xref: /linux/drivers/rtc/rtc-pl031.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * drivers/rtc/rtc-pl031.c
3  *
4  * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
5  *
6  * Author: Deepak Saxena <dsaxena@plexity.net>
7  *
8  * Copyright 2006 (c) MontaVista Software, Inc.
9  *
10  * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11  * Copyright 2010 (c) ST-Ericsson AB
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/amba/bus.h>
23 #include <linux/io.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 
28 /*
29  * Register definitions
30  */
31 #define	RTC_DR		0x00	/* Data read register */
32 #define	RTC_MR		0x04	/* Match register */
33 #define	RTC_LR		0x08	/* Data load register */
34 #define	RTC_CR		0x0c	/* Control register */
35 #define	RTC_IMSC	0x10	/* Interrupt mask and set register */
36 #define	RTC_RIS		0x14	/* Raw interrupt status register */
37 #define	RTC_MIS		0x18	/* Masked interrupt status register */
38 #define	RTC_ICR		0x1c	/* Interrupt clear register */
39 /* ST variants have additional timer functionality */
40 #define RTC_TDR		0x20	/* Timer data read register */
41 #define RTC_TLR		0x24	/* Timer data load register */
42 #define RTC_TCR		0x28	/* Timer control register */
43 #define RTC_YDR		0x30	/* Year data read register */
44 #define RTC_YMR		0x34	/* Year match register */
45 #define RTC_YLR		0x38	/* Year data load register */
46 
47 #define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
48 
49 #define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
50 
51 /* Common bit definitions for Interrupt status and control registers */
52 #define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
53 #define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
54 
55 /* Common bit definations for ST v2 for reading/writing time */
56 #define RTC_SEC_SHIFT 0
57 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
58 #define RTC_MIN_SHIFT 6
59 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
60 #define RTC_HOUR_SHIFT 12
61 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
62 #define RTC_WDAY_SHIFT 17
63 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
64 #define RTC_MDAY_SHIFT 20
65 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
66 #define RTC_MON_SHIFT 25
67 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
68 
69 #define RTC_TIMER_FREQ 32768
70 
71 /**
72  * struct pl031_vendor_data - per-vendor variations
73  * @ops: the vendor-specific operations used on this silicon version
74  * @clockwatch: if this is an ST Microelectronics silicon version with a
75  *	clockwatch function
76  * @st_weekday: if this is an ST Microelectronics silicon version that need
77  *	the weekday fix
78  * @irqflags: special IRQ flags per variant
79  */
80 struct pl031_vendor_data {
81 	struct rtc_class_ops ops;
82 	bool clockwatch;
83 	bool st_weekday;
84 	unsigned long irqflags;
85 };
86 
87 struct pl031_local {
88 	struct pl031_vendor_data *vendor;
89 	struct rtc_device *rtc;
90 	void __iomem *base;
91 };
92 
93 static int pl031_alarm_irq_enable(struct device *dev,
94 	unsigned int enabled)
95 {
96 	struct pl031_local *ldata = dev_get_drvdata(dev);
97 	unsigned long imsc;
98 
99 	/* Clear any pending alarm interrupts. */
100 	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
101 
102 	imsc = readl(ldata->base + RTC_IMSC);
103 
104 	if (enabled == 1)
105 		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
106 	else
107 		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
108 
109 	return 0;
110 }
111 
112 /*
113  * Convert Gregorian date to ST v2 RTC format.
114  */
115 static int pl031_stv2_tm_to_time(struct device *dev,
116 				 struct rtc_time *tm, unsigned long *st_time,
117 	unsigned long *bcd_year)
118 {
119 	int year = tm->tm_year + 1900;
120 	int wday = tm->tm_wday;
121 
122 	/* wday masking is not working in hardware so wday must be valid */
123 	if (wday < -1 || wday > 6) {
124 		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
125 		return -EINVAL;
126 	} else if (wday == -1) {
127 		/* wday is not provided, calculate it here */
128 		unsigned long time;
129 		struct rtc_time calc_tm;
130 
131 		rtc_tm_to_time(tm, &time);
132 		rtc_time_to_tm(time, &calc_tm);
133 		wday = calc_tm.tm_wday;
134 	}
135 
136 	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
137 
138 	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
139 			|	(tm->tm_mday << RTC_MDAY_SHIFT)
140 			|	((wday + 1) << RTC_WDAY_SHIFT)
141 			|	(tm->tm_hour << RTC_HOUR_SHIFT)
142 			|	(tm->tm_min << RTC_MIN_SHIFT)
143 			|	(tm->tm_sec << RTC_SEC_SHIFT);
144 
145 	return 0;
146 }
147 
148 /*
149  * Convert ST v2 RTC format to Gregorian date.
