xref: /linux/drivers/rtc/rtc-pcf2123.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * An SPI driver for the Philips PCF2123 RTC
3  * Copyright 2009 Cyber Switching, Inc.
4  *
5  * Author: Chris Verges <chrisv@cyberswitching.com>
6  * Maintainers: http://www.cyberswitching.com
7  *
8  * based on the RS5C348 driver in this same directory.
9  *
10  * Thanks to Christian Pellegrin <chripell@fsfe.org> for
11  * the sysfs contributions to this driver.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * Please note that the CS is active high, so platform data
18  * should look something like:
19  *
20  * static struct spi_board_info ek_spi_devices[] = {
21  *	...
22  *	{
23  *		.modalias		= "rtc-pcf2123",
24  *		.chip_select		= 1,
25  *		.controller_data	= (void *)AT91_PIN_PA10,
26  *		.max_speed_hz		= 1000 * 1000,
27  *		.mode			= SPI_CS_HIGH,
28  *		.bus_num		= 0,
29  *	},
30  *	...
31  *};
32  *
33  */
34 
35 #include <linux/bcd.h>
36 #include <linux/delay.h>
37 #include <linux/device.h>
38 #include <linux/errno.h>
39 #include <linux/init.h>
40 #include <linux/kernel.h>
41 #include <linux/of.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/rtc.h>
45 #include <linux/spi/spi.h>
46 #include <linux/module.h>
47 #include <linux/sysfs.h>
48 
49 /* REGISTERS */
50 #define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
51 #define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
52 #define PCF2123_REG_SC		(0x02)	/* datetime */
53 #define PCF2123_REG_MN		(0x03)
54 #define PCF2123_REG_HR		(0x04)
55 #define PCF2123_REG_DM		(0x05)
56 #define PCF2123_REG_DW		(0x06)
57 #define PCF2123_REG_MO		(0x07)
58 #define PCF2123_REG_YR		(0x08)
59 #define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
60 #define PCF2123_REG_ALRM_HR	(0x0a)
61 #define PCF2123_REG_ALRM_DM	(0x0b)
62 #define PCF2123_REG_ALRM_DW	(0x0c)
63 #define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
64 #define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
65 #define PCF2123_REG_CTDWN_TMR	(0x0f)
66 
67 /* PCF2123_REG_CTRL1 BITS */
68 #define CTRL1_CLEAR		(0)	/* Clear */
69 #define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
70 #define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
71 #define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
72 #define CTRL1_STOP		BIT(5)	/* Stop the clock */
73 #define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
74 
75 /* PCF2123_REG_CTRL2 BITS */
76 #define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
77 #define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
78 #define CTRL2_TF		BIT(2)	/* Countdown timer flag */
79 #define CTRL2_AF		BIT(3)	/* Alarm flag */
80 #define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
81 #define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
82 #define CTRL2_SI		BIT(6)	/* Second irq enable */
83 #define CTRL2_MI		BIT(7)	/* Minute irq enable */
84 
85 /* PCF2123_REG_SC BITS */
86 #define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
87 
88 /* PCF2123_REG_ALRM_XX BITS */
89 #define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
90 
91 /* PCF2123_REG_TMR_CLKOUT BITS */
92 #define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
93 #define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
94 #define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
95 #define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
96 #define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
97 
98 /* PCF2123_REG_OFFSET BITS */
99 #define OFFSET_SIGN_BIT		BIT(6)	/* 2's complement sign bit */
100 #define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
101 #define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
102 
103 /* READ/WRITE ADDRESS BITS */
104 #define PCF2123_WRITE		BIT(4)
105 #define PCF2123_READ		(BIT(4) | BIT(7))
106 
107 
108 static struct spi_driver pcf2123_driver;
109 
110 struct pcf2123_sysfs_reg {
111 	struct device_attribute attr;
112 	char name[2];
113 };
114 
115 struct pcf2123_plat_data {
116 	struct rtc_device *rtc;
117 	struct pcf2123_sysfs_reg regs[16];
118 };
119 
120 /*
121  * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
122  * is released properly after an SPI write.  This function should be
123  * called after EVERY read/write call over SPI.
