1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * TI OMAP Real Time Clock interface for Linux 4 * 5 * Copyright (C) 2003 MontaVista Software, Inc. 6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com> 7 * 8 * Copyright (C) 2006 David Brownell (new RTC framework) 9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org> 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/init.h> 16 #include <linux/io.h> 17 #include <linux/ioport.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/pinctrl/pinctrl.h> 22 #include <linux/pinctrl/pinconf.h> 23 #include <linux/pinctrl/pinconf-generic.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/property.h> 27 #include <linux/rtc.h> 28 #include <linux/rtc/rtc-omap.h> 29 30 /* 31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock 32 * with century-range alarm matching, driven by the 32kHz clock. 33 * 34 * The main user-visible ways it differs from PC RTCs are by omitting 35 * "don't care" alarm fields and sub-second periodic IRQs, and having 36 * an autoadjust mechanism to calibrate to the true oscillator rate. 37 * 38 * Board-specific wiring options include using split power mode with 39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset), 40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from 41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into 42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment. 43 */ 44 45 /* RTC registers */ 46 #define OMAP_RTC_SECONDS_REG 0x00 47 #define OMAP_RTC_MINUTES_REG 0x04 48 #define OMAP_RTC_HOURS_REG 0x08 49 #define OMAP_RTC_DAYS_REG 0x0C 50 #define OMAP_RTC_MONTHS_REG 0x10 51 #define OMAP_RTC_YEARS_REG 0x14 52 #define OMAP_RTC_WEEKS_REG 0x18 53 54 #define OMAP_RTC_ALARM_SECONDS_REG 0x20 55 #define OMAP_RTC_ALARM_MINUTES_REG 0x24 56 #define OMAP_RTC_ALARM_HOURS_REG 0x28 57 #define OMAP_RTC_ALARM_DAYS_REG 0x2c 58 #define OMAP_RTC_ALARM_MONTHS_REG 0x30 59 #define OMAP_RTC_ALARM_YEARS_REG 0x34 60 61 #define OMAP_RTC_CTRL_REG 0x40 62 #define OMAP_RTC_STATUS_REG 0x44 63 #define OMAP_RTC_INTERRUPTS_REG 0x48 64 65 #define OMAP_RTC_COMP_LSB_REG 0x4c 66 #define OMAP_RTC_COMP_MSB_REG 0x50 67 #define OMAP_RTC_OSC_REG 0x54 68 69 #define OMAP_RTC_SCRATCH0_REG 0x60 70 #define OMAP_RTC_SCRATCH1_REG 0x64 71 #define OMAP_RTC_SCRATCH2_REG 0x68 72 73 #define OMAP_RTC_KICK0_REG 0x6c 74 #define OMAP_RTC_KICK1_REG 0x70 75 76 #define OMAP_RTC_IRQWAKEEN 0x7c 77 78 #define OMAP_RTC_ALARM2_SECONDS_REG 0x80 79 #define OMAP_RTC_ALARM2_MINUTES_REG 0x84 80 #define OMAP_RTC_ALARM2_HOURS_REG 0x88 81 #define OMAP_RTC_ALARM2_DAYS_REG 0x8c 82 #define OMAP_RTC_ALARM2_MONTHS_REG 0x90 83 #define OMAP_RTC_ALARM2_YEARS_REG 0x94 84 85 #define OMAP_RTC_PMIC_REG 0x98 86 87 /* OMAP_RTC_CTRL_REG bit fields: */ 88 #define OMAP_RTC_CTRL_SPLIT BIT(7) 89 #define OMAP_RTC_CTRL_DISABLE BIT(6) 90 #define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5) 91 #define OMAP_RTC_CTRL_TEST BIT(4) 92 #define OMAP_RTC_CTRL_MODE_12_24 BIT(3) 93 #define OMAP_RTC_CTRL_AUTO_COMP BIT(2) 94 #define OMAP_RTC_CTRL_ROUND_30S BIT(1) 95 #define OMAP_RTC_CTRL_STOP BIT(0) 96 97 /* OMAP_RTC_STATUS_REG bit fields: */ 98 #define OMAP_RTC_STATUS_POWER_UP BIT(7) 99 #define OMAP_RTC_STATUS_ALARM2 BIT(7) 100 #define OMAP_RTC_STATUS_ALARM BIT(6) 101 #define OMAP_RTC_STATUS_1D_EVENT BIT(5) 102 #define OMAP_RTC_STATUS_1H_EVENT BIT(4) 103 #define OMAP_RTC_STATUS_1M_EVENT BIT(3) 104 #define OMAP_RTC_STATUS_1S_EVENT BIT(2) 105 #define OMAP_RTC_STATUS_RUN BIT(1) 106 #define OMAP_RTC_STATUS_BUSY BIT(0) 107 108 /* OMAP_RTC_INTERRUPTS_REG bit fields: */ 109 #define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4) 110 #define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3) 111 #define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2) 112 113 /* OMAP_RTC_OSC_REG bit fields: */ 114 #define OMAP_RTC_OSC_32KCLK_EN