xref: /linux/drivers/rtc/rtc-omap.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * TI OMAP Real Time Clock interface for Linux
3  *
4  * Copyright (C) 2003 MontaVista Software, Inc.
5  * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6  *
7  * Copyright (C) 2006 David Brownell (new RTC framework)
8  * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/ioport.h>
20 #include <linux/delay.h>
21 #include <linux/rtc.h>
22 #include <linux/bcd.h>
23 #include <linux/platform_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/io.h>
28 
29 /*
30  * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
31  * with century-range alarm matching, driven by the 32kHz clock.
32  *
33  * The main user-visible ways it differs from PC RTCs are by omitting
34  * "don't care" alarm fields and sub-second periodic IRQs, and having
35  * an autoadjust mechanism to calibrate to the true oscillator rate.
36  *
37  * Board-specific wiring options include using split power mode with
38  * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
39  * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
40  * low power modes) for OMAP1 boards (OMAP-L138 has this built into
41  * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
42  */
43 
44 /* RTC registers */
45 #define OMAP_RTC_SECONDS_REG		0x00
46 #define OMAP_RTC_MINUTES_REG		0x04
47 #define OMAP_RTC_HOURS_REG		0x08
48 #define OMAP_RTC_DAYS_REG		0x0C
49 #define OMAP_RTC_MONTHS_REG		0x10
50 #define OMAP_RTC_YEARS_REG		0x14
51 #define OMAP_RTC_WEEKS_REG		0x18
52 
53 #define OMAP_RTC_ALARM_SECONDS_REG	0x20
54 #define OMAP_RTC_ALARM_MINUTES_REG	0x24
55 #define OMAP_RTC_ALARM_HOURS_REG	0x28
56 #define OMAP_RTC_ALARM_DAYS_REG		0x2c
57 #define OMAP_RTC_ALARM_MONTHS_REG	0x30
58 #define OMAP_RTC_ALARM_YEARS_REG	0x34
59 
60 #define OMAP_RTC_CTRL_REG		0x40
61 #define OMAP_RTC_STATUS_REG		0x44
62 #define OMAP_RTC_INTERRUPTS_REG		0x48
63 
64 #define OMAP_RTC_COMP_LSB_REG		0x4c
65 #define OMAP_RTC_COMP_MSB_REG		0x50
66 #define OMAP_RTC_OSC_REG		0x54
67 
68 #define OMAP_RTC_KICK0_REG		0x6c
69 #define OMAP_RTC_KICK1_REG		0x70
70 
71 #define OMAP_RTC_IRQWAKEEN		0x7c
72 
73 #define OMAP_RTC_ALARM2_SECONDS_REG	0x80
74 #define OMAP_RTC_ALARM2_MINUTES_REG	0x84
75 #define OMAP_RTC_ALARM2_HOURS_REG	0x88
76 #define OMAP_RTC_ALARM2_DAYS_REG	0x8c
77 #define OMAP_RTC_ALARM2_MONTHS_REG	0x90
78 #define OMAP_RTC_ALARM2_YEARS_REG	0x94
79 
80 #define OMAP_RTC_PMIC_REG		0x98
81 
82 /* OMAP_RTC_CTRL_REG bit fields: */
83 #define OMAP_RTC_CTRL_SPLIT		BIT(7)
84 #define OMAP_RTC_CTRL_DISABLE		BIT(6)
85 #define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
86 #define OMAP_RTC_CTRL_TEST		BIT(4)
87 #define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
88 #define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
89 #define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
90 #define OMAP_RTC_CTRL_STOP		BIT(0)
91 
92 /* OMAP_RTC_STATUS_REG bit fields: */
93 #define OMAP_RTC_STATUS_POWER_UP	BIT(7)
94 #define OMAP_RTC_STATUS_ALARM2		BIT(7)
95 #define OMAP_RTC_STATUS_ALARM		BIT(6)
96 #define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
97 #define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
98 #define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
99 #define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
100 #define OMAP_RTC_STATUS_RUN		BIT(1)
101 #define OMAP_RTC_STATUS_BUSY		BIT(0)
102 
103 /* OMAP_RTC_INTERRUPTS_REG bit fields: */
104 #define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
105 #define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
106 #define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
107 
108 /* OMAP_RTC_OSC_REG bit fields: */
109 #define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
110 
111 /* OMAP_RTC_IRQWAKEEN bit fields: */
112 #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
113 
114 /* OMAP_RTC_PMIC bit fields: */
115 #define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
116 
117 /* OMAP_RTC_KICKER values */
118 #define	KICK0_VALUE			0x83e70b13
119 #define	KICK1_VALUE			0x95a4f1e0
120 
121 struct omap_rtc;
122 
123 struct omap_rtc_device_type {
124 	bool has_32kclk_en;
125 	bool has_irqwakeen;
126 	bool has_pmic_mode;