124  */
125 static inline void pcf2123_delay_trec(void)
126 {
127 	ndelay(30);
128 }
129 
130 static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
131 {
132 	struct spi_device *spi = to_spi_device(dev);
133 	int ret;
134 
135 	reg |= PCF2123_READ;
136 	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
137 	pcf2123_delay_trec();
138 
139 	return ret;
140 }
141 
142 static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
143 {
144 	struct spi_device *spi = to_spi_device(dev);
145 	int ret;
146 
147 	txbuf[0] |= PCF2123_WRITE;
148 	ret = spi_write(spi, txbuf, size);
149 	pcf2123_delay_trec();
150 
151 	return ret;
152 }
153 
154 static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
155 {
156 	u8 txbuf[2];
157 
158 	txbuf[0] = reg;
159 	txbuf[1] = val;
160 	return pcf2123_write(dev, txbuf, sizeof(txbuf));
161 }
162 
163 static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
164 			    char *buffer)
165 {
166 	struct pcf2123_sysfs_reg *r;
167 	u8 rxbuf[1];
168 	unsigned long reg;
169 	int ret;
170 
171 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
172 
173 	ret = kstrtoul(r->name, 16, &reg);
174 	if (ret)
175 		return ret;
176 
177 	ret = pcf2123_read(dev, reg, rxbuf, 1);
178 	if (ret < 0)
179 		return -EIO;
180 
181 	return sprintf(buffer, "0x%x\n", rxbuf[0]);
182 }
183 
184 static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
185 			     const char *buffer, size_t count) {
186 	struct pcf2123_sysfs_reg *r;
187 	unsigned long reg;
188 	unsigned long val;
189 
190 	int ret;
191 
192 	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
193 
194 	ret = kstrtoul(r->name, 16, &reg);
195 	if (ret)
196 		return ret;
197 
198 	ret = kstrtoul(buffer, 10, &val);
199 	if (ret)
200 		return ret;
201 
202 	pcf2123_write_reg(dev, reg, val);
203 	if (ret < 0)
204 		return -EIO;
205 	return count;
206 }
207 
208 static int pcf2123_read_offset(struct device *dev, long *offset)
209 {
210 	int ret;
211 	s8 reg;
212 
213 	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
214 	if (ret < 0)
215 		return ret;
216 
217 	if (reg & OFFSET_COARSE)
218 		reg <<= 1; /* multiply by 2 and sign extend */
219 	else
220 		reg |= (reg & OFFSET_SIGN_BIT) << 1; /* sign extend only */
221 
222 	*offset = ((long)reg) * OFFSET_STEP;
223 
224 	return 0;
225 }
226 
227 /*
228  * The offset register is a 7 bit signed value with a coarse bit in bit 7.
229  * The main difference between the two is normal offset adjusts the first
230  * second of n minutes every other hour, with 61, 62 and 63 being shoved
231  * into the 60th minute.
232  * The coarse adjustment does the same, but every hour.
233  * the two overlap, with every even normal offset value corresponding
234  * to a coarse offset. Based on this algorithm, it seems that despite the
235  * name, coarse offset is a better fit for overlapping values.
236  */
237 static int pcf2123_set_offset(struct device *dev, long offset)
238 {
239 	s8 reg;
240 
241 	if (offset > OFFSET_STEP * 127)
242 		reg = 127;
243 	else if (offset < OFFSET_STEP * -128)
244 		reg = -128;
245 	else
246 		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
247 
248 	/* choose fine offset only for odd values in the normal range */
249 	if (reg & 1 && reg <= 63 && reg >= -64) {
250 		/* Normal offset. Clear the coarse bit */
251 		reg &= ~OFFSET_COARSE;
252 	} else {
253 		/* Coarse offset. Divide by 2 and set the coarse bit */
254 		reg >>= 1;
255 		reg |= OFFSET_COARSE;
256 	}
257 
258 	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
259 }
260 
261 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
262 {
263 	u8 rxbuf[7];
264 	int ret;
265 
266 	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
267 	if (ret < 0)
268 		return ret;
269 
270 	if (rxbuf[0] & OSC_HAS_STOPPED) {
271 		dev_info(dev, "clock was stopped. Time is not valid\n");
272 		return -EINVAL;
273 	}
274 
275 	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
276 	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
277 	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
278 	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
279 	tm->tm_wday = rxbuf[4] & 0x07;
280 	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
281 	tm->tm_year = bcd2bin(rxbuf[6]);
282 	if (tm->tm_year < 70)
283 		tm->tm_year += 100;	/* assume we are in 1970...2069 */
284 
285 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
286 			"mday=%d, mon=%d, year=%d, wday=%d\n",
287 			__func__,
288 			tm->tm_sec, tm->tm_min, tm->tm_hour,
289 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
290 
291 	return rtc_valid_tm(tm);
292 }
293 
294 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
295 {
296 	u8 txbuf[8];
297 	int ret;
298 
299 	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
