1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * TI OMAP Real Time Clock interface for Linux 4 * 5 * Copyright (C) 2003 MontaVista Software, Inc. 6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com> 7 * 8 * Copyright (C) 2006 David Brownell (new RTC framework) 9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org> 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/init.h> 16 #include <linux/io.h> 17 #include <linux/ioport.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/pinctrl/pinctrl.h> 23 #include <linux/pinctrl/pinconf.h> 24 #include <linux/pinctrl/pinconf-generic.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/rtc.h> 28 29 /* 30 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock 31 * with century-range alarm matching, driven by the 32kHz clock. 32 * 33 * The main user-visible ways it differs from PC RTCs are by omitting 34 * "don't care" alarm fields and sub-second periodic IRQs, and having 35 * an autoadjust mechanism to calibrate to the true oscillator rate. 36 * 37 * Board-specific wiring options include using split power mode with 38 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset), 39 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from 40 * low power modes) for OMAP1 boards (OMAP-L138 has this built into 41 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment. 42 */ 43 44 /* RTC registers */ 45 #define OMAP_RTC_SECONDS_REG 0x00 46 #define OMAP_RTC_MINUTES_REG 0x04 47 #define OMAP_RTC_HOURS_REG 0x08 48 #define OMAP_RTC_DAYS_REG 0x0C 49 #define OMAP_RTC_MONTHS_REG 0x10 50 #define OMAP_RTC_YEARS_REG 0x14 51 #define OMAP_RTC_WEEKS_REG 0x18 52 53 #define OMAP_RTC_ALARM_SECONDS_REG 0x20 54 #define OMAP_RTC_ALARM_MINUTES_REG 0x24 55 #define OMAP_RTC_ALARM_HOURS_REG 0x28 56 #define OMAP_RTC_ALARM_DAYS_REG 0x2c 57 #define OMAP_RTC_ALARM_MONTHS_REG 0x30 58 #define OMAP_RTC_ALARM_YEARS_REG 0x34 59 60 #define OMAP_RTC_CTRL_REG 0x40 61 #define OMAP_RTC_STATUS_REG 0x44 62 #define OMAP_RTC_INTERRUPTS_REG 0x48 63 64 #define OMAP_RTC_COMP_LSB_REG 0x4c 65 #define OMAP_RTC_COMP_MSB_REG 0x50 66 #define OMAP_RTC_OSC_REG 0x54 67 68 #define OMAP_RTC_SCRATCH0_REG 0x60 69 #define OMAP_RTC_SCRATCH1_REG 0x64 70 #define OMAP_RTC_SCRATCH2_REG 0x68 71 72 #define OMAP_RTC_KICK0_REG 0x6c 73 #define OMAP_RTC_KICK1_REG 0x70 74 75 #define OMAP_RTC_IRQWAKEEN 0x7c 76 77 #define OMAP_RTC_ALARM2_SECONDS_REG 0x80 78 #define OMAP_RTC_ALARM2_MINUTES_REG 0x84 79 #define OMAP_RTC_ALARM2_HOURS_REG 0x88 80 #define OMAP_RTC_ALARM2_DAYS_REG 0x8c 81 #define OMAP_RTC_ALARM2_MONTHS_REG 0x90 82 #define OMAP_RTC_ALARM2_YEARS_REG 0x94 83 84 #define OMAP_RTC_PMIC_REG 0x98 85 86 /* OMAP_RTC_CTRL_REG bit fields: */ 87 #define OMAP_RTC_CTRL_SPLIT BIT(7) 88 #define OMAP_RTC_CTRL_DISABLE BIT(6) 89 #define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5) 90 #define OMAP_RTC_CTRL_TEST BIT(4) 91 #define OMAP_RTC_CTRL_MODE_12_24 BIT(3) 92 #define OMAP_RTC_CTRL_AUTO_COMP BIT(2) 93 #define OMAP_RTC_CTRL_ROUND_30S BIT(1) 94 #define OMAP_RTC_CTRL_STOP BIT(0) 95 96 /* OMAP_RTC_STATUS_REG bit fields: */ 97 #define OMAP_RTC_STATUS_POWER_UP BIT(7) 98 #define OMAP_RTC_STATUS_ALARM2 BIT(7) 99 #define OMAP_RTC_STATUS_ALARM BIT(6) 100 #define OMAP_RTC_STATUS_1D_EVENT BIT(5) 101 #define OMAP_RTC_STATUS_1H_EVENT BIT(4) 102 #define OMAP_RTC_STATUS_1M_EVENT BIT(3) 103 #define OMAP_RTC_STATUS_1S_EVENT BIT(2) 104 #define OMAP_RTC_STATUS_RUN BIT(1) 105 #define OMAP_RTC_STATUS_BUSY BIT(0) 106 107 /* OMAP_RTC_INTERRUPTS_REG bit fields: */ 108 #define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4) 109 #define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3) 110 #define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2) 111 112 /* OMAP_RTC_OSC_REG bit fields: */ 113 #define OMAP_RTC_OSC_32KCLK_EN BIT(6) 114 #define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3) 115 #define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4) 116 117 /* OMAP_RTC_IRQWAKEEN bit fields: */ 118 #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1) 119 120 /* OMAP_RTC_PMIC bit fields: */ 121 #define OMAP_RTC_PMIC_POWER_EN_EN BIT(16) 122 #define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x) 123 #define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x) 124 125 /* OMAP_RTC_KICKER values */ 126 #define KICK0_VALUE 0x83e70b13 127 #define KICK1_VALUE 0x95a4f1e0 128 129 struct omap_rtc; 130 131 struct omap_rtc_device_type { 132 bool has_32kclk_en; 133 bool has_irqwakeen; 134 bool has_pmic_mode; 135 bool has_power_up_reset; 136 void (*lock)(struct omap_rtc *rtc); 137 void (*unlock)(struct omap_rtc *rtc); 138 }; 139 140 struct omap_rtc { 141 struct rtc_device *rtc; 142 void __iomem *base; 143 struct clk *clk; 144 int irq_alarm; 145 int irq_timer; 146 u8 interrupts_reg; 147 bool is_pmic_controller; 148 bool has_ext_clk; 149 bool is_suspending; 150 const struct omap_rtc_device_type *type; 151 struct pinctrl_dev *pctldev; 152 }; 153 154 static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg) 155 { 156 return readb(rtc->base + reg); 157 } 158 159 static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg) 160 { 161 return readl(rtc->base + reg); 162 } 163 164 static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val) 165 { 166 writeb(val, rtc->base + reg); 167 } 168 169 static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val) 170 { 171 writel(val, rtc->base + reg); 172 } 173 174 static void am3352_rtc_unlock(struct omap_rtc *rtc) 175 { 176 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE); 177 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE); 178 } 179 180 static void am3352_rtc_lock(struct omap_rtc *rtc) 181 { 182 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0); 183 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0); 184 } 185 186 static void default_rtc_unlock(struct omap_rtc *rtc) 187 { 188 } 189 190 static void default_rtc_lock(struct omap_rtc *rtc) 191 { 192 } 193 194 /* 195 * We rely on the rtc framework to handle locking (rtc->ops_lock), 196 * so the only other requirement is that register accesses which 197 * require BUSY to be clear are made with IRQs locally disabled 198 */ 199 static void rtc_wait_not_busy(struct omap_rtc *rtc) 200 { 201 int count; 202 u8 status; 203 204 /* BUSY may stay active for 1/32768 second (~30 usec) */ 205 for (count = 0; count < 50; count++) { 206 status = rtc_read(rtc, OMAP_RTC_STATUS_REG); 207 if (!(status & OMAP_RTC_STATUS_BUSY)) 208 break; 209 udelay(1); 210 } 211 /* now we have ~15 usec to read/write various registers */ 212 } 213 214 static irqreturn_t rtc_irq(int irq, void *dev_id) 215 { 216 struct omap_rtc *rtc = dev_id; 217 unsigned long events = 0; 218 u8 irq_data; 219 220 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG); 221 222 /* alarm irq? */ 223 if (irq_data & OMAP_RTC_STATUS_ALARM) { 224 rtc->type->unlock(rtc); 225 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM); 226 rtc->type->lock(rtc); 227 events |= RTC_IRQF | RTC_AF; 228 } 229 230 /* 1/sec periodic/update irq? */ 231 if (irq_data & OMAP_RTC_STATUS_1S_EVENT) 232 events |= RTC_IRQF | RTC_UF; 233 234 rtc_update_irq(rtc->rtc, 1, events); 235 236 return IRQ_HANDLED; 237 } 238 239 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 240 { 241 struct omap_rtc *rtc = dev_get_drvdata(dev); 242 u8 reg, irqwake_reg = 0; 243 244 local_irq_disable(); 245 rtc_wait_not_busy(rtc); 246 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 247 if (rtc->type->has_irqwakeen) 248 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); 249 250 if (enabled) { 251 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 252 