BIT(6) 115 #define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3) 116 #define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4) 117 118 /* OMAP_RTC_IRQWAKEEN bit fields: */ 119 #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1) 120 121 /* OMAP_RTC_PMIC bit fields: */ 122 #define OMAP_RTC_PMIC_POWER_EN_EN BIT(16) 123 #define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x) 124 #define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x) 125 126 /* OMAP_RTC_KICKER values */ 127 #define KICK0_VALUE 0x83e70b13 128 #define KICK1_VALUE 0x95a4f1e0 129 130 struct omap_rtc; 131 132 struct omap_rtc_device_type { 133 bool has_32kclk_en; 134 bool has_irqwakeen; 135 bool has_pmic_mode; 136 bool has_power_up_reset; 137 void (*lock)(struct omap_rtc *rtc); 138 void (*unlock)(struct omap_rtc *rtc); 139 }; 140 141 struct omap_rtc { 142 struct rtc_device *rtc; 143 void __iomem *base; 144 struct clk *clk; 145 int irq_alarm; 146 int irq_timer; 147 u8 interrupts_reg; 148 bool is_pmic_controller; 149 bool has_ext_clk; 150 bool is_suspending; 151 const struct omap_rtc_device_type *type; 152 struct pinctrl_dev *pctldev; 153 }; 154 155 static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg) 156 { 157 return readb(rtc->base + reg); 158 } 159 160 static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg) 161 { 162 return readl(rtc->base + reg); 163 } 164 165 static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val) 166 { 167 writeb(val, rtc->base + reg); 168 } 169 170 static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val) 171 { 172 writel(val, rtc->base + reg); 173 } 174 175 static void am3352_rtc_unlock(struct omap_rtc *rtc) 176 { 177 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE); 178 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE); 179 } 180 181 static void am3352_rtc_lock(struct omap_rtc *rtc) 182 { 183 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0); 184 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0); 185 } 186 187 static void default_rtc_unlock(struct omap_rtc *rtc) 188 { 189 } 190 191 static void default_rtc_lock(struct omap_rtc *rtc) 192 { 193 } 194 195 /* 196 * We rely on the rtc framework to handle locking (rtc->ops_lock), 197 * so the only other requirement is that register accesses which 198 * require BUSY to be clear are made with IRQs locally disabled 199 */ 200 static void rtc_wait_not_busy(struct omap_rtc *rtc) 201 { 202 int count; 203 u8 status; 204 205 /* BUSY may stay active for 1/32768 second (~30 usec) */ 206 for (count = 0; count < 50; count++) { 207 status = rtc_read(rtc, OMAP_RTC_STATUS_REG); 208 if (!(status & OMAP_RTC_STATUS_BUSY)) 209 break; 210 udelay(1); 211 } 212 /* now we have ~15 usec to read/write various registers */ 213 } 214 215 static irqreturn_t rtc_irq(int irq, void *dev_id) 216 { 217 struct omap_rtc *rtc = dev_id; 218 unsigned long events = 0; 219 u8 irq_data; 220 221 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG); 222 223 /* alarm irq? */ 224 if (irq_data & OMAP_RTC_STATUS_ALARM) { 225 rtc->type->unlock(rtc); 226 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM); 227 rtc->type->lock(rtc); 228 events |= RTC_IRQF | RTC_AF; 229 } 230 231 /* 1/sec periodic/update irq? */ 232 if (irq_data & OMAP_RTC_STATUS_1S_EVENT) 233 events |= RTC_IRQF | RTC_UF; 234 235 rtc_update_irq(rtc->rtc, 1, events); 236 237 return IRQ_HANDLED; 238 } 239 240 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 241 { 242 struct omap_rtc *rtc = dev_get_drvdata(dev); 243 u8 reg, irqwake_reg = 0; 244 245 local_irq_disable(); 246 rtc_wait_not_busy(rtc); 247 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 248 if (rtc->type->has_irqwakeen) 249 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); 250 251 if (enabled) { 252 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 