127 	bool has_power_up_reset;
128 	void (*lock)(struct omap_rtc *rtc);
129 	void (*unlock)(struct omap_rtc *rtc);
130 };
131 
132 struct omap_rtc {
133 	struct rtc_device *rtc;
134 	void __iomem *base;
135 	int irq_alarm;
136 	int irq_timer;
137 	u8 interrupts_reg;
138 	bool is_pmic_controller;
139 	const struct omap_rtc_device_type *type;
140 };
141 
142 static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
143 {
144 	return readb(rtc->base + reg);
145 }
146 
147 static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
148 {
149 	return readl(rtc->base + reg);
150 }
151 
152 static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
153 {
154 	writeb(val, rtc->base + reg);
155 }
156 
157 static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
158 {
159 	writel(val, rtc->base + reg);
160 }
161 
162 static void am3352_rtc_unlock(struct omap_rtc *rtc)
163 {
164 	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
165 	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
166 }
167 
168 static void am3352_rtc_lock(struct omap_rtc *rtc)
169 {
170 	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
171 	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
172 }
173 
174 static void default_rtc_unlock(struct omap_rtc *rtc)
175 {
176 }
177 
178 static void default_rtc_lock(struct omap_rtc *rtc)
179 {
180 }
181 
182 /*
183  * We rely on the rtc framework to handle locking (rtc->ops_lock),
184  * so the only other requirement is that register accesses which
185  * require BUSY to be clear are made with IRQs locally disabled
186  */
187 static void rtc_wait_not_busy(struct omap_rtc *rtc)
188 {
189 	int count;
190 	u8 status;
191 
192 	/* BUSY may stay active for 1/32768 second (~30 usec) */
193 	for (count = 0; count < 50; count++) {
194 		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
195 		if (!(status & OMAP_RTC_STATUS_BUSY))
196 			break;
197 		udelay(1);
198 	}
199 	/* now we have ~15 usec to read/write various registers */
200 }
201 
202 static irqreturn_t rtc_irq(int irq, void *dev_id)
203 {
204 	struct omap_rtc	*rtc = dev_id;
205 	unsigned long events = 0;
206 	u8 irq_data;
207 
208 	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
209 
210 	/* alarm irq? */
211 	if (irq_data & OMAP_RTC_STATUS_ALARM) {
212 		rtc->type->unlock(rtc);
213 		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
214 		rtc->type->lock(rtc);
215 		events |= RTC_IRQF | RTC_AF;
216 	}
217 
218 	/* 1/sec periodic/update irq? */
219 	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
220 		events |= RTC_IRQF | RTC_UF;
221 
222 	rtc_update_irq(rtc->rtc, 1, events);
223 
224 	return IRQ_HANDLED;
225 }
226 
227 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
228 {
229 	struct omap_rtc *rtc = dev_get_drvdata(dev);
230 	u8 reg, irqwake_reg = 0;
231 
232 	local_irq_disable();
233 	rtc_wait_not_busy(rtc);
234 	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
235 	if (rtc->type->has_irqwakeen)
236 		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
237 
238 	if (enabled) {
239 		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
240 		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
241 	} else {
242 		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
243 		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
244 	}
245 	rtc_wait_not_busy(rtc);
246 	rtc->type->unlock(rtc);
247 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
248 	if (rtc->type->has_irqwakeen)
249 		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
250 	rtc->type->lock(rtc);
251 	local_irq_enable();
252 
253 	return 0;
254 }
255 
256 /* this hardware doesn't support "don't care" alarm fields */
257 static int tm2bcd(struct rtc_time *tm)
258 {
259 	if (rtc_valid_tm(tm) != 0)
260 		return -EINVAL;
261 
262 	tm->tm_sec = bin2bcd(tm->tm_sec);
263 	tm->tm_min = bin2bcd(tm->tm_min);
264 	tm->tm_hour = bin2bcd(tm->tm_hour);
265 	tm->tm_mday = bin2bcd(tm->tm_mday);
266 
267 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
268 
269 	/* epoch == 1900 */
270 	if (tm->tm_year < 100 || tm->tm_year > 199)
271 		return -EINVAL;
272 	tm->tm_year = bin2bcd(tm->tm_year - 100);
273 
274 	return 0;
275 }
276 
