; 101 102 static int rs5c_get_regs(struct rs5c372 *rs5c) 103 { 104 struct i2c_client *client = rs5c->client; 105 struct i2c_msg msgs[] = { 106 { client->addr, I2C_M_RD, sizeof rs5c->buf, rs5c->buf }, 107 }; 108 109 /* This implements the third reading method from the datasheet, using 110 * an internal address that's reset after each transaction (by STOP) 111 * to 0x0f ... so we read extra registers, and skip the first one. 112 * 113 * The first method doesn't work with the iop3xx adapter driver, on at 114 * least 80219 chips; this works around that bug. 115 * 116 * The third method on the other hand doesn't work for the SMBus-only 117 * configurations, so we use the the first method there, stripping off 118 * the extra register in the process. 119 */ 120 if (rs5c->smbus) { 121 int addr = RS5C_ADDR(RS5C372_REG_SECS); 122 int size = sizeof(rs5c->buf) - 1; 123 124 if (i2c_smbus_read_i2c_block_data(client, addr, size, 125 rs5c->buf + 1) != size) { 126 dev_warn(&client->dev, "can't read registers\n"); 127 return -EIO; 128 } 129 } else { 130 if ((i2c_transfer(client->adapter, msgs, 1)) != 1) { 131 dev_warn(&client->dev, "can't read registers\n"); 132 return -EIO; 133 } 134 } 135 136 dev_dbg(&client->dev, 137 "%02x %02x %02x (%02x) %02x %02x %02x (%02x), " 138 "%02x %02x %02x, %02x %02x %02x; %02x %02x\n", 139 rs5c->regs[0], rs5c->regs[1], rs5c->regs[2], rs5c->regs[3], 140 rs5c->regs[4], rs5c->regs[5], rs5c->regs[6], rs5c->regs[7], 141 rs5c->regs[8], rs5c->regs[9], rs5c->regs[10], rs5c->regs[11], 142 rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]); 143 144 return 0; 145 } 146 147 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg) 148 { 149 unsigned hour; 150 151 if (rs5c->time24) 152 return bcd2bin(reg & 0x3f); 153 154 hour = bcd2bin(reg & 0x1f); 155 if (hour == 12) 156 hour = 0; 157 if (reg & 0x20) 158 hour += 12; 159 return hour; 160 } 161 162 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour) 163 { 164 if (rs5c->time24) 165 return bin2bcd(hour); 166 167 if (hour > 12) 168 return 0x20 | bin2bcd(hour - 12); 169 if (hour == 12) 170 return 0x20 | bin2bcd(12); 171 if (hour == 0) 172 return bin2bcd(12); 173 return bin2bcd(hour); 174 } 175 176 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm) 177 { 178 struct rs5c372 *rs5c = i2c_get_clientdata(client); 179 int status = rs5c_get_regs(rs5c); 180 181 if (status < 0) 182 return status; 183 184 tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f); 185 tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f); 186 tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]); 187 188 tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07); 189 tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f); 190 191 /* tm->tm_mon is zero-based */ 192 tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1; 193 194 /* year is 1900 + tm->tm_year */ 195 tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100; 196 197 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 198 "mday=%d, mon=%d, year=%d, wday=%d\n", 199 __func__, 200 tm->tm_sec, tm->tm_min, tm->tm_hour, 201 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); 202 203 /* rtc might need initialization */ 204 return rtc_valid_tm(tm); 205 } 206 207 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm) 208 { 209 struct rs5c372 *rs5c = i2c_get_clientdata(client); 210 unsigned char buf[7]; 211 int addr; 212 213 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d " 214 "mday=%d, mon=%d, year=%d, wday=%d\n", 215 __func__, 216 tm->tm_sec, tm->tm_min, tm->tm_hour, 217 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); 218 219 addr = RS5C_ADDR(RS5C372_REG_SECS); 220 buf[0] = bin2bcd(tm->tm_sec); 221 buf[1] = bin2bcd(tm->tm_min); 222 buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour); 223 buf[3] = bin2bcd(tm->tm_wday); 224 buf[4] = bin2bcd(tm->tm_mday); 225 buf[5] = bin2bcd(tm->tm_mon + 1); 226 buf[6] = bin2bcd(tm->tm_year - 100); 227 228 if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) { 229 dev_err(&client->dev, "%s: write error\n", __func__); 230 return -EIO; 231 } 232 233 return 0; 234 } 235 236 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 