300 			"mday=%d, mon=%d, year=%d, wday=%d\n",
301 			__func__,
302 			tm->tm_sec, tm->tm_min, tm->tm_hour,
303 			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
304 
305 	/* Stop the counter first */
306 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
307 	if (ret < 0)
308 		return ret;
309 
310 	/* Set the new time */
311 	txbuf[0] = PCF2123_REG_SC;
312 	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
313 	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
314 	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
315 	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
316 	txbuf[5] = tm->tm_wday & 0x07;
317 	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
318 	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
319 
320 	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
321 	if (ret < 0)
322 		return ret;
323 
324 	/* Start the counter */
325 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
326 	if (ret < 0)
327 		return ret;
328 
329 	return 0;
330 }
331 
332 static int pcf2123_reset(struct device *dev)
333 {
334 	int ret;
335 	u8  rxbuf[2];
336 
337 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
338 	if (ret < 0)
339 		return ret;
340 
341 	/* Stop the counter */
342 	dev_dbg(dev, "stopping RTC\n");
343 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
344 	if (ret < 0)
345 		return ret;
346 
347 	/* See if the counter was actually stopped */
348 	dev_dbg(dev, "checking for presence of RTC\n");
349 	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
350 	if (ret < 0)
351 		return ret;
352 
353 	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
354 		rxbuf[0], rxbuf[1]);
355 	if (!(rxbuf[0] & CTRL1_STOP))
356 		return -ENODEV;
357 
358 	/* Start the counter */
359 	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
360 	if (ret < 0)
361 		return ret;
362 
363 	return 0;
364 }
365 
366 static const struct rtc_class_ops pcf2123_rtc_ops = {
367 	.read_time	= pcf2123_rtc_read_time,
368 	.set_time	= pcf2123_rtc_set_time,
369 	.read_offset	= pcf2123_read_offset,
370 	.set_offset	= pcf2123_set_offset,
371 
372 };
373 
374 static int pcf2123_probe(struct spi_device *spi)
375 {
376 	struct rtc_device *rtc;
377 	struct rtc_time tm;
378 	struct pcf2123_plat_data *pdata;
379 	int ret, i;
380 
381 	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
382 				GFP_KERNEL);
383 	if (!pdata)
384 		return -ENOMEM;
385 	spi->dev.platform_data = pdata;
386 
387 	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
388 	if (ret < 0) {
389 		ret = pcf2123_reset(&spi->dev);
390 		if (ret < 0) {
391 			dev_err(&spi->dev, "chip not found\n");
392 			goto kfree_exit;
393 		}
394 	}
395 
396 	dev_info(&spi->dev, "spiclk %u KHz.\n",
397 			(spi->max_speed_hz + 500) / 1000);
398 
399 	/* Finalize the initialization */
400 	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
401 			&pcf2123_rtc_ops, THIS_MODULE);
402 
403 	if (IS_ERR(rtc)) {
404 		dev_err(&spi->dev, "failed to register.\n");
405 		ret = PTR_ERR(rtc);
406 		goto kfree_exit;
407 	}
408 
409 	pdata->rtc = rtc;
410 
411 	for (i = 0; i < 16; i++) {
412 		sysfs_attr_init(&pdata->regs[i].attr.attr);
413 		sprintf(pdata->regs[i].name, "%1x", i);
414 		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
415 		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
416 		pdata->regs[i].attr.show = pcf2123_show;
417 		pdata->regs[i].attr.store = pcf2123_store;
418 		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
419 		if (ret) {
420 			dev_err(&spi->dev, "Unable to create sysfs %s\n",
421 				pdata->regs[i].name);
422 			goto sysfs_exit;
423 		}
424 	}
425 
426 	return 0;
427 
428 sysfs_exit:
429 	for (i--; i >= 0; i--)
430 		device_remove_file(&spi->dev, &pdata->regs[i].attr);
431 
432 kfree_exit:
433 	spi->dev.platform_data = NULL;
434 	return ret;
435 }
436 
437 static int pcf2123_remove(struct spi_device *spi)
438 {
439 	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
440 	int i;
441 
442 	if (pdata) {
443 		for (i = 0; i < 16; i++)
444 			if (pdata->regs[i].name[0])
445 				device_remove_file(&spi->dev,
446 						   &pdata->regs[i].attr);
447 	}
448 
449 	return 0;
450 }
451 
452 #ifdef CONFIG_OF
453 static const struct of_device_id pcf2123_dt_ids[] = {
454 	{ .compatible = "nxp,rtc-pcf2123", },
455 	{ /* sentinel */ }
456 };
457 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
458 #endif
459 
460 static struct spi_driver pcf2123_driver = {
461 	.driver	= {
462 			.name	= "rtc-pcf2123",
463 			.of_match_table = of_match_ptr(pcf2123_dt_ids),
464 	},
465 	.probe	= pcf2123_probe,
466 	.remove	= pcf2123_remove,
467 };
468 
469 module_spi_driver(pcf2123_driver);
470 
471 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
472 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
473 MODULE_LICENSE("GPL");
474