277 static void bcd2tm(struct rtc_time *tm)
278 {
279 	tm->tm_sec = bcd2bin(tm->tm_sec);
280 	tm->tm_min = bcd2bin(tm->tm_min);
281 	tm->tm_hour = bcd2bin(tm->tm_hour);
282 	tm->tm_mday = bcd2bin(tm->tm_mday);
283 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
284 	/* epoch == 1900 */
285 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
286 }
287 
288 static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
289 {
290 	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
291 	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
292 	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
293 	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
294 	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
295 	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
296 }
297 
298 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
299 {
300 	struct omap_rtc *rtc = dev_get_drvdata(dev);
301 
302 	/* we don't report wday/yday/isdst ... */
303 	local_irq_disable();
304 	rtc_wait_not_busy(rtc);
305 	omap_rtc_read_time_raw(rtc, tm);
306 	local_irq_enable();
307 
308 	bcd2tm(tm);
309 
310 	return 0;
311 }
312 
313 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
314 {
315 	struct omap_rtc *rtc = dev_get_drvdata(dev);
316 
317 	if (tm2bcd(tm) < 0)
318 		return -EINVAL;
319 
320 	local_irq_disable();
321 	rtc_wait_not_busy(rtc);
322 
323 	rtc->type->unlock(rtc);
324 	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
325 	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
326 	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
327 	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
328 	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
329 	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
330 	rtc->type->lock(rtc);
331 
332 	local_irq_enable();
333 
334 	return 0;
335 }
336 
337 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
338 {
339 	struct omap_rtc *rtc = dev_get_drvdata(dev);
340 	u8 interrupts;
341 
342 	local_irq_disable();
343 	rtc_wait_not_busy(rtc);
344 
345 	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
346 	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
347 	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
348 	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
349 	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
350 	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
351 
352 	local_irq_enable();
353 
354 	bcd2tm(&alm->time);
355 
356 	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
357 	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
358 
359 	return 0;
360 }
361 
362 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
363 {
364 	struct omap_rtc *rtc = dev_get_drvdata(dev);
365 	u8 reg, irqwake_reg = 0;
366 
367 	if (tm2bcd(&alm->time) < 0)
368 		return -EINVAL;
369 
370 	local_irq_disable();
371 	rtc_wait_not_busy(rtc);
372 
373 	rtc->type->unlock(rtc);
374 	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
375 	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
376 	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
377 	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
378 	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
379 	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
380 
381 	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
382 	if (rtc->type->has_irqwakeen)
383 		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
384 
385 	if (alm->enabled) {
386 		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
387 		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
388 	} else {
389 		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
390 		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
391 	}
392 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
393 	if (rtc->type->has_irqwakeen)
394 		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
395 	rtc->type->lock(rtc);
396 
397 	local_irq_enable();
398 
399 	return 0;
400 }
401 
402 static struct omap_rtc *omap_rtc_power_off_rtc;
403 
404 /*
405  * omap_rtc_poweroff: RTC-controlled power off
406  *
407  * The RTC can be used to control an external PMIC via the pmic_power_en pin,
408  * which can be configured to transition to OFF on ALARM2 events.