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 253 } else { 254 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 255 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 256 } 257 rtc_wait_not_busy(rtc); 258 rtc->type->unlock(rtc); 259 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); 260 if (rtc->type->has_irqwakeen) 261 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); 262 rtc->type->lock(rtc); 263 local_irq_enable(); 264 265 return 0; 266 } 267 268 /* this hardware doesn't support "don't care" alarm fields */ 269 static void tm2bcd(struct rtc_time *tm) 270 { 271 tm->tm_sec = bin2bcd(tm->tm_sec); 272 tm->tm_min = bin2bcd(tm->tm_min); 273 tm->tm_hour = bin2bcd(tm->tm_hour); 274 tm->tm_mday = bin2bcd(tm->tm_mday); 275 276 tm->tm_mon = bin2bcd(tm->tm_mon + 1); 277 tm->tm_year = bin2bcd(tm->tm_year - 100); 278 } 279 280 static void bcd2tm(struct rtc_time *tm) 281 { 282 tm->tm_sec = bcd2bin(tm->tm_sec); 283 tm->tm_min = bcd2bin(tm->tm_min); 284 tm->tm_hour = bcd2bin(tm->tm_hour); 285 tm->tm_mday = bcd2bin(tm->tm_mday); 286 tm->tm_mon = bcd2bin(tm->tm_mon) - 1; 287 /* epoch == 1900 */ 288 tm->tm_year = bcd2bin(tm->tm_year) + 100; 289 } 290 291 static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm) 292 { 293 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG); 294 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG); 295 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG); 296 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG); 297 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG); 298 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG); 299 } 300 301 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm) 302 { 303 struct omap_rtc *rtc = dev_get_drvdata(dev); 304 305 /* we don't report wday/yday/isdst ... */ 306 local_irq_disable(); 307 rtc_wait_not_busy(rtc); 308 omap_rtc_read_time_raw(rtc, tm); 309 local_irq_enable(); 310 311 bcd2tm(tm); 312 313 return 0; 314 } 315 316 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm) 317 { 318 struct omap_rtc *rtc = dev_get_drvdata(dev); 319 320 tm2bcd(tm); 321 322 local_irq_disable(); 323 rtc_wait_not_busy(rtc); 324 325 rtc->type->unlock(rtc); 326 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year); 327 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon); 328 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday); 329 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour); 330 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min); 331 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec); 332 rtc->type->lock(rtc); 333 334 local_irq_enable(); 335 336 return 0; 337 } 338 339 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) 340 { 341 struct omap_rtc *rtc = dev_get_drvdata(dev); 342 u8 interrupts; 343 344 local_irq_disable(); 345 rtc_wait_not_busy(rtc); 346 347 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG); 348 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG); 349 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG); 350 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG); 351 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG); 352 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG); 353 354 local_irq_enable(); 355 356 bcd2tm(&alm->time); 357 358 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 359 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM); 360 361 return 0; 362 } 363 364 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 365 { 366 struct omap_rtc *rtc = dev_get_drvdata(dev); 367 u8 reg, irqwake_reg = 0; 368 369 tm2bcd(&alm->time); 370 371 local_irq_disable(); 372 rtc_wait_not_busy(rtc); 373 374 rtc->type->unlock(rtc); 375 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year); 376 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon); 377 