237 #define NEED_TRIM 238 #endif 239 240 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE) 241 #define NEED_TRIM 242 #endif 243 244 #ifdef NEED_TRIM 245 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim) 246 { 247 struct rs5c372 *rs5c372 = i2c_get_clientdata(client); 248 u8 tmp = rs5c372->regs[RS5C372_REG_TRIM]; 249 250 if (osc) 251 *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768; 252 253 if (trim) { 254 dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp); 255 tmp &= RS5C372_TRIM_MASK; 256 if (tmp & 0x3e) { 257 int t = tmp & 0x3f; 258 259 if (tmp & 0x40) 260 t = (~t | (s8)0xc0) + 1; 261 else 262 t = t - 1; 263 264 tmp = t * 2; 265 } else 266 tmp = 0; 267 *trim = tmp; 268 } 269 270 return 0; 271 } 272 #endif 273 274 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm) 275 { 276 return rs5c372_get_datetime(to_i2c_client(dev), tm); 277 } 278 279 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm) 280 { 281 return rs5c372_set_datetime(to_i2c_client(dev), tm); 282 } 283 284 285 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 286 { 287 struct i2c_client *client = to_i2c_client(dev); 288 struct rs5c372 *rs5c = i2c_get_clientdata(client); 289 unsigned char buf; 290 int status, addr; 291 292 buf = rs5c->regs[RS5C_REG_CTRL1]; 293 294 if (!rs5c->has_irq) 295 return -EINVAL; 296 297 status = rs5c_get_regs(rs5c); 298 if (status < 0) 299 return status; 300 301 addr = RS5C_ADDR(RS5C_REG_CTRL1); 302 if (enabled) 303 buf |= RS5C_CTRL1_AALE; 304 else 305 buf &= ~RS5C_CTRL1_AALE; 306 307 if (i2c_smbus_write_byte_data(client, addr, buf) < 0) { 308 printk(KERN_WARNING "%s: can't update alarm\n", 309 rs5c->rtc->name); 310 status = -EIO; 311 } else 312 rs5c->regs[RS5C_REG_CTRL1] = buf; 313 314 return status; 315 } 316 317 318 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI, 319 * which only exposes a polled programming interface; and since 320 * these calls map directly to those EFI requests; we don't demand 321 * we have an IRQ for this chip when we go through this API. 322 * 323 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs 324 * though, managed through RTC_AIE_{ON,OFF} requests. 325 */ 326 327 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t) 328 { 329 struct i2c_client *client = to_i2c_client(dev); 330 struct rs5c372 *rs5c = i2c_get_clientdata(client); 331 int status; 332 333 status = rs5c_get_regs(rs5c); 334 if (status < 0) 335 return status; 336 337 /* report alarm time */ 338 t->time.tm_sec = 0; 339 t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f); 340 t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]); 341 t->time.tm_mday = -1; 342 t->time.tm_mon = -1; 343 t->time.tm_year = -1; 344 t->time.tm_wday = -1; 345 t->time.tm_yday = -1; 346 t->time.tm_isdst = -1; 347 348 /* ... and status */ 349 t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE); 350 t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG); 351 352 return 0; 353 } 354 355 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t) 356 { 357 struct i2c_client *client = to_i2c_client(dev); 358 struct rs5c372 *rs5c = i2c_get_clientdata(client); 359 int status, addr, i; 360 unsigned char buf[3]; 361 362 /* only handle up to 24 hours in the future, like RTC_ALM_SET */ 363 if (t->time.tm_mday != -1 364 || t->time.tm_mon != -1 365 || t->time.tm_year != -1) 366 return -EINVAL; 367 368 /* REVISIT: round up tm_sec */ 369 370 /* if needed, disable irq (clears pending status) */ 371 status = rs5c_get_regs(rs5c); 372 if (status < 0) 373 return status; 374 if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) { 375 addr = RS5C_ADDR(RS5C_REG_CTRL1); 376 buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE; 377 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) { 378 pr_debug("%s: can't disable alarm\n", rs5c->rtc->name); 379 return -EIO; 380 } 381 rs5c->regs[RS5C_REG_CTRL1] = buf[0]; 382 } 383 384 /* set alarm */ 385 buf[0] = bin2bcd(t->time.tm_min); 386 buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour); 387 buf[2] = 0x7f; /* any/all days */ 388 389 for (i = 0; i < sizeof(buf); i++) { 390 addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i); 