xref: /linux/drivers/rtc/rtc-mxc.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 
5 #include <linux/io.h>
6 #include <linux/rtc.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/platform_device.h>
11 #include <linux/pm_wakeirq.h>
12 #include <linux/clk.h>
13 #include <linux/of.h>
14 
15 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
16 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
17 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
18 
19 #define RTC_SW_BIT      (1 << 0)
20 #define RTC_ALM_BIT     (1 << 2)
21 #define RTC_1HZ_BIT     (1 << 4)
22 #define RTC_2HZ_BIT     (1 << 7)
23 #define RTC_SAM0_BIT    (1 << 8)
24 #define RTC_SAM1_BIT    (1 << 9)
25 #define RTC_SAM2_BIT    (1 << 10)
26 #define RTC_SAM3_BIT    (1 << 11)
27 #define RTC_SAM4_BIT    (1 << 12)
28 #define RTC_SAM5_BIT    (1 << 13)
29 #define RTC_SAM6_BIT    (1 << 14)
30 #define RTC_SAM7_BIT    (1 << 15)
31 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
32 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
33 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
34 
35 #define RTC_ENABLE_BIT  (1 << 7)
36 
37 #define MAX_PIE_NUM     9
38 #define MAX_PIE_FREQ    512
39 
40 #define MXC_RTC_TIME	0
41 #define MXC_RTC_ALARM	1
42 
43 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
44 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
45 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
46 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
47 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
48 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
49 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
50 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
51 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
52 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
53 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
54 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
55 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
56 
57 enum imx_rtc_type {
58 	IMX1_RTC,
59 	IMX21_RTC,
60 };
61 
62 struct rtc_plat_data {
63 	struct rtc_device *rtc;
64 	void __iomem *ioaddr;
65 	int irq;
66 	struct clk *clk_ref;
67 	struct clk *clk_ipg;
68 	struct rtc_time g_rtc_alarm;
69 	enum imx_rtc_type devtype;
70 };
71 
72 static const struct of_device_id imx_rtc_dt_ids[] = {
73 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
74 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
75 	{}
76 };
77 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
78 
79 static inline int is_imx1_rtc(struct rtc_plat_data *data)
80 {
81 	return data->devtype == IMX1_RTC;
82 }
83 
84 /*
85  * This function is used to obtain the RTC time or the alarm value in
86  * second.
87  */
88 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
89 {
90 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
91 	void __iomem *ioaddr = pdata->ioaddr;
92 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93 
94 	switch (time_alarm) {
95 	case MXC_RTC_TIME:
96 		day = readw(ioaddr + RTC_DAYR);
97 		hr_min = readw(ioaddr + RTC_HOURMIN);
98 		sec = readw(ioaddr + RTC_SECOND);
99 		break;
100 	case MXC_RTC_ALARM:
101 		day = readw(ioaddr + RTC_DAYALARM);
102 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 		sec = readw(ioaddr + RTC_ALRM_SEC);
104 		break;
105 	}
106 
107 	hr = hr_min >> 8;
108 	min = hr_min & 0xff;
109 
110 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
111 }
112 
113 /*
114  * This function sets the RTC alarm value or the time value.
115  */
116 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
117 {
118 	u32 tod, day, hr, min, sec, temp;
119 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
120 	void __iomem *ioaddr = pdata->ioaddr;
121 
122 	day = div_s64_rem(time, 86400, &tod);
123 
124 	/* time is within a day now */
125 	hr = tod / 3600;
126 	tod -= hr * 3600;
127 
128 	/* time is within an hour now */
129 	min = tod / 60;
130 	sec = tod - min * 60;
131 
132 	temp = (hr << 8) + min;
133 
134 	switch (time_alarm) {
135 	case MXC_RTC_TIME:
136 		writew(day, ioaddr + RTC_DAYR);
137 		writew(sec, ioaddr + RTC_SECOND);
138 		writew(temp, ioaddr + RTC_HOURMIN);
139 		break;
140 	case MXC_RTC_ALARM:
141 		writew(day, ioaddr + RTC_DAYALARM);
142 		writew(sec, ioaddr + RTC_ALRM_SEC);
143 		writew(temp, ioaddr + RTC_ALRM_HM);
144 		break;
145 	}
146 }
147 
148 /*
149  * This function updates the RTC alarm registers and then clears all the
150  * interrupt status bits.
151  */
152 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
153 {
154 	time64_t time;
155 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
156 	void __iomem *ioaddr = pdata->ioaddr;
157 
158 	time = rtc_tm_to_time64(alrm);
159 
160 	/* clear all the interrupt status bits */
161 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
162 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
163 }
164 
165 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
166 				unsigned int enabled)
167 {
168 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
169 	void __iomem *ioaddr = pdata->ioaddr;
170 	u32 reg;
171 	unsigned long flags;
172 
173 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
174 	reg = readw(ioaddr + RTC_RTCIENR);
175 
176 	if (enabled)
177 		reg |= bit;
178 	else
179 		reg &= ~bit;
180 
181 	writew(reg, ioaddr + RTC_RTCIENR);
182 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
183 }
184 
185 /* This function is the RTC interrupt service routine. */
186 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
187 {
188 	struct platform_device *pdev = dev_id;
189 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
190 	void __iomem *ioaddr = pdata->ioaddr;
191 	u32 status;
192 	u32 events = 0;
193 
194 	spin_lock(&pdata->rtc->irq_lock);
195 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
196 	/* clear interrupt sources */
197 	writew(status, ioaddr + RTC_RTCISR);
198 
199 	/* update irq data & counter */
200 	if (status & RTC_ALM_BIT) {
201 		events |= (RTC_AF | RTC_IRQF);
202 		/* RTC alarm should be one-shot */
203 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
204 	}
205 
206 	if (status & PIT_ALL_ON)
207 		events |= (RTC_PF | RTC_IRQF);
208 
209 	rtc_update_irq(pdata->rtc, 1, events);
210 	spin_unlock(&pdata->rtc->irq_lock);
211 
212 	return IRQ_HANDLED;
213 }
214 
215 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
216 {
217 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
218 	return 0;
219 }
220 
221 /*
222  * This function reads the current RTC time into tm in Gregorian date.