253 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 254 } else { 255 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 256 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 257 } 258 rtc_wait_not_busy(rtc); 259 rtc->type->unlock(rtc); 260 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); 261 if (rtc->type->has_irqwakeen) 262 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); 263 rtc->type->lock(rtc); 264 local_irq_enable(); 265 266 return 0; 267 } 268 269 /* this hardware doesn't support "don't care" alarm fields */ 270 static void tm2bcd(struct rtc_time *tm) 271 { 272 tm->tm_sec = bin2bcd(tm->tm_sec); 273 tm->tm_min = bin2bcd(tm->tm_min); 274 tm->tm_hour = bin2bcd(tm->tm_hour); 275 tm->tm_mday = bin2bcd(tm->tm_mday); 276 277 tm->tm_mon = bin2bcd(tm->tm_mon + 1); 278 tm->tm_year = bin2bcd(tm->tm_year - 100); 279 } 280 281 static void bcd2tm(struct rtc_time *tm) 282 { 283 tm->tm_sec = bcd2bin(tm->tm_sec); 284 tm->tm_min = bcd2bin(tm->tm_min); 285 tm->tm_hour = bcd2bin(tm->tm_hour); 286 tm->tm_mday = bcd2bin(tm->tm_mday); 287 tm->tm_mon = bcd2bin(tm->tm_mon) - 1; 288 /* epoch == 1900 */ 289 tm->tm_year = bcd2bin(tm->tm_year) + 100; 290 } 291 292 static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm) 293 { 294 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG); 295 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG); 296 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG); 297 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG); 298 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG); 299 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG); 300 } 301 302 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm) 303 { 304 struct omap_rtc *rtc = dev_get_drvdata(dev); 305 306 /* we don't report wday/yday/isdst ... */ 307 local_irq_disable(); 308 rtc_wait_not_busy(rtc); 309 omap_rtc_read_time_raw(rtc, tm); 310 local_irq_enable(); 311 312 bcd2tm(tm); 313 314 return 0; 315 } 316 317 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm) 318 { 319 struct omap_rtc *rtc = dev_get_drvdata(dev); 320 321 tm2bcd(tm); 322 323 local_irq_disable(); 324 rtc_wait_not_busy(rtc); 325 326 rtc->type->unlock(rtc); 327 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year); 328 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon); 329 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday); 330 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour); 331 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min); 332 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec); 333 rtc->type->lock(rtc); 334 335 local_irq_enable(); 336 337 return 0; 338 } 339 340 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) 341 { 342 struct omap_rtc *rtc = dev_get_drvdata(dev); 343 u8 interrupts; 344 345 local_irq_disable(); 346 rtc_wait_not_busy(rtc); 347 348 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG); 349 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG); 350 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG); 351 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG); 352 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG); 353 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG); 354 355 local_irq_enable(); 356 357 bcd2tm(&alm->time); 358 359 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 360 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM); 361 362 return 0; 363 } 364 365 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 366 { 367 struct omap_rtc *rtc = dev_get_drvdata(dev); 368 u8 reg, irqwake_reg = 0; 369 370 tm2bcd(&alm->time); 371 372 local_irq_disable(); 373 rtc_wait_not_busy(rtc); 374 375 rtc->type->unlock(rtc); 376 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year); 377 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon); 378 