391 if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) { 392 pr_debug("%s: can't set alarm time\n", rs5c->rtc->name); 393 return -EIO; 394 } 395 } 396 397 /* ... and maybe enable its irq */ 398 if (t->enabled) { 399 addr = RS5C_ADDR(RS5C_REG_CTRL1); 400 buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE; 401 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) 402 printk(KERN_WARNING "%s: can't enable alarm\n", 403 rs5c->rtc->name); 404 rs5c->regs[RS5C_REG_CTRL1] = buf[0]; 405 } 406 407 return 0; 408 } 409 410 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 411 412 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq) 413 { 414 int err, osc, trim; 415 416 err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim); 417 if (err == 0) { 418 seq_printf(seq, "crystal\t\t: %d.%03d KHz\n", 419 osc / 1000, osc % 1000); 420 seq_printf(seq, "trim\t\t: %d\n", trim); 421 } 422 423 return 0; 424 } 425 426 #else 427 #define rs5c372_rtc_proc NULL 428 #endif 429 430 static const struct rtc_class_ops rs5c372_rtc_ops = { 431 .proc = rs5c372_rtc_proc, 432 .read_time = rs5c372_rtc_read_time, 433 .set_time = rs5c372_rtc_set_time, 434 .read_alarm = rs5c_read_alarm, 435 .set_alarm = rs5c_set_alarm, 436 .alarm_irq_enable = rs5c_rtc_alarm_irq_enable, 437 }; 438 439 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE) 440 441 static ssize_t rs5c372_sysfs_show_trim(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 int err, trim; 445 446 err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim); 447 if (err) 448 return err; 449 450 return sprintf(buf, "%d\n", trim); 451 } 452 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL); 453 454 static ssize_t rs5c372_sysfs_show_osc(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 int err, osc; 458 459 err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL); 460 if (err) 461 return err; 462 463 return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000); 464 } 465 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL); 466 467 static int rs5c_sysfs_register(struct device *dev) 468 { 469 int err; 470 471 err = device_create_file(dev, &dev_attr_trim); 472 if (err) 473 return err; 474 err = device_create_file(dev, &dev_attr_osc); 475 if (err) 476 device_remove_file(dev, &dev_attr_trim); 477 478 return err; 479 } 480 481 static void rs5c_sysfs_unregister(struct device *dev) 482 { 483 device_remove_file(dev, &dev_attr_trim); 484 device_remove_file(dev, &dev_attr_osc); 485 } 486 487 #else 488 static int rs5c_sysfs_register(struct device *dev) 489 { 490 return 0; 491 } 492 493 static void rs5c_sysfs_unregister(struct device *dev) 494 { 495 /* nothing */ 496 } 497 #endif /* SYSFS */ 498 499 static struct i2c_driver rs5c372_driver; 500 501 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372) 502 { 503 unsigned char buf[2]; 504 int addr, i, ret = 0; 505 506 if (rs5c372->type == rtc_r2025sd) { 507 if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST)) 508 return ret; 509 rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST; 510 } else { 511 if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP)) 512 return ret; 513 rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP; 514 } 515 516 addr = RS5C_ADDR(RS5C_REG_CTRL1); 517 buf[0] = rs5c372->regs[RS5C_REG_CTRL1]; 518 buf[1] = rs5c372->regs[RS5C_REG_CTRL2]; 519 520 /* use 24hr mode */ 521 switch (rs5c372->type) { 522 case rtc_rs5c372a: 523 case rtc_rs5c372b: 524 buf[1] |= RS5C372_CTRL2_24; 525 rs5c372->time24 = 1; 526 break; 527 case rtc_r2025sd: 528 case rtc_rv5c386: 529 case rtc_rv5c387a: 530 buf[0] |= RV5C387_CTRL1_24; 531 rs5c372->time24 = 1; 532 break; 533 default: 534 /* impossible */ 535 break; 536 } 537 538 for (i = 0; i < sizeof(buf); i++) { 539 addr = RS5C_ADDR(RS5C_REG_CTRL1 + i); 540 ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]); 541 if (unlikely(ret < 0)) 542 return ret; 543 } 544 545 rs5c372->regs[RS5C_REG_CTRL1] = buf[0]; 546 rs5c372->regs[RS5C_REG_CTRL2] = buf[1]; 547 548 return 0; 549 } 550 551 static int rs5c372_probe(struct i2c_client *client, 552 const struct i2c_device_id *id) 553 { 554 int err = 0; 555 int smbus_mode = 0; 556 struct rs5c372 *rs5c372; 557 struct rtc_time tm; 558 559 dev_dbg(&client->dev, "%s\n", __func__); 560 561 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | 562 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) { 563 /* 564 * If we don't have any master mode adapter, try breaking 565 * it down in to the barest of capabilities. 