409  *
410  * Notes:
411  * The two-second alarm offset is the shortest offset possible as the alarm
412  * registers must be set before the next timer update and the offset
413  * calculation is too heavy for everything to be done within a single access
414  * period (~15 us).
415  *
416  * Called with local interrupts disabled.
417  */
418 static void omap_rtc_power_off(void)
419 {
420 	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
421 	struct rtc_time tm;
422 	unsigned long now;
423 	u32 val;
424 
425 	rtc->type->unlock(rtc);
426 	/* enable pmic_power_en control */
427 	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
428 	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
429 
430 	/* set alarm two seconds from now */
431 	omap_rtc_read_time_raw(rtc, &tm);
432 	bcd2tm(&tm);
433 	rtc_tm_to_time(&tm, &now);
434 	rtc_time_to_tm(now + 2, &tm);
435 
436 	if (tm2bcd(&tm) < 0) {
437 		dev_err(&rtc->rtc->dev, "power off failed\n");
438 		return;
439 	}
440 
441 	rtc_wait_not_busy(rtc);
442 
443 	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
444 	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
445 	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
446 	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
447 	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
448 	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
449 
450 	/*
451 	 * enable ALARM2 interrupt
452 	 *
453 	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
454 	 */
455 	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
456 	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
457 			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
458 	rtc->type->lock(rtc);
459 
460 	/*
461 	 * Wait for alarm to trigger (within two seconds) and external PMIC to
462 	 * power off the system. Add a 500 ms margin for external latencies
463 	 * (e.g. debounce circuits).
464 	 */
465 	mdelay(2500);
466 }
467 
468 static struct rtc_class_ops omap_rtc_ops = {
469 	.read_time	= omap_rtc_read_time,
470 	.set_time	= omap_rtc_set_time,
471 	.read_alarm	= omap_rtc_read_alarm,
472 	.set_alarm	= omap_rtc_set_alarm,
473 	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
474 };
475 
476 static const struct omap_rtc_device_type omap_rtc_default_type = {
477 	.has_power_up_reset = true,
478 	.lock		= default_rtc_lock,
479 	.unlock		= default_rtc_unlock,
480 };
481 
482 static const struct omap_rtc_device_type omap_rtc_am3352_type = {
483 	.has_32kclk_en	= true,
484 	.has_irqwakeen	= true,
485 	.has_pmic_mode	= true,
486 	.lock		= am3352_rtc_lock,
487 	.unlock		= am3352_rtc_unlock,
488 };
489 
490 static const struct omap_rtc_device_type omap_rtc_da830_type = {
491 	.lock		= am3352_rtc_lock,
492 	.unlock		= am3352_rtc_unlock,
493 };
494 
495 static const struct platform_device_id omap_rtc_id_table[] = {
496 	{
497 		.name	= "omap_rtc",
498 		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
499 	}, {
500 		.name	= "am3352-rtc",
501 		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
502 	}, {
503 		.name	= "da830-rtc",
504 		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
505 	}, {
506 		/* sentinel */
507 	}
508 };
509 MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
510 
511 static const struct of_device_id omap_rtc_of_match[] = {
512 	{
513 		.compatible	= "ti,am3352-rtc",
514 		.data		= &omap_rtc_am3352_type,
515 	}, {
516 		.compatible	= "ti,da830-rtc",