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday); 379 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour); 380 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min); 381 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec); 382 383 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 384 if (rtc->type->has_irqwakeen) 385 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); 386 387 if (alm->enabled) { 388 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 389 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 390 } else { 391 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 392 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; 393 } 394 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); 395 if (rtc->type->has_irqwakeen) 396 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); 397 rtc->type->lock(rtc); 398 399 local_irq_enable(); 400 401 return 0; 402 } 403 404 static struct omap_rtc *omap_rtc_power_off_rtc; 405 406 /** 407 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC 408 * generates pmic_pwr_enable control, which can be used to control an external 409 * PMIC. 410 */ 411 int omap_rtc_power_off_program(struct device *dev) 412 { 413 struct omap_rtc *rtc = omap_rtc_power_off_rtc; 414 struct rtc_time tm; 415 unsigned long now; 416 int seconds; 417 u32 val; 418 419 rtc->type->unlock(rtc); 420 /* enable pmic_power_en control */ 421 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 422 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN); 423 424 again: 425 /* Clear any existing ALARM2 event */ 426 rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2); 427 428 /* set alarm one second from now */ 429 omap_rtc_read_time_raw(rtc, &tm); 430 seconds = tm.tm_sec; 431 bcd2tm(&tm); 432 now = rtc_tm_to_time64(&tm); 433 rtc_time64_to_tm(now + 1, &tm); 434 435 tm2bcd(&tm); 436 437 rtc_wait_not_busy(rtc); 438 439 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec); 440 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min); 441 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour); 442 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday); 443 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon); 444 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year); 445 446 /* 447 * enable ALARM2 interrupt 448 * 449 * NOTE: this fails on AM3352 if rtc_write (writeb) is used 450 */ 451 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 452 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 453 val | OMAP_RTC_INTERRUPTS_IT_ALARM2); 454 455 /* Retry in case roll over happened before alarm was armed. */ 456 if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) { 457 val = rtc_read(rtc, OMAP_RTC_STATUS_REG); 458 if (!(val & OMAP_RTC_STATUS_ALARM2)) 459 goto again; 460 } 461 462 rtc->type->lock(rtc); 463 464 return 0; 465 } 466 EXPORT_SYMBOL(omap_rtc_power_off_program); 467 468 /* 469 * omap_rtc_poweroff: RTC-controlled power off 470 * 471 * The RTC can be used to control an external PMIC via the pmic_power_en pin, 472 * which can be configured to transition to OFF on ALARM2 events. 473 * 474 * Notes: 475 * The one-second alarm offset is the shortest offset possible as the alarm 476 * registers must be set before the next timer update and the offset 477 * calculation is too heavy for everything to be done within a single access 478 * period (~15 us). 479 * 480 * Called with local interrupts disabled. 