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday); 378 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour); 379 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min); 380 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec); 381 382 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 383 if (rtc->type->has_irqwakeen) 384 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); 385 386 if (alm->enabled) { 387 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 388 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 389 } else { 390 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 391 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 392 } 393 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); 394 if (rtc->type->has_irqwakeen) 395 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); 396 rtc->type->lock(rtc); 397 398 local_irq_enable(); 399 400 return 0; 401 } 402 403 static struct omap_rtc *omap_rtc_power_off_rtc; 404 405 /** 406 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC 407 * generates pmic_pwr_enable control, which can be used to control an external 408 * PMIC. 409 */ 410 int omap_rtc_power_off_program(struct device *dev) 411 { 412 struct omap_rtc *rtc = omap_rtc_power_off_rtc; 413 struct rtc_time tm; 414 unsigned long now; 415 int seconds; 416 u32 val; 417 418 rtc->type->unlock(rtc); 419 /* enable pmic_power_en control */ 420 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 421 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN); 422 423 again: 424 /* Clear any existing ALARM2 event */ 425 rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2); 426 427 /* set alarm one second from now */ 428 omap_rtc_read_time_raw(rtc, &tm); 429 seconds = tm.tm_sec; 430 bcd2tm(&tm); 431 now = rtc_tm_to_time64(&tm); 432 rtc_time64_to_tm(now + 1, &tm); 433 434 tm2bcd(&tm); 435 436 rtc_wait_not_busy(rtc); 437 438 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec); 439 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min); 440 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour); 441 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday); 442 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon); 443 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year); 444 445 /* 446 * enable ALARM2 interrupt 447 * 448 * NOTE: this fails on AM3352 if rtc_write (writeb) is used 449 */ 450 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 451 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 452 val | OMAP_RTC_INTERRUPTS_IT_ALARM2); 453 454 /* Retry in case roll over happened before alarm was armed. */ 455 if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) { 456 val = rtc_read(rtc, OMAP_RTC_STATUS_REG); 457 if (!(val & OMAP_RTC_STATUS_ALARM2)) 458 goto again; 459 } 460 461 rtc->type->lock(rtc); 462 463 return 0; 464 } 465 EXPORT_SYMBOL(omap_rtc_power_off_program); 466 467 /* 468 * omap_rtc_poweroff: RTC-controlled power off 469 * 470 * The RTC can be used to control an external PMIC via the pmic_power_en pin, 471 * which can be configured to transition to OFF on ALARM2 events. 472 * 473 * Notes: 474 * The one-second alarm offset is the shortest offset possible as the alarm 475 * registers must be set before the next timer update and the offset 476 * calculation is too heavy for everything to be done within a single access 477 * period (~15 us). 478 * 479 * Called with local interrupts disabled. 480 */ 481 static void omap_rtc_power_off(void) 482 { 483 struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc; 484 u32 val; 485 486 omap_rtc_power_off_program(rtc->dev.parent); 487 488 /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */ 489 omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc); 490 val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG); 491 val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) | 492 OMAP_RTC_PMIC_EXT_WKUP_EN(0); 493 rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val); 494 omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc); 495 496 /* 497 * Wait for alarm to trigger (within one second) and external PMIC to 498 * power off the system. Add a 500 ms margin for external latencies 499 * (e.g. debounce circuits). 