517 		.data		= &omap_rtc_da830_type,
518 	}, {
519 		/* sentinel */
520 	}
521 };
522 MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
523 
524 static int omap_rtc_probe(struct platform_device *pdev)
525 {
526 	struct omap_rtc	*rtc;
527 	struct resource	*res;
528 	u8 reg, mask, new_ctrl;
529 	const struct platform_device_id *id_entry;
530 	const struct of_device_id *of_id;
531 	int ret;
532 
533 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
534 	if (!rtc)
535 		return -ENOMEM;
536 
537 	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
538 	if (of_id) {
539 		rtc->type = of_id->data;
540 		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
541 				of_property_read_bool(pdev->dev.of_node,
542 						"system-power-controller");
543 	} else {
544 		id_entry = platform_get_device_id(pdev);
545 		rtc->type = (void *)id_entry->driver_data;
546 	}
547 
548 	rtc->irq_timer = platform_get_irq(pdev, 0);
549 	if (rtc->irq_timer <= 0)
550 		return -ENOENT;
551 
552 	rtc->irq_alarm = platform_get_irq(pdev, 1);
553 	if (rtc->irq_alarm <= 0)
554 		return -ENOENT;
555 
556 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
557 	rtc->base = devm_ioremap_resource(&pdev->dev, res);
558 	if (IS_ERR(rtc->base))
559 		return PTR_ERR(rtc->base);
560 
561 	platform_set_drvdata(pdev, rtc);
562 
563 	/* Enable the clock/module so that we can access the registers */
564 	pm_runtime_enable(&pdev->dev);
565 	pm_runtime_get_sync(&pdev->dev);
566 
567 	rtc->type->unlock(rtc);
568 
569 	/*
570 	 * disable interrupts
571 	 *
572 	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
573 	 */
574 	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
575 
576 	/* enable RTC functional clock */
577 	if (rtc->type->has_32kclk_en) {
578 		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
579 		rtc_writel(rtc, OMAP_RTC_OSC_REG,
580 				reg | OMAP_RTC_OSC_32KCLK_EN);
581 	}
582 
583 	/* clear old status */
584 	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
585 
586 	mask = OMAP_RTC_STATUS_ALARM;
587 
588 	if (rtc->type->has_pmic_mode)
589 		mask |= OMAP_RTC_STATUS_ALARM2;
590 
591 	if (rtc->type->has_power_up_reset) {
592 		mask |= OMAP_RTC_STATUS_POWER_UP;
593 		if (reg & OMAP_RTC_STATUS_POWER_UP)
594 			dev_info(&pdev->dev, "RTC power up reset detected\n");
595 	}
596 
597 	if (reg & mask)
598 		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
599 
600 	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
601 	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
602 	if (reg & OMAP_RTC_CTRL_STOP)
603 		dev_info(&pdev->dev, "already running\n");
604 
605 	/* force to 24 hour mode */
606 	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
607 	new_ctrl |= OMAP_RTC_CTRL_STOP;
608 
609 	/*
610 	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
611 	 *
612 	 *  - Device wake-up capability setting should come through chip
613 	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
614 	 *    flag in the platform device if the board is wired right for
615 	 *    being woken up by RTC alarm. For OMAP-L138, this capability
616 	 *    is built into the SoC by the "Deep Sleep" capability.
617 	 *
618 	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
619 	 *    rather than nPWRON_RESET, should forcibly enable split
620 	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
621 	 *    is write-only, and always reads as zero...)