150  */
151 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
152 	struct rtc_time *tm)
153 {
154 	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
155 	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
156 	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
157 	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
158 	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
159 	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
160 	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
161 
162 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
163 	tm->tm_year -= 1900;
164 
165 	return 0;
166 }
167 
168 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
169 {
170 	struct pl031_local *ldata = dev_get_drvdata(dev);
171 
172 	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
173 			readl(ldata->base + RTC_YDR), tm);
174 
175 	return 0;
176 }
177 
178 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
179 {
180 	unsigned long time;
181 	unsigned long bcd_year;
182 	struct pl031_local *ldata = dev_get_drvdata(dev);
183 	int ret;
184 
185 	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
186 	if (ret == 0) {
187 		writel(bcd_year, ldata->base + RTC_YLR);
188 		writel(time, ldata->base + RTC_LR);
189 	}
190 
191 	return ret;
192 }
193 
194 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
195 {
196 	struct pl031_local *ldata = dev_get_drvdata(dev);
197 	int ret;
198 
199 	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
200 			readl(ldata->base + RTC_YMR), &alarm->time);
201 
202 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
203 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
204 
205 	return ret;
206 }
207 
208 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
209 {
210 	struct pl031_local *ldata = dev_get_drvdata(dev);
211 	unsigned long time;
212 	unsigned long bcd_year;
213 	int ret;
214 
215 	/* At the moment, we can only deal with non-wildcarded alarm times. */
216 	ret = rtc_valid_tm(&alarm->time);
217 	if (ret == 0) {
218 		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
219 					    &time, &bcd_year);
220 		if (ret == 0) {
221 			writel(bcd_year, ldata->base + RTC_YMR);
222 			writel(time, ldata->base + RTC_MR);
223 
224 			pl031_alarm_irq_enable(dev, alarm->enabled);
225 		}
226 	}
227 
228 	return ret;
229 }
230 
231 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
232 {
233 	struct pl031_local *ldata = dev_id;
234 	unsigned long rtcmis;
235 	unsigned long events = 0;
236 
237 	rtcmis = readl(ldata->base + RTC_MIS);
238 	if (rtcmis & RTC_BIT_AI) {
239 		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
240 		events |= (RTC_AF | RTC_IRQF);
241 		rtc_update_irq(ldata->rtc, 1, events);
242 
243 		return IRQ_HANDLED;
244 	}
245 
246 	return IRQ_NONE;
247 }
248 
249 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
250 {
251 	struct pl031_local *ldata = dev_get_drvdata(dev);
252 
253 	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
254 
255 	return 0;
256 }
257 
258 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
259 {
260 	unsigned long time;
261 	struct pl031_local *ldata = dev_get_drvdata(dev);
262 	int ret;
263 
264 	ret = rtc_tm_to_time(tm, &time);
265 
266 	if (ret == 0)
267 		writel(time, ldata->base + RTC_LR);
268 
269 	return ret;
270 }
271 
272 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
273 {
274 	struct pl031_local *ldata = dev_get_drvdata(dev);
275 
276 	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
277 
278 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
279 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
280 
281 	return 0;
282 }
283 
284 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
285 {
286 	struct pl031_local *ldata = dev_get_drvdata(dev);
287 	unsigned long time;
288 	int ret;
289 
290 	/* At the moment, we can only deal with non-wildcarded alarm times. */
291 	ret = rtc_valid_tm(&alarm->time);
292 	if (ret == 0) {
293 		ret = rtc_tm_to_time(&alarm->time, &time);
294 		if (ret == 0) {
295 			writel(time, ldata->base + RTC_MR);
296 			pl031_alarm_irq_enable(dev, alarm->enabled);
297 		}
298 	}
299 
300 	return ret;
301 }
302 
303 static int pl031_remove(struct amba_device *adev)
304 {
305 	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
306 
307 	amba_set_drvdata(adev, NULL);
308 	free_irq(adev->irq[0], ldata->rtc);
309 	rtc_device_unregister(ldata->rtc);