500 */ 501 mdelay(1500); 502 } 503 504 static const struct rtc_class_ops omap_rtc_ops = { 505 .read_time = omap_rtc_read_time, 506 .set_time = omap_rtc_set_time, 507 .read_alarm = omap_rtc_read_alarm, 508 .set_alarm = omap_rtc_set_alarm, 509 .alarm_irq_enable = omap_rtc_alarm_irq_enable, 510 }; 511 512 static const struct omap_rtc_device_type omap_rtc_default_type = { 513 .has_power_up_reset = true, 514 .lock = default_rtc_lock, 515 .unlock = default_rtc_unlock, 516 }; 517 518 static const struct omap_rtc_device_type omap_rtc_am3352_type = { 519 .has_32kclk_en = true, 520 .has_irqwakeen = true, 521 .has_pmic_mode = true, 522 .lock = am3352_rtc_lock, 523 .unlock = am3352_rtc_unlock, 524 }; 525 526 static const struct omap_rtc_device_type omap_rtc_da830_type = { 527 .lock = am3352_rtc_lock, 528 .unlock = am3352_rtc_unlock, 529 }; 530 531 static const struct platform_device_id omap_rtc_id_table[] = { 532 { 533 .name = "omap_rtc", 534 .driver_data = (kernel_ulong_t)&omap_rtc_default_type, 535 }, { 536 .name = "am3352-rtc", 537 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type, 538 }, { 539 .name = "da830-rtc", 540 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type, 541 }, { 542 /* sentinel */ 543 } 544 }; 545 MODULE_DEVICE_TABLE(platform, omap_rtc_id_table); 546 547 static const struct of_device_id omap_rtc_of_match[] = { 548 { 549 .compatible = "ti,am3352-rtc", 550 .data = &omap_rtc_am3352_type, 551 }, { 552 .compatible = "ti,da830-rtc", 553 .data = &omap_rtc_da830_type, 554 }, { 555 /* sentinel */ 556 } 557 }; 558 MODULE_DEVICE_TABLE(of, omap_rtc_of_match); 559 560 static const struct pinctrl_pin_desc rtc_pins_desc[] = { 561 PINCTRL_PIN(0, "ext_wakeup0"), 562 PINCTRL_PIN(1, "ext_wakeup1"), 563 PINCTRL_PIN(2, "ext_wakeup2"), 564 PINCTRL_PIN(3, "ext_wakeup3"), 565 }; 566 567 static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) 568 { 569 return 0; 570 } 571 572 static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev, 573 unsigned int group) 574 { 575 return NULL; 576 } 577 578 static const struct pinctrl_ops rtc_pinctrl_ops = { 579 .get_groups_count = rtc_pinctrl_get_groups_count, 580 .get_group_name = rtc_pinctrl_get_group_name, 581 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, 582 .dt_free_map = pinconf_generic_dt_free_map, 583 }; 584 585 #define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1) 586 587 static const struct pinconf_generic_params rtc_params[] = { 588 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0}, 589 }; 590 591 #ifdef CONFIG_DEBUG_FS 592 static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = { 593 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false), 594 }; 595 #endif 596 597 static int rtc_pinconf_get(struct pinctrl_dev *pctldev, 598 unsigned int pin, unsigned long *config) 599 { 600 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 601 unsigned int param = pinconf_to_config_param(*config); 602 u32 val; 603 u16 arg = 0; 604 605 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 606 607 switch (param) { 608 case PIN_CONFIG_INPUT_ENABLE: 609 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin))) 610 return -EINVAL; 611 break; 612 case PIN_CONFIG_ACTIVE_HIGH: 613 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin)) 614 return -EINVAL; 615 break; 616 default: 617 return -ENOTSUPP; 618 } 619 620 *config = pinconf_to_config_packed(param, arg); 621 622 return 0; 623 } 624 625 static