481 */ 482 static void omap_rtc_power_off(void) 483 { 484 struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc; 485 u32 val; 486 487 omap_rtc_power_off_program(rtc->dev.parent); 488 489 /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */ 490 omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc); 491 val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG); 492 val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) | 493 OMAP_RTC_PMIC_EXT_WKUP_EN(0); 494 rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val); 495 omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc); 496 497 /* 498 * Wait for alarm to trigger (within one second) and external PMIC to 499 * power off the system. Add a 500 ms margin for external latencies 500 * (e.g. debounce circuits). 501 */ 502 mdelay(1500); 503 } 504 505 static const struct rtc_class_ops omap_rtc_ops = { 506 .read_time = omap_rtc_read_time, 507 .set_time = omap_rtc_set_time, 508 .read_alarm = omap_rtc_read_alarm, 509 .set_alarm = omap_rtc_set_alarm, 510 .alarm_irq_enable = omap_rtc_alarm_irq_enable, 511 }; 512 513 static const struct omap_rtc_device_type omap_rtc_default_type = { 514 .has_power_up_reset = true, 515 .lock = default_rtc_lock, 516 .unlock = default_rtc_unlock, 517 }; 518 519 static const struct omap_rtc_device_type omap_rtc_am3352_type = { 520 .has_32kclk_en = true, 521 .has_irqwakeen = true, 522 .has_pmic_mode = true, 523 .lock = am3352_rtc_lock, 524 .unlock = am3352_rtc_unlock, 525 }; 526 527 static const struct omap_rtc_device_type omap_rtc_da830_type = { 528 .lock = am3352_rtc_lock, 529 .unlock = am3352_rtc_unlock, 530 }; 531 532 static const struct platform_device_id omap_rtc_id_table[] = { 533 { 534 .name = "omap_rtc", 535 .driver_data = (kernel_ulong_t)&omap_rtc_default_type, 536 }, { 537 .name = "am3352-rtc", 538 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type, 539 }, { 540 .name = "da830-rtc", 541 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type, 542 }, { 543 /* sentinel */ 544 } 545 }; 546 MODULE_DEVICE_TABLE(platform, omap_rtc_id_table); 547 548 static const struct of_device_id omap_rtc_of_match[] = { 549 { 550 .compatible = "ti,am3352-rtc", 551 .data = &omap_rtc_am3352_type, 552 }, { 553 .compatible = "ti,da830-rtc", 554 .data = &omap_rtc_da830_type, 555 }, { 556 /* sentinel */ 557 } 558 }; 559 MODULE_DEVICE_TABLE(of, omap_rtc_of_match); 560 561 static const struct pinctrl_pin_desc rtc_pins_desc[] = { 562 PINCTRL_PIN(0, "ext_wakeup0"), 563 PINCTRL_PIN(1, "ext_wakeup1"), 564 PINCTRL_PIN(2, "ext_wakeup2"), 565 PINCTRL_PIN(3, "ext_wakeup3"), 566 }; 567 568 static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) 569 { 570 return 0; 571 } 572 573 static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev, 574 unsigned int group) 575 { 576 return NULL; 577 } 578 579 static const struct pinctrl_ops rtc_pinctrl_ops = { 580 .get_groups_count = rtc_pinctrl_get_groups_count, 581 .get_group_name = rtc_pinctrl_get_group_name, 582 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, 583 .dt_free_map = pinconf_generic_dt_free_map, 584 }; 585 586 #define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1) 587 588 static const struct pinconf_generic_params rtc_params[] = { 589 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0}, 590 }; 591 592 #ifdef CONFIG_DEBUG_FS 593 static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = { 594 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false), 595 }; 596 #endif 597 598 static int rtc_pinconf_get(struct pinctrl_dev *pctldev, 599 unsigned int pin, unsigned long *config) 600 { 601 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 602 unsigned int param = pinconf_to_config_param(*config); 603 u32 val; 604 u16 arg = 0; 605 606 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 607 608 switch (param) { 609 case PIN_CONFIG_INPUT_ENABLE: 610 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin))) 611 return -EINVAL; 612 break; 613 case PIN_CONFIG_ACTIVE_HIGH: 614 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin)) 615 return -EINVAL; 616 break; 617 default: 618 return -ENOTSUPP; 619 } 620 621 *config = pinconf_to_config_packed(param, arg); 622 623 return 0; 624 } 625 626 static int rtc_pinconf_set(struct pinctrl_dev *pctldev, 627 unsigned int pin, unsigned long *configs, 628 unsigned int num_configs) 629 { 630 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); 631 u32 val; 632 unsigned int param; 633 u32 param_val; 634 int i; 635 636 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); 637 638 /* active low by default */ 639 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin); 640 641 for (i = 0; i < num_configs; i++) { 642 param = pinconf_to_config_param(configs[i]); 643 param_val = pinconf_to_config_argument(configs[i]); 644 645 switch (param) { 646 case PIN_CONFIG_INPUT_ENABLE: 647 if (param_val) 648 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin); 649 else 650 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin); 651 break; 652 case PIN_CONFIG_ACTIVE_HIGH: 653 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin); 654 break; 655 default: 656 dev_err(&rtc->rtc->dev, "Property %u not supported\n", 657 param); 658 return -ENOTSUPP; 659 } 660 } 661 662 rtc->type->unlock(rtc); 663 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val); 664 rtc->type->lock(rtc); 665 666 return 0; 667 } 668 669 static const struct pinconf_ops rtc_pinconf_ops = { 670 .is_generic = true, 671 .pin_config_get = rtc_pinconf_get, 672 .pin_config_set = rtc_pinconf_set, 673 }; 674 675 static struct pinctrl_desc rtc_pinctrl_desc = { 676 .pins = rtc_pins_desc, 677 .npins = ARRAY_SIZE(rtc_pins_desc), 678 .pctlops = &rtc_pinctrl_ops, 679 .confops = &rtc_pinconf_ops, 680 .custom_params = rtc_params, 681 .num_custom_params = ARRAY_SIZE(rtc_params), 682 #ifdef CONFIG_DEBUG_FS 683 .custom_conf_items = rtc_conf_items, 684 #endif 685 .owner = THIS_MODULE, 686 }; 687 688 static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val, 689 size_t bytes) 690 { 691 struct omap_rtc *rtc = priv; 692 u32 *val = _val; 693 int i; 694 695 for (i = 0; i < bytes / 4; i++) 696 val[i] = rtc_readl(rtc, 697 OMAP_RTC_SCRATCH0_REG + offset + (i * 4)); 698 699 return 0; 700 } 701 702 static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val, 703 size_t bytes) 704 { 705 struct omap_rtc *rtc = priv; 706 u32 *val = _val; 707 int i; 708 709 rtc->type->unlock(rtc); 710 for (i = 0; i < bytes / 4; i++) 711 rtc_writel(rtc, 712 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]); 713 rtc->type->lock(rtc); 714 715 return 0; 716 } 717 718 static struct nvmem_config omap_rtc_nvmem_config = { 719 .name = "omap_rtc_scratch", 720 .word_size = 4, 721 .stride = 4, 722 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG, 723 .reg_read = omap_rtc_scratch_read, 724 .reg_write = omap_rtc_scratch_write, 725 }; 726 727 static int omap_rtc_probe(struct platform_device *pdev) 728 { 729 struct omap_rtc *rtc; 730 u8 reg, mask, new_ctrl; 731 const struct platform_device_id *id_entry; 732 int ret; 733 734 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 735 if (!rtc) 736 return -ENOMEM; 737 738 rtc->type = device_get_match_data(&pdev->dev); 739 if (rtc->type) { 740 rtc->is_pmic_controller = rtc->type->has_pmic_mode && 741 of_device_is_system_power_controller(pdev->dev.of_node); 742 } else { 743 id_entry = platform_get_device_id(pdev); 744 rtc->type = (void *)id_entry->driver_data; 745 } 746 747 rtc->irq_timer = platform_get_irq(pdev, 0); 748 if (rtc->irq_timer < 0) 749 return rtc->irq_timer; 750 751 rtc->irq_alarm = platform_get_irq(pdev, 1); 752 if (rtc->irq_alarm < 0) 753 return rtc->irq_alarm; 754 755 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk"); 756 if (!IS_ERR(rtc->clk)) 757 rtc->has_ext_clk = true; 758 else 759 rtc->clk = devm_clk_get(&pdev->dev, "int-clk"); 760 761 if (!IS_ERR(rtc->clk)) 762 clk_prepare_enable(rtc->clk); 763 764 rtc->base = devm_platform_ioremap_resource(pdev, 0); 765 if (IS_ERR(rtc->base)) { 766 