622 	 */
623 
624 	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
625 		dev_info(&pdev->dev, "split power mode\n");
626 
627 	if (reg != new_ctrl)
628 		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
629 
630 	rtc->type->lock(rtc);
631 
632 	device_init_wakeup(&pdev->dev, true);
633 
634 	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
635 			&omap_rtc_ops, THIS_MODULE);
636 	if (IS_ERR(rtc->rtc)) {
637 		ret = PTR_ERR(rtc->rtc);
638 		goto err;
639 	}
640 
641 	/* handle periodic and alarm irqs */
642 	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
643 			dev_name(&rtc->rtc->dev), rtc);
644 	if (ret)
645 		goto err;
646 
647 	if (rtc->irq_timer != rtc->irq_alarm) {
648 		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
649 				dev_name(&rtc->rtc->dev), rtc);
650 		if (ret)
651 			goto err;
652 	}
653 
654 	if (rtc->is_pmic_controller) {
655 		if (!pm_power_off) {
656 			omap_rtc_power_off_rtc = rtc;
657 			pm_power_off = omap_rtc_power_off;
658 		}
659 	}
660 
661 	return 0;
662 
663 err:
664 	device_init_wakeup(&pdev->dev, false);
665 	rtc->type->lock(rtc);
666 	pm_runtime_put_sync(&pdev->dev);
667 	pm_runtime_disable(&pdev->dev);
668 
669 	return ret;
670 }
671 
672 static int __exit omap_rtc_remove(struct platform_device *pdev)
673 {
674 	struct omap_rtc *rtc = platform_get_drvdata(pdev);
675 
676 	if (pm_power_off == omap_rtc_power_off &&
677 			omap_rtc_power_off_rtc == rtc) {
678 		pm_power_off = NULL;
679 		omap_rtc_power_off_rtc = NULL;
680 	}
681 
682 	device_init_wakeup(&pdev->dev, 0);
683 
684 	rtc->type->unlock(rtc);
685 	/* leave rtc running, but disable irqs */
686 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
687 
688 	rtc->type->lock(rtc);
689 
690 	/* Disable the clock/module */
691 	pm_runtime_put_sync(&pdev->dev);
692 	pm_runtime_disable(&pdev->dev);
693 
694 	return 0;
695 }
696 
697 #ifdef CONFIG_PM_SLEEP
698 static int omap_rtc_suspend(struct device *dev)
699 {
700 	struct omap_rtc *rtc = dev_get_drvdata(dev);
701 
702 	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
703 
704 	rtc->type->unlock(rtc);
705 	/*
706 	 * FIXME: the RTC alarm is not currently acting as a wakeup event
707 	 * source on some platforms, and in fact this enable() call is just
708 	 * saving a flag that's never used...
709 	 */
710 	if (device_may_wakeup(dev))
711 		enable_irq_wake(rtc->irq_alarm);
712 	else
713 		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714 	rtc->type->lock(rtc);
715 
716 	/* Disable the clock/module */
717 	pm_runtime_put_sync(dev);
718 
719 	return 0;
720 }
721 
722 static int omap_rtc_resume(struct device *dev)
723 {
724 	struct omap_rtc *rtc = dev_get_drvdata(dev);
725 
726 	/* Enable the clock/module so that we can access the registers */
727 	pm_runtime_get_sync(dev);
728 
729 	rtc->type->unlock(rtc);
730 	if (device_may_wakeup(dev))
731 		disable_irq_wake(rtc->irq_alarm);
732 	else
733 		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
734 	rtc->type->lock(rtc);
735 
736 	return 0;
737 }
738 #endif
739 
740 static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
741 
742 static void omap_rtc_shutdown(struct platform_device *pdev)
743 {
744 	struct omap_rtc *rtc = platform_get_drvdata(pdev);
745 	u8 mask;
746 
747 	/*
748 	 * Keep the ALARM interrupt enabled to allow the system to power up on
749 	 * alarm events.
750 	 */
751 	rtc->type->unlock(rtc);
752 	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
753 	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
754 	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
755 	rtc->type->lock(rtc);
756 }
757 
758 static struct platform_driver omap_rtc_driver = {
759 	.probe		= omap_rtc_probe,
760 	.remove		= __exit_p(omap_rtc_remove),
761 	.shutdown	= omap_rtc_shutdown,
762 	.driver		= {
763 		.name	= "omap_rtc",
764 		.pm	= &omap_rtc_pm_ops,
765 		.of_match_table = omap_rtc_of_match,
766 	},
767 	.id_table	= omap_rtc_id_table,
768 };
769 
770 module_platform_driver(omap_rtc_driver);
771 
772 MODULE_ALIAS("platform:omap_rtc");
773 MODULE_AUTHOR("George G. Davis (and others)");
774 MODULE_LICENSE("GPL");
775