int rtc_pinconf_set(struct pinctrl_dev *pctldev, 626 unsigned int pin, unsigned long *configs, 627 unsigned int num_configs) 628 { 629 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 630 u32 val; 631 unsigned int param; 632 u32 param_val; 633 int i; 634 635 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 636 637 /* active low by default */ 638 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin); 639 640 for (i = 0; i < num_configs; i++) { 641 param = pinconf_to_config_param(configs[i]); 642 param_val = pinconf_to_config_argument(configs[i]); 643 644 switch (param) { 645 case PIN_CONFIG_INPUT_ENABLE: 646 if (param_val) 647 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin); 648 else 649 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin); 650 break; 651 case PIN_CONFIG_ACTIVE_HIGH: 652 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin); 653 break; 654 default: 655 dev_err(&rtc->rtc->dev, "Property %u not supported\n", 656 param); 657 return -ENOTSUPP; 658 } 659 } 660 661 rtc->type->unlock(rtc); 662 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val); 663 rtc->type->lock(rtc); 664 665 return 0; 666 } 667 668 static const struct pinconf_ops rtc_pinconf_ops = { 669 .is_generic = true, 670 .pin_config_get = rtc_pinconf_get, 671 .pin_config_set = rtc_pinconf_set, 672 }; 673 674 static struct pinctrl_desc rtc_pinctrl_desc = { 675 .pins = rtc_pins_desc, 676 .npins = ARRAY_SIZE(rtc_pins_desc), 677 .pctlops = &rtc_pinctrl_ops, 678 .confops = &rtc_pinconf_ops, 679 .custom_params = rtc_params, 680 .num_custom_params = ARRAY_SIZE(rtc_params), 681 #ifdef CONFIG_DEBUG_FS 682 .custom_conf_items = rtc_conf_items, 683 #endif 684 .owner = THIS_MODULE, 685 }; 686 687 static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val, 688 size_t bytes) 689 { 690 struct omap_rtc *rtc = priv; 691 u32 *val = _val; 692 int i; 693 694 for (i = 0; i < bytes / 4; i++) 695 val[i] = rtc_readl(rtc, 696 OMAP_RTC_SCRATCH0_REG + offset + (i * 4)); 697 698 return 0; 699 } 700 701 static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val, 702 size_t bytes) 703 { 704 struct omap_rtc *rtc = priv; 705 u32 *val = _val; 706 int i; 707 708 rtc->type->unlock(rtc); 709 for (i = 0; i < bytes / 4; i++) 710 rtc_writel(rtc, 711 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]); 712 rtc->type->lock(rtc); 713 714 return 0; 715 } 716 717 static struct nvmem_config omap_rtc_nvmem_config = { 718 .name = "omap_rtc_scratch", 719 .word_size = 4, 720 .stride = 4, 721 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG, 722 .reg_read = omap_rtc_scratch_read, 723 .reg_write = omap_rtc_scratch_write, 724 }; 725 726 static int omap_rtc_probe(struct platform_device *pdev) 727 { 728 struct omap_rtc *rtc; 729 u8 reg, mask, new_ctrl; 730 const struct platform_device_id *id_entry; 731 const struct of_device_id *of_id; 732 int ret; 733 734 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 735 if (!rtc) 736 return -ENOMEM; 737 738 of_id = of_match_device(omap_rtc_of_match, &pdev->dev); 739 if (of_id) { 740 rtc->type = of_id->data; 741 rtc->is_pmic_controller = rtc->type->has_pmic_mode && 742 of_device_is_system_power_controller(pdev->dev.of_node); 743 } else { 744 id_entry = platform_get_device_id(pdev); 745 rtc->type = (void *)id_entry->driver_data; 746 } 747 748 rtc->irq_timer = platform_get_irq(pdev, 0); 749 if (rtc->irq_timer <= 0) 750 return -ENOENT; 751 752 rtc->irq_alarm = platform_get_irq(pdev, 1); 753 if (rtc->irq_alarm <= 0) 754 return -ENOENT; 755 756 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk"); 757 if (!IS_ERR(rtc->clk)) 758 rtc->has_ext_clk = true; 759 else 760 rtc->clk = devm_clk_get(&pdev->dev, "int-clk"); 761 762 if (!IS_ERR(rtc->clk)) 763 clk_prepare_enable(rtc->clk); 764 765 rtc->base = devm_platform_ioremap_resource(pdev, 