1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/rtc/rtc-pl031.c 4 * 5 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC 6 * 7 * Author: Deepak Saxena <dsaxena@plexity.net> 8 * 9 * Copyright 2006 (c) MontaVista Software, Inc. 10 * 11 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com> 12 * Copyright 2010 (c) ST-Ericsson AB 13 */ 14 #include <linux/module.h> 15 #include <linux/rtc.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/amba/bus.h> 19 #include <linux/io.h> 20 #include <linux/bcd.h> 21 #include <linux/delay.h> 22 #include <linux/pm_wakeirq.h> 23 #include <linux/slab.h> 24 25 /* 26 * Register definitions 27 */ 28 #define RTC_DR 0x00 /* Data read register */ 29 #define RTC_MR 0x04 /* Match register */ 30 #define RTC_LR 0x08 /* Data load register */ 31 #define RTC_CR 0x0c /* Control register */ 32 #define RTC_IMSC 0x10 /* Interrupt mask and set register */ 33 #define RTC_RIS 0x14 /* Raw interrupt status register */ 34 #define RTC_MIS 0x18 /* Masked interrupt status register */ 35 #define RTC_ICR 0x1c /* Interrupt clear register */ 36 /* ST variants have additional timer functionality */ 37 #define RTC_TDR 0x20 /* Timer data read register */ 38 #define RTC_TLR 0x24 /* Timer data load register */ 39 #define RTC_TCR 0x28 /* Timer control register */ 40 #define RTC_YDR 0x30 /* Year data read register */ 41 #define RTC_YMR 0x34 /* Year match register */ 42 #define RTC_YLR 0x38 /* Year data load register */ 43 44 #define RTC_CR_EN (1 << 0) /* counter enable bit */ 45 #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */ 46 47 #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */ 48 49 /* Common bit definitions for Interrupt status and control registers */ 50 #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */ 51 #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */ 52 53 /* Common bit definations for ST v2 for reading/writing time */ 54 #define RTC_SEC_SHIFT 0 55 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */ 56 #define RTC_MIN_SHIFT 6 57 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */ 58 #define RTC_HOUR_SHIFT 12 59 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */ 60 #define RTC_WDAY_SHIFT 17 61 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */ 62 #define RTC_MDAY_SHIFT 20 63 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */ 64 #define RTC_MON_SHIFT 25 65 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */ 66 67 #define RTC_TIMER_FREQ 32768 68 69 /** 70 * struct pl031_vendor_data - per-vendor variations 71 * @ops: the vendor-specific operations used on this silicon version 72 * @clockwatch: if this is an ST Microelectronics silicon version with a 73 * clockwatch function 74 * @st_weekday: if this is an ST Microelectronics silicon version that need 75 * the weekday fix 76 * @irqflags: special IRQ flags per variant 77 */ 78 struct pl031_vendor_data { 79 struct rtc_class_ops ops; 80 bool clockwatch; 81 bool st_weekday; 82 unsigned long irqflags; 83 time64_t range_min; 84 timeu64_t range_max; 85 }; 86 87 struct pl031_local { 88 struct pl031_vendor_data *vendor; 89 struct rtc_device *rtc; 90 void __iomem *base; 91 }; 92 93 static int pl031_alarm_irq_enable(struct device *dev, 94 unsigned int enabled) 95 { 96 struct pl031_local *ldata = dev_get_drvdata(dev); 97 unsigned long imsc; 98 99 /* Clear any pending alarm interrupts. */ 100 writel(RTC_BIT_AI, ldata->base + RTC_ICR); 101 102 imsc = readl(ldata->base + RTC_IMSC); 103 104 if (enabled == 1) 105 writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC); 106 else 107 writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC); 108 109 return 0; 110 } 111 112 /* 113 * Convert Gregorian date to ST v2 RTC format. 114 */ 115 static int pl031_stv2_tm_to_time(struct device *dev, 116 struct rtc_time *tm, unsigned long *st_time, 117 unsigned long *bcd_year) 118 { 119 int year = tm->tm_year + 1900; 120 int wday = tm->tm_wday; 121 122 /* wday masking is not working in hardware so wday must be valid */ 123 if (wday < -1 || wday > 6) { 124 dev_err(dev, "invalid wday value %d\n", tm->tm_wday); 125 return -EINVAL; 126 } else if (wday == -1) { 127 /* wday is not provided, calculate it here */ 128 struct rtc_time calc_tm; 129 130 rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm); 131 wday = calc_tm.tm_wday; 132 } 133 134 *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8); 135 136 *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT) 137 | (tm->tm_mday << RTC_MDAY_SHIFT) 138 | ((wday + 1) << RTC_WDAY_SHIFT) 139 | (tm->tm_hour << RTC_HOUR_SHIFT) 140 | (tm->tm_min << RTC_MIN_SHIFT) 141 | (tm->tm_sec << RTC_SEC_SHIFT); 142 143 return 0; 144 } 145 146 /* 147 * Convert ST v2 RTC format to Gregorian date. 148 */ 149 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year, 150 struct rtc_time *tm) 151 { 152 tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100); 153 tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1; 154 tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT); 155 tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1; 156 tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT); 157 tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT); 158 tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT); 159 160 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year); 161 tm->tm_year -= 1900; 162 163 return 0; 164 } 165 166 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm) 167 { 168 struct pl031_local *ldata = dev_get_drvdata(dev); 169 170 pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR), 171 readl(ldata->base + RTC_YDR), tm); 172 173 return 0; 174 } 175 176 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm) 177 { 178 unsigned long time; 179 unsigned long bcd_year; 180 struct pl031_local *ldata = dev_get_drvdata(dev); 181 int ret; 182 183 ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year); 184 if (ret == 0) { 185 writel(bcd_year, ldata->base + RTC_YLR); 186 writel(time, ldata->base + RTC_LR); 187 } 188 189 return ret; 190 } 191 192 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 193 { 194 struct pl031_local *ldata = dev_get_drvdata(dev); 195 int ret; 196 197 ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR), 198 readl(ldata->base + RTC_YMR), &alarm->time); 199 200 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; 201 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; 202 203 return ret; 204 } 205 206 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 207 { 208 struct pl031_local *ldata = dev_get_drvdata(dev); 209 unsigned long time; 210 unsigned long bcd_year; 211 int ret; 212 213 ret = pl031_stv2_tm_to_time(dev, &alarm->time, 214 &time, &bcd_year); 215 if (ret == 0) { 216 writel(bcd_year, ldata->base + RTC_YMR); 217 writel(time, ldata->base + RTC_MR); 218 219 pl031_alarm_irq_enable(dev, alarm->enabled); 220 } 221 222 return ret; 223 } 224 225 static irqreturn_t pl031_interrupt(int irq, void *dev_id) 226 { 227 struct pl031_local *ldata = dev_id; 228 unsigned long rtcmis; 229 unsigned long events = 0; 230 231 rtcmis = readl(ldata->base + RTC_MIS); 232 if (rtcmis & RTC_BIT_AI) { 233 writel(RTC_BIT_AI, ldata->base + RTC_ICR); 234 events |= (RTC_AF | RTC_IRQF); 235 rtc_update_irq(ldata->rtc, 1, events); 236 237 return IRQ_HANDLED; 238 } 239 240 return IRQ_NONE; 241 } 242 243 static int pl031_read_time(struct device *dev, struct rtc_time *tm) 244 { 245 struct pl031_local *ldata = dev_get_drvdata(dev); 246 247 rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm); 248 249 return 0; 250 } 251 252 static int pl031_set_time(struct device *dev, struct rtc_time *tm) 253 { 254 struct pl031_local *ldata = dev_get_drvdata(dev); 255 256 writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR); 257 258 return 0; 259 } 260 261 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 262 { 263 struct pl031_local *ldata = dev_get_drvdata(dev); 264 265 rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time); 266 267 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI; 268 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI; 269 270 return 0; 271 } 272 273 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 274 { 275 struct pl031_local *ldata = dev_get_drvdata(dev); 276 277 writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR); 278 279 return 0; 280 } 281 282 static int pl031_remove(struct amba_device *adev) 283 { 284 struct pl031_local *ldata = dev_get_drvdata(&adev->dev); 285 286 dev_pm_clear_wake_irq(&adev->dev); 287 device_init_wakeup(&adev->dev, false); 288 if (adev->irq[0]) 289 free_irq(adev->irq[0], ldata); 290 amba_release_regions(adev); 291 292 return 0; 293 } 294 295 static int pl031_probe(struct amba_device *adev, const struct amba_id *id) 296 { 297 int ret; 298 struct pl031_local *ldata; 299 struct pl031_vendor_data *vendor = id->data; 300 struct rtc_class_ops *ops; 301 unsigned long time, data; 302 303 ret = amba_request_regions(adev, NULL); 304 if (ret) 305 goto err_req; 306 307 ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local), 308 GFP_KERNEL); 309 ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops), 310 GFP_KERNEL); 311 if (!ldata || !ops) { 312 ret = -ENOMEM; 313 goto out; 314 } 315 316 ldata->vendor = vendor; 317 ldata->base = devm_ioremap(&adev->dev, adev->res.start, 318 resource_size(&adev->res)); 319 if (!ldata->base) { 320 ret = -ENOMEM; 321 goto out; 322 } 323 324 amba_set_drvdata(adev, ldata); 325 326 dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev)); 327 dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev)); 328 329 data = readl(ldata->base + RTC_CR); 330 /* Enable the clockwatch on ST Variants */ 331 if (vendor->clockwatch) 332 data |= RTC_CR_CWEN; 333 else 334 data |= RTC_CR_EN; 335 writel(data, ldata->base + RTC_CR); 336 337 /* 338 * On ST PL031 variants, the RTC reset value does not provide correct 339 * weekday for 2000-01-01. Correct the erroneous sunday to saturday. 340 */ 341 if (vendor->st_weekday) { 342 if (readl(ldata->base + RTC_YDR) == 0x2000) { 343 time = readl(ldata->base + RTC_DR); 344 if ((time & 345 (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK)) 346 == 0x02120000) { 347 time = time | (0x7 << RTC_WDAY_SHIFT); 348 writel(0x2000, ldata->base + RTC_YLR); 349 writel(time, ldata->base + RTC_LR); 350 } 351 } 352 } 353 354 if (!adev->irq[0]) { 355 /* When there's no interrupt, no point in exposing the alarm */ 356 ops->read_alarm = NULL; 357 ops->set_alarm = NULL; 358 ops->alarm_irq_enable = NULL; 359 } 360 361 device_init_wakeup(&adev->dev, true); 362 ldata->rtc = devm_rtc_allocate_device(&adev->dev); 363 if (IS_ERR(ldata->rtc)) 364 return PTR_ERR(ldata->rtc); 365 366 ldata->rtc->ops = ops; 367 ldata->rtc->range_min = vendor->range_min; 368 ldata->rtc->range_max = vendor->range_max; 369 370 ret = rtc_register_device(ldata->rtc); 371 if (ret) 372 goto out; 373 374 if (adev->irq[0]) { 375 ret = request_irq(adev->irq[0], pl031_interrupt, 376 vendor->irqflags, "rtc-pl031", ldata); 377 if (ret) 378 goto out; 379 dev_pm_set_wake_irq(&adev->dev, adev->irq[0]); 380 } 381 return 0; 382 383 out: 384 amba_release_regions(adev); 385 err_req: 386 387 return ret; 388 } 389 390 /* Operations for the original ARM version */ 391 static struct pl031_vendor_data arm_pl031 = { 392 .ops = { 393 .read_time = pl031_read_time, 394 .set_time = pl031_set_time, 395 .read_alarm = pl031_read_alarm, 396 .set_alarm = pl031_set_alarm, 397 .alarm_irq_enable = pl031_alarm_irq_enable, 398 }, 399 .range_max = U32_MAX, 400 }; 401 402 /* The First ST derivative */ 403 static struct pl031_vendor_data stv1_pl031 = { 404 .ops = { 405 .read_time = pl031_read_time, 406 .set_time = pl031_set_time, 407 .read_alarm = pl031_read_alarm, 408 .set_alarm = pl031_set_alarm, 409 .alarm_irq_enable = pl031_alarm_irq_enable, 410 }, 411 .clockwatch = true, 412 .st_weekday = true, 413 .range_max = U32_MAX, 414 }; 415 416 /* And the second ST derivative */ 417 static struct pl031_vendor_data stv2_pl031 = { 418 .ops = { 419 .read_time = pl031_stv2_read_time, 420 .set_time = pl031_stv2_set_time, 421 .read_alarm = pl031_stv2_read_alarm, 422 .set_alarm = pl031_stv2_set_alarm, 423 .alarm_irq_enable = pl031_alarm_irq_enable, 424 }, 425 .clockwatch = true, 426 .st_weekday = true, 427 /* 428 * This variant shares the IRQ with another block and must not 429 * suspend that IRQ line. 430 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can 431 * remove IRQF_COND_SUSPEND 432 */ 433 .irqflags = IRQF_SHARED | IRQF_COND_SUSPEND, 434 .range_min = RTC_TIMESTAMP_BEGIN_0000, 435 .range_max = RTC_TIMESTAMP_END_9999, 436 }; 437 438 static const struct amba_id pl031_ids[] = { 439 { 440 .id = 0x00041031, 441 .mask = 0x000fffff, 442 .data = &arm_pl031, 443 }, 444 /* ST Micro variants */ 445 { 446 .id = 0x00180031, 447 .mask = 0x00ffffff, 448 .data = &stv1_pl031, 449 }, 450 { 451 .id = 0x00280031, 452 .mask = 0x00ffffff, 453 .data = &stv2_pl031, 454 }, 455 {0, 0}, 456 }; 457 458 MODULE_DEVICE_TABLE(amba, pl031_ids); 459 460 static struct amba_driver pl031_driver = { 461 .drv = { 462 .name = "rtc-pl031", 463 }, 464 .id_table = pl031_ids, 465 .probe = pl031_probe, 466 .remove = pl031_remove, 467 }; 468 469 module_amba_driver(pl031_driver); 470 471 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>"); 472 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver"); 473 MODULE_LICENSE("GPL"); 474