310 	iounmap(ldata->base);
311 	kfree(ldata);
312 	amba_release_regions(adev);
313 
314 	return 0;
315 }
316 
317 static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
318 {
319 	int ret;
320 	struct pl031_local *ldata;
321 	struct pl031_vendor_data *vendor = id->data;
322 	struct rtc_class_ops *ops = &vendor->ops;
323 	unsigned long time;
324 
325 	ret = amba_request_regions(adev, NULL);
326 	if (ret)
327 		goto err_req;
328 
329 	ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
330 	if (!ldata) {
331 		ret = -ENOMEM;
332 		goto out;
333 	}
334 	ldata->vendor = vendor;
335 
336 	ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
337 
338 	if (!ldata->base) {
339 		ret = -ENOMEM;
340 		goto out_no_remap;
341 	}
342 
343 	amba_set_drvdata(adev, ldata);
344 
345 	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
346 	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
347 
348 	/* Enable the clockwatch on ST Variants */
349 	if (vendor->clockwatch)
350 		writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
351 		       ldata->base + RTC_CR);
352 
353 	/*
354 	 * On ST PL031 variants, the RTC reset value does not provide correct
355 	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
356 	 */
357 	if (vendor->st_weekday) {
358 		if (readl(ldata->base + RTC_YDR) == 0x2000) {
359 			time = readl(ldata->base + RTC_DR);
360 			if ((time &
361 			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
362 			    == 0x02120000) {
363 				time = time | (0x7 << RTC_WDAY_SHIFT);
364 				writel(0x2000, ldata->base + RTC_YLR);
365 				writel(time, ldata->base + RTC_LR);
366 			}
367 		}
368 	}
369 
370 	ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
371 					THIS_MODULE);
372 	if (IS_ERR(ldata->rtc)) {
373 		ret = PTR_ERR(ldata->rtc);
374 		goto out_no_rtc;
375 	}
376 
377 	if (request_irq(adev->irq[0], pl031_interrupt,
378 			vendor->irqflags, "rtc-pl031", ldata)) {
379 		ret = -EIO;
380 		goto out_no_irq;
381 	}
382 
383 	return 0;
384 
385 out_no_irq:
386 	rtc_device_unregister(ldata->rtc);
387 out_no_rtc:
388 	iounmap(ldata->base);
389 	amba_set_drvdata(adev, NULL);
390 out_no_remap:
391 	kfree(ldata);
392 out:
393 	amba_release_regions(adev);
394 err_req:
395 
396 	return ret;
397 }
398 
399 /* Operations for the original ARM version */
400 static struct pl031_vendor_data arm_pl031 = {
401 	.ops = {
402 		.read_time = pl031_read_time,
403 		.set_time = pl031_set_time,
404 		.read_alarm = pl031_read_alarm,
405 		.set_alarm = pl031_set_alarm,
406 		.alarm_irq_enable = pl031_alarm_irq_enable,
407 	},
408 	.irqflags = IRQF_NO_SUSPEND,
409 };
410 
411 /* The First ST derivative */
412 static struct pl031_vendor_data stv1_pl031 = {
413 	.ops = {
414 		.read_time = pl031_read_time,
415 		.set_time = pl031_set_time,
416 		.read_alarm = pl031_read_alarm,
417 		.set_alarm = pl031_set_alarm,
418 		.alarm_irq_enable = pl031_alarm_irq_enable,
419 	},
420 	.clockwatch = true,
421 	.st_weekday = true,
422 	.irqflags = IRQF_NO_SUSPEND,
423 };
424 
425 /* And the second ST derivative */
426 static struct pl031_vendor_data stv2_pl031 = {
427 	.ops = {
428 		.read_time = pl031_stv2_read_time,
429 		.set_time = pl031_stv2_set_time,
430 		.read_alarm = pl031_stv2_read_alarm,
431 		.set_alarm = pl031_stv2_set_alarm,
432 		.alarm_irq_enable = pl031_alarm_irq_enable,
433 	},
434 	.clockwatch = true,
435 	.st_weekday = true,
436 	/*
437 	 * This variant shares the IRQ with another block and must not
438 	 * suspend that IRQ line.
439 	 */
440 	.irqflags = IRQF_SHARED | IRQF_NO_SUSPEND,
441 };
442 
443 static struct amba_id pl031_ids[] = {
444 	{
445 		.id = 0x00041031,
446 		.mask = 0x000fffff,
447 		.data = &arm_pl031,
448 	},
449 	/* ST Micro variants */
450 	{
451 		.id = 0x00180031,
452 		.mask = 0x00ffffff,
453 		.data = &stv1_pl031,
454 	},
455 	{
456 		.id = 0x00280031,
457 		.mask = 0x00ffffff,
458 		.data = &stv2_pl031,
459 	},
460 	{0, 0},
461 };
462 
463 MODULE_DEVICE_TABLE(amba, pl031_ids);
464 
465 static struct amba_driver pl031_driver = {
466 	.drv = {
467 		.name = "rtc-pl031",
468 	},
469 	.id_table = pl031_ids,
470 	.probe = pl031_probe,
471 	.remove = pl031_remove,
472 };
473 
474 module_amba_driver(pl031_driver);
475 
476 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
477 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
478 MODULE_LICENSE("GPL");
479