0); 766 if (IS_ERR(rtc->base)) { 767 clk_disable_unprepare(rtc->clk); 768 return PTR_ERR(rtc->base); 769 } 770 771 platform_set_drvdata(pdev, rtc); 772 773 /* Enable the clock/module so that we can access the registers */ 774 pm_runtime_enable(&pdev->dev); 775 pm_runtime_get_sync(&pdev->dev); 776 777 rtc->type->unlock(rtc); 778 779 /* 780 * disable interrupts 781 * 782 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used 783 */ 784 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 785 786 /* enable RTC functional clock */ 787 if (rtc->type->has_32kclk_en) { 788 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 789 rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN); 790 } 791 792 /* clear old status */ 793 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG); 794 795 mask = OMAP_RTC_STATUS_ALARM; 796 797 if (rtc->type->has_pmic_mode) 798 mask |= OMAP_RTC_STATUS_ALARM2; 799 800 if (rtc->type->has_power_up_reset) { 801 mask |= OMAP_RTC_STATUS_POWER_UP; 802 if (reg & OMAP_RTC_STATUS_POWER_UP) 803 dev_info(&pdev->dev, "RTC power up reset detected\n"); 804 } 805 806 if (reg & mask) 807 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask); 808 809 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */ 810 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG); 811 if (reg & OMAP_RTC_CTRL_STOP) 812 dev_info(&pdev->dev, "already running\n"); 813 814 /* force to 24 hour mode */ 815 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP); 816 new_ctrl |= OMAP_RTC_CTRL_STOP; 817 818 /* 819 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE: 820 * 821 * - Device wake-up capability setting should come through chip 822 * init logic. OMAP1 boards should initialize the "wakeup capable" 823 * flag in the platform device if the board is wired right for 824 * being woken up by RTC alarm. For OMAP-L138, this capability 825 * is built into the SoC by the "Deep Sleep" capability. 826 * 827 * - Boards wired so RTC_ON_nOFF is used as the reset signal, 828 * rather than nPWRON_RESET, should forcibly enable split 829 * power mode. (Some chip errata report that RTC_CTRL_SPLIT 830 * is write-only, and always reads as zero...) 831 */ 832 833 if (new_ctrl & OMAP_RTC_CTRL_SPLIT) 834 dev_info(&pdev->dev, "split power mode\n"); 835 836 if (reg != new_ctrl) 837 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl); 838 839 /* 840 * If we have the external clock then switch to it so we can keep 841 * ticking across suspend. 842 */ 843 if (rtc->has_ext_clk) { 844 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 845 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE; 846 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC; 847 rtc_write(rtc, OMAP_RTC_OSC_REG, reg); 848 } 849 850 rtc->type->lock(rtc); 851 852 device_init_wakeup(&pdev->dev, true); 853 854 rtc->rtc = devm_rtc_allocate_device(&pdev->dev); 855 if (IS_ERR(rtc->rtc)) { 856 ret = PTR_ERR(rtc->rtc); 857 goto err; 858 } 859 860 rtc->rtc->ops = &omap_rtc_ops; 861 rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; 862 rtc->rtc->range_max = RTC_TIMESTAMP_END_2099; 863 omap_rtc_nvmem_config.priv = rtc; 864 865 /* handle periodic and alarm irqs */ 866 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0, 867 dev_name(&rtc->rtc->dev), rtc); 868 if (ret) 869 goto err; 870 871 if (rtc->irq_timer != rtc->irq_alarm) { 872 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0, 873 dev_name(&rtc->rtc->dev), rtc); 874 if (ret) 875 goto err; 876 } 877 878 /* Support ext_wakeup pinconf */ 879 rtc_pinctrl_desc.name = dev_name(&pdev->dev); 880 881 rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc); 882 if (IS_ERR(rtc->pctldev)) { 883 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 884 ret = PTR_ERR(rtc->pctldev); 885 goto err; 886 } 887 888 ret = devm_rtc_register_device(rtc->rtc); 