566 */ 567 if (i2c_check_functionality(client->adapter, 568 I2C_FUNC_SMBUS_BYTE_DATA | 569 I2C_FUNC_SMBUS_I2C_BLOCK)) 570 smbus_mode = 1; 571 else { 572 /* Still no good, give up */ 573 err = -ENODEV; 574 goto exit; 575 } 576 } 577 578 if (!(rs5c372 = kzalloc(sizeof(struct rs5c372), GFP_KERNEL))) { 579 err = -ENOMEM; 580 goto exit; 581 } 582 583 rs5c372->client = client; 584 i2c_set_clientdata(client, rs5c372); 585 rs5c372->type = id->driver_data; 586 587 /* we read registers 0x0f then 0x00-0x0f; skip the first one */ 588 rs5c372->regs = &rs5c372->buf[1]; 589 rs5c372->smbus = smbus_mode; 590 591 err = rs5c_get_regs(rs5c372); 592 if (err < 0) 593 goto exit_kfree; 594 595 /* clock may be set for am/pm or 24 hr time */ 596 switch (rs5c372->type) { 597 case rtc_rs5c372a: 598 case rtc_rs5c372b: 599 /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b. 600 * so does periodic irq, except some 327a modes. 601 */ 602 if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24) 603 rs5c372->time24 = 1; 604 break; 605 case rtc_r2025sd: 606 case rtc_rv5c386: 607 case rtc_rv5c387a: 608 if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24) 609 rs5c372->time24 = 1; 610 /* alarm uses ALARM_W; and nINTRB for alarm and periodic 611 * irq, on both 386 and 387 612 */ 613 break; 614 default: 615 dev_err(&client->dev, "unknown RTC type\n"); 616 goto exit_kfree; 617 } 618 619 /* if the oscillator lost power and no other software (like 620 * the bootloader) set it up, do it here. 621 * 622 * The R2025S/D does this a little differently than the other 623 * parts, so we special case that.. 624 */ 625 err = rs5c_oscillator_setup(rs5c372); 626 if (unlikely(err < 0)) { 627 dev_err(&client->dev, "setup error\n"); 628 goto exit_kfree; 629 } 630 631 if (rs5c372_get_datetime(client, &tm) < 0) 632 dev_warn(&client->dev, "clock needs to be set\n"); 633 634 dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n", 635 ({ char *s; switch (rs5c372->type) { 636 case rtc_r2025sd: s = "r2025sd"; break; 637 case rtc_rs5c372a: s = "rs5c372a"; break; 638 case rtc_rs5c372b: s = "rs5c372b"; break; 639 case rtc_rv5c386: s = "rv5c386"; break; 640 case rtc_rv5c387a: s = "rv5c387a"; break; 641 default: s = "chip"; break; 642 }; s;}), 643 rs5c372->time24 ? "24hr" : "am/pm" 644 ); 645 646 /* REVISIT use client->irq to register alarm irq ... */ 647 648 rs5c372->rtc = rtc_device_register(rs5c372_driver.driver.name, 649 &client->dev, &rs5c372_rtc_ops, THIS_MODULE); 650 651 if (IS_ERR(rs5c372->rtc)) { 652 err = PTR_ERR(rs5c372->rtc); 653 goto exit_kfree; 654 } 655 656 err = rs5c_sysfs_register(&client->dev); 657 if (err) 658 goto exit_devreg; 659 660 return 0; 661 662 exit_devreg: 663 rtc_device_unregister(rs5c372->rtc); 664 665 exit_kfree: 666 kfree(rs5c372); 667 668 exit: 669 return err; 670 } 671 672 static int rs5c372_remove(struct i2c_client *client) 673 { 674 struct rs5c372 *rs5c372 = i2c_get_clientdata(client); 675 676 rtc_device_unregister(rs5c372->rtc); 677 rs5c_sysfs_unregister(&client->dev); 678 kfree(rs5c372); 679 return 0; 680 } 681 682 static struct i2c_driver rs5c372_driver = { 683 .driver = { 684 .name = "rtc-rs5c372", 685 }, 686 .probe = rs5c372_probe, 687 .remove = rs5c372_remove, 688 .id_table = rs5c372_id, 689 }; 690 691 static __init int rs5c372_init(void) 692 { 693 return i2c_add_driver(&rs5c372_driver); 694 } 695 696 static __exit void rs5c372_exit(void) 697 { 698 i2c_del_driver(&rs5c372_driver); 699 } 700 701 module_init(rs5c372_init); 702 module_exit(rs5c372_exit); 703 704 MODULE_AUTHOR( 705 "Pavel Mironchik <pmironchik@optifacio.net>, " 706 "Alessandro Zummo <a.zummo@towertech.it>, " 707 "Paul Mundt <lethal@linux-sh.org>"); 708 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver"); 709 MODULE_LICENSE("GPL"); 710 MODULE_VERSION(DRV_VERSION); 711