clk_disable_unprepare(rtc->clk); 767 return PTR_ERR(rtc->base); 768 } 769 770 platform_set_drvdata(pdev, rtc); 771 772 /* Enable the clock/module so that we can access the registers */ 773 pm_runtime_enable(&pdev->dev); 774 pm_runtime_get_sync(&pdev->dev); 775 776 rtc->type->unlock(rtc); 777 778 /* 779 * disable interrupts 780 * 781 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used 782 */ 783 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 784 785 /* enable RTC functional clock */ 786 if (rtc->type->has_32kclk_en) { 787 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 788 rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN); 789 } 790 791 /* clear old status */ 792 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG); 793 794 mask = OMAP_RTC_STATUS_ALARM; 795 796 if (rtc->type->has_pmic_mode) 797 mask |= OMAP_RTC_STATUS_ALARM2; 798 799 if (rtc->type->has_power_up_reset) { 800 mask |= OMAP_RTC_STATUS_POWER_UP; 801 if (reg & OMAP_RTC_STATUS_POWER_UP) 802 dev_info(&pdev->dev, "RTC power up reset detected\n"); 803 } 804 805 if (reg & mask) 806 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask); 807 808 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */ 809 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG); 810 if (reg & OMAP_RTC_CTRL_STOP) 811 dev_info(&pdev->dev, "already running\n"); 812 813 /* force to 24 hour mode */ 814 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP); 815 new_ctrl |= OMAP_RTC_CTRL_STOP; 816 817 /* 818 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE: 819 * 820 * - Device wake-up capability setting should come through chip 821 * init logic. OMAP1 boards should initialize the "wakeup capable" 822 * flag in the platform device if the board is wired right for 823 * being woken up by RTC alarm. For OMAP-L138, this capability 824 * is built into the SoC by the "Deep Sleep" capability. 825 * 826 * - Boards wired so RTC_ON_nOFF is used as the reset signal, 827 * rather than nPWRON_RESET, should forcibly enable split 828 * power mode. (Some chip errata report that RTC_CTRL_SPLIT 829 * is write-only, and always reads as zero...) 830 */ 831 832 if (new_ctrl & OMAP_RTC_CTRL_SPLIT) 833 dev_info(&pdev->dev, "split power mode\n"); 834 835 if (reg != new_ctrl) 836 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl); 837 838 /* 839 * If we have the external clock then switch to it so we can keep 840 * ticking across suspend. 841 */ 842 if (rtc->has_ext_clk) { 843 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 844 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE; 845 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC; 846 rtc_write(rtc, OMAP_RTC_OSC_REG, reg); 847 } 848 849 rtc->type->lock(rtc); 850 851 device_init_wakeup(&pdev->dev, true); 852 853 rtc->rtc = devm_rtc_allocate_device(&pdev->dev); 854 if (IS_ERR(rtc->rtc)) { 855 ret = PTR_ERR(rtc->rtc); 856 goto err; 857 } 858 859 rtc->rtc->ops = &omap_rtc_ops; 860 rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; 861 rtc->rtc->range_max = RTC_TIMESTAMP_END_2099; 862 omap_rtc_nvmem_config.priv = rtc; 863 864 /* handle periodic and alarm irqs */ 865 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0, 866 dev_name(&rtc->rtc->dev), rtc); 867 if (ret) 868 goto err; 869 870 if (rtc->irq_timer != rtc->irq_alarm) { 871 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0, 872 dev_name(&rtc->rtc->dev), rtc); 873 if (ret) 874 goto err; 875 } 876 877 /* Support ext_wakeup pinconf */ 878 rtc_pinctrl_desc.name = dev_name(&pdev->dev); 879 880 rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc); 881 if (IS_ERR(rtc->pctldev)) { 882 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 883 ret = PTR_ERR(rtc->pctldev); 884 goto err; 885 } 886 887 ret = devm_rtc_register_device(rtc->rtc); 888 if (ret) 889 goto err; 890 891 devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config); 892 893 if (rtc->is_pmic_controller) { 894 if (!pm_power_off) { 895 omap_rtc_power_off_rtc = rtc; 896 pm_power_off = omap_rtc_power_off; 897 } 898 } 899 900 return 0; 901 902 err: 903 clk_disable_unprepare(rtc->clk); 904 device_init_wakeup(&pdev->dev, false); 905 rtc->type->lock(rtc); 906 pm_runtime_put_sync(&pdev->dev); 907 pm_runtime_disable(&pdev->dev); 908 909 return ret; 910 } 911 912 static void omap_rtc_remove(struct platform_device *pdev) 913 { 914 struct omap_rtc *rtc = platform_get_drvdata(pdev); 915 u8 reg; 916 917 if (pm_power_off == omap_rtc_power_off && 918 omap_rtc_power_off_rtc == rtc) { 919 pm_power_off = NULL; 920 omap_rtc_power_off_rtc = NULL; 921 } 922 923 device_init_wakeup(&pdev->dev, 0); 924 925 if (!IS_ERR(rtc->clk)) 926 clk_disable_unprepare(rtc->clk); 927 928 rtc->type->unlock(rtc); 929 /* leave rtc running, but disable irqs */ 930 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 931 932 if (rtc->has_ext_clk) { 933 reg = rtc_read(rtc, OMAP_RTC_OSC_REG); 934 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC; 935 rtc_write(rtc, OMAP_RTC_OSC_REG, reg); 936 } 937 938 rtc->type->lock(rtc); 939 940 /* Disable the clock/module */ 941 pm_runtime_put_sync(&pdev->dev); 942 pm_runtime_disable(&pdev->dev); 943 } 944 945 static int __maybe_unused omap_rtc_suspend(struct device *dev) 946 { 947 struct omap_rtc *rtc = dev_get_drvdata(dev); 948 949 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 950 951 rtc->type->unlock(rtc); 952 /* 953 * FIXME: the RTC alarm is not currently acting as a wakeup event 954 * source on some platforms, and in fact this enable() call is just 955 * saving a flag that's never used... 956 */ 957 if (device_may_wakeup(dev)) 958 enable_irq_wake(rtc->irq_alarm); 959 else 960 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); 961 rtc->type->lock(rtc); 962 963 rtc->is_suspending = true; 964 965 return 0; 966 } 967 968 static int __maybe_unused omap_rtc_resume(struct device *dev) 969 { 970 struct omap_rtc *rtc = dev_get_drvdata(dev); 971 972 rtc->type->unlock(rtc); 973 if (device_may_wakeup(dev)) 974 disable_irq_wake(rtc->irq_alarm); 975 else 976 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg); 977 rtc->type->lock(rtc); 978 979 rtc->is_suspending = false; 980 981 return 0; 982 } 983 984 static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev) 985 { 986 struct omap_rtc *rtc = dev_get_drvdata(dev); 987 988 if (rtc->is_suspending && !rtc->has_ext_clk) 989 return -EBUSY; 990 991 return 0; 992 } 993 994 static const struct dev_pm_ops omap_rtc_pm_ops = { 995 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume) 996 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL) 997 }; 998 999 static void omap_rtc_shutdown(struct platform_device *pdev) 1000 { 1001 struct omap_rtc *rtc = platform_get_drvdata(pdev); 1002 u8 mask; 1003 1004 /* 1005 * Keep the ALARM interrupt enabled to allow the system to power up on 1006 * alarm events. 1007 */ 1008 rtc->type->unlock(rtc); 1009 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); 1010 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM; 1011 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask); 1012 rtc->type->lock(rtc); 1013 } 1014 1015 static struct platform_driver omap_rtc_driver = { 1016 .probe = omap_rtc_probe, 1017 .remove_new = omap_rtc_remove, 1018 .shutdown = omap_rtc_shutdown, 1019 .driver = { 1020 .name = "omap_rtc", 1021 .pm = &omap_rtc_pm_ops, 1022 .of_match_table = omap_rtc_of_match, 1023 }, 1024 .id_table = omap_rtc_id_table, 1025 }; 1026 1027 module_platform_driver(omap_rtc_driver); 1028 1029 MODULE_AUTHOR("George G. Davis (and others)"); 1030 MODULE_DESCRIPTION("TI OMAP1, AM33xx, DA8xx/OMAP-L13x, AM43xx and DRA7xx RTC driver"); 1031 MODULE_LICENSE("GPL"); 1032