889 if (ret) 890 goto err; 891 892 devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config); 893 894 if (rtc->is_pmic_controller) { 895 if (!pm_power_off) { 896 omap_rtc_power_off_rtc = rtc; 897 pm_power_off = omap_rtc_power_off; 898 } 899 } 900 901 return 0; 902 903 err: 904 clk_disable_unprepare(rtc->clk); 905 device_init_wakeup(&pdev->dev, false); 906 rtc->type->lock(rtc); 907 pm_runtime_put_sync(&pdev->dev); 908 pm_runtime_disable(&pdev->dev); 909 910 return ret; 911 } 912 913 static int omap_rtc_remove(struct platform_device *pdev) 914 { 915 struct omap_rtc *rtc = platform_get_drvdata(pdev); 916 u8 reg; 917 918 if (pm_power_off == omap_rtc_power_off && 919 omap_rtc_power_off_rtc == rtc) { 920 pm_power_off = NULL; 921 omap_rtc_power_off_rtc = NULL; 922 } 923 924 device_init_wakeup(&pdev->dev, 0); 925 926 if (!IS_ERR(rtc->clk)) 927 clk_disable_unprepare(rtc->clk); 928 929 rtc->type->unlock(rtc); 930 /* leave rtc running, but disable irqs */ 931 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 932 933 if (rtc->has_ext_clk) { 934 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 935 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC; 936 rtc_write(rtc, OMAP_RTC_OSC_REG, reg); 937 } 938 939 rtc->type->lock(rtc); 940 941 /* Disable the clock/module */ 942 pm_runtime_put_sync(&pdev->dev); 943 pm_runtime_disable(&pdev->dev); 944 945 return 0; 946 } 947 948 static int __maybe_unused omap_rtc_suspend(struct device *dev) 949 { 950 struct omap_rtc *rtc = dev_get_drvdata(dev); 951 952 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 953 954 rtc->type->unlock(rtc); 955 /* 956 * FIXME: the RTC alarm is not currently acting as a wakeup event 957 * source on some platforms, and in fact this enable() call is just 958 * saving a flag that's never used... 959 */ 960 if (device_may_wakeup(dev)) 961 enable_irq_wake(rtc->irq_alarm); 962 else 963 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 964 rtc->type->lock(rtc); 965 966 rtc->is_suspending = true; 967 968 return 0; 969 } 970 971 static int __maybe_unused omap_rtc_resume(struct device *dev) 972 { 973 struct omap_rtc *rtc = dev_get_drvdata(dev); 974 975 rtc->type->unlock(rtc); 976 if (device_may_wakeup(dev)) 977 disable_irq_wake(rtc->irq_alarm); 978 else 979 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg); 980 rtc->type->lock(rtc); 981 982 rtc->is_suspending = false; 983 984 return 0; 985 } 986 987 static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev) 988 { 989 struct omap_rtc *rtc = dev_get_drvdata(dev); 990 991 if (rtc->is_suspending && !rtc->has_ext_clk) 992 return -EBUSY; 993 994 return 0; 995 } 996 997 static const struct dev_pm_ops omap_rtc_pm_ops = { 998 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume) 999 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL) 1000 }; 1001 1002 static void omap_rtc_shutdown(struct platform_device *pdev) 1003 { 1004 struct omap_rtc *rtc = platform_get_drvdata(pdev); 1005 u8 mask; 1006 1007 /* 1008 * Keep the ALARM interrupt enabled to allow the system to power up on 1009 * alarm events. 1010 */ 1011 rtc->type->unlock(rtc); 1012 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 1013 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM; 1014 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask); 1015 rtc->type->lock(rtc); 1016 } 1017 1018 static struct platform_driver omap_rtc_driver = { 1019 .probe = omap_rtc_probe, 1020 .remove = omap_rtc_remove, 1021 .shutdown = omap_rtc_shutdown, 1022 .driver = { 1023 .name = "omap_rtc", 1024 .pm = &omap_rtc_pm_ops, 1025 .of_match_table = omap_rtc_of_match, 1026 }, 1027 .id_table = omap_rtc_id_table, 1028 }; 1029 1030 module_platform_driver(omap_rtc_driver); 1031 1032 MODULE_AUTHOR("George G. Davis (and others)"); 1033 MODULE_LICENSE("GPL"); 1034