223  */
224 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
225 {
226 	time64_t val;
227 
228 	/* Avoid roll-over from reading the different registers */
229 	do {
230 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
231 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
232 
233 	rtc_time64_to_tm(val, tm);
234 
235 	return 0;
236 }
237 
238 /*
239  * This function sets the internal RTC time based on tm in Gregorian date.
240  */
241 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
242 {
243 	time64_t time = rtc_tm_to_time64(tm);
244 
245 	/* Avoid roll-over from reading the different registers */
246 	do {
247 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
248 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
249 
250 	return 0;
251 }
252 
253 /*
254  * This function reads the current alarm value into the passed in 'alrm'
255  * argument. It updates the alrm's pending field value based on the whether
256  * an alarm interrupt occurs or not.
257  */
258 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259 {
260 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
261 	void __iomem *ioaddr = pdata->ioaddr;
262 
263 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
264 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
265 
266 	return 0;
267 }
268 
269 /*
270  * This function sets the RTC alarm based on passed in alrm.
271  */
272 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273 {
274 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
275 
276 	rtc_update_alarm(dev, &alrm->time);
277 
278 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
279 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
280 
281 	return 0;
282 }
283 
284 /* RTC layer */
285 static const struct rtc_class_ops mxc_rtc_ops = {
286 	.read_time		= mxc_rtc_read_time,
287 	.set_time		= mxc_rtc_set_time,
288 	.read_alarm		= mxc_rtc_read_alarm,
289 	.set_alarm		= mxc_rtc_set_alarm,
290 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
291 };
292 
293 static int mxc_rtc_probe(struct platform_device *pdev)
294 {
295 	struct rtc_device *rtc;
296 	struct rtc_plat_data *pdata = NULL;
297 	u32 reg;
298 	unsigned long rate;
299 	int ret;
300 
301 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
302 	if (!pdata)
303 		return -ENOMEM;
304 
305 	pdata->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
306 
307 	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
308 	if (IS_ERR(pdata->ioaddr))
309 		return PTR_ERR(pdata->ioaddr);
310 
311 	rtc = devm_rtc_allocate_device(&pdev->dev);
312 	if (IS_ERR(rtc))
313 		return PTR_ERR(rtc);
314 
315 	pdata->rtc = rtc;
316 	rtc->ops = &mxc_rtc_ops;
317 	if (is_imx1_rtc(pdata)) {
318 		struct rtc_time tm;
319 
320 		/* 9bit days + hours minutes seconds */
321 		rtc->range_max = (1 << 9) * 86400 - 1;
322 
323 		/*
324 		 * Set the start date as beginning of the current year. This can
325 		 * be overridden using device tree.
326 		 */
327 		rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
328 		rtc->start_secs =  mktime64(tm.tm_year, 1, 1, 0, 0, 0);
329 		rtc->set_start_time = true;
330 	} else {
331 		/* 16bit days + hours minutes seconds */
332 		rtc->range_max = (1 << 16) * 86400ULL - 1;
333 	}
334 
335 	pdata->clk_ipg = devm_clk_get_enabled(&pdev->dev, "ipg");
336 	if (IS_ERR(pdata->clk_ipg)) {
337 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
338 		return PTR_ERR(pdata->clk_ipg);
339 	}
340 
341 	pdata->clk_ref = devm_clk_get_enabled(&pdev->dev, "ref");
342 	if (IS_ERR(pdata->clk_ref)) {
343 		dev_err(&pdev->dev, "unable to get ref clock!\n");
344 		return PTR_ERR(pdata->clk_ref);
345 	}
346 
347 	rate = clk_get_rate(pdata->clk_ref);
348 
349 	if (rate == 32768)
350 		reg = RTC_INPUT_CLK_32768HZ;
351 	else if (rate == 32000)
352 		reg = RTC_INPUT_CLK_32000HZ;
353 	else if (rate == 38400)
354 		reg = RTC_INPUT_CLK_38400HZ;
355 	else {
356 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
357 		return -EINVAL;
358 	}
359 
360 	reg |= RTC_ENABLE_BIT;
361 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
362 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
363 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
364 		return -EIO;
365 	}
366 
367 	platform_set_drvdata(pdev, pdata);
368 
369 	/* Configure and enable the RTC */
370 	pdata->irq = platform_get_irq(pdev, 0);
371 
372 	if (pdata->irq >= 0 &&
373 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
374 			     IRQF_SHARED, pdev->name, pdev) < 0) {
375 		dev_warn(&pdev->dev, "interrupt not available.\n");
376 		pdata->irq = -1;
377 	}
378 
379 	if (pdata->irq >= 0) {
380 		device_init_wakeup(&pdev->dev, 1);
381 		ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
382 		if (ret)
383 			dev_err(&pdev->dev, "failed to enable irq wake\n");
384 	}
385 
386 	ret = devm_rtc_register_device(rtc);
387 
388 	return ret;
389 }
390 
391 static struct platform_driver mxc_rtc_driver = {
392 	.driver = {
393 		   .name	= "mxc_rtc",
394 		   .of_match_table = imx_rtc_dt_ids,
395 	},
396 	.probe = mxc_rtc_probe,
397 };
398 
399 module_platform_driver(mxc_rtc_driver)
400 
401 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
402 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
403 MODULE_LICENSE("GPL");
404 
405