1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. 4 5 #include <linux/io.h> 6 #include <linux/rtc.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/platform_device.h> 11 #include <linux/pm_wakeirq.h> 12 #include <linux/clk.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 16 #define RTC_INPUT_CLK_32768HZ (0x00 << 5) 17 #define RTC_INPUT_CLK_32000HZ (0x01 << 5) 18 #define RTC_INPUT_CLK_38400HZ (0x02 << 5) 19 20 #define RTC_SW_BIT (1 << 0) 21 #define RTC_ALM_BIT (1 << 2) 22 #define RTC_1HZ_BIT (1 << 4) 23 #define RTC_2HZ_BIT (1 << 7) 24 #define RTC_SAM0_BIT (1 << 8) 25 #define RTC_SAM1_BIT (1 << 9) 26 #define RTC_SAM2_BIT (1 << 10) 27 #define RTC_SAM3_BIT (1 << 11) 28 #define RTC_SAM4_BIT (1 << 12) 29 #define RTC_SAM5_BIT (1 << 13) 30 #define RTC_SAM6_BIT (1 << 14) 31 #define RTC_SAM7_BIT (1 << 15) 32 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \ 33 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \ 34 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT) 35 36 #define RTC_ENABLE_BIT (1 << 7) 37 38 #define MAX_PIE_NUM 9 39 #define MAX_PIE_FREQ 512 40 41 #define MXC_RTC_TIME 0 42 #define MXC_RTC_ALARM 1 43 44 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */ 45 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */ 46 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */ 47 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */ 48 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */ 49 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */ 50 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */ 51 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */ 52 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */ 53 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */ 54 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */ 55 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */ 56 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */ 57 58 enum imx_rtc_type { 59 IMX1_RTC, 60 IMX21_RTC, 61 }; 62 63 struct rtc_plat_data { 64 struct rtc_device *rtc; 65 void __iomem *ioaddr; 66 int irq; 67 struct clk *clk_ref; 68 struct clk *clk_ipg; 69 struct rtc_time g_rtc_alarm; 70 enum imx_rtc_type devtype; 71 }; 72 73 static const struct platform_device_id imx_rtc_devtype[] = { 74 { 75 .name = "imx1-rtc", 76 .driver_data = IMX1_RTC, 77 }, { 78 .name = "imx21-rtc", 79 .driver_data = IMX21_RTC, 80 }, { 81 /* sentinel */ 82 } 83 }; 84 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype); 85 86 #ifdef CONFIG_OF 87 static const struct of_device_id imx_rtc_dt_ids[] = { 88 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC }, 89 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC }, 90 {} 91 }; 92 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids); 93 #endif 94 95 static inline int is_imx1_rtc(struct rtc_plat_data *data) 96 { 97 return data->devtype == IMX1_RTC; 98 } 99 100 /* 101 * This function is used to obtain the RTC time or the alarm value in 102 * second. 103 */ 104 static time64_t get_alarm_or_time(struct device *dev, int time_alarm) 105 { 106 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 107 void __iomem *ioaddr = pdata->ioaddr; 108 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0; 109 110 switch (time_alarm) { 111 case MXC_RTC_TIME: 112 day = readw(ioaddr + RTC_DAYR); 113 hr_min = readw(ioaddr + RTC_HOURMIN); 114 sec = readw(ioaddr + RTC_SECOND); 115 break; 116 case MXC_RTC_ALARM: 117 day = readw(ioaddr + RTC_DAYALARM); 118 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff; 119 sec = readw(ioaddr + RTC_ALRM_SEC); 120 break; 121 } 122 123 hr = hr_min >> 8; 124 min = hr_min & 0xff; 125 126 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec; 127 } 128 129 /* 130 * This function sets the RTC alarm value or the time value. 131 */ 132 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time) 133 { 134 u32 tod, day, hr, min, sec, temp; 135 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 136 void __iomem *ioaddr = pdata->ioaddr; 137 138 day = div_s64_rem(time, 86400, &tod); 139 140 /* time is within a day now */ 141 hr = tod / 3600; 142 tod -= hr * 3600; 143 144 /* time is within an hour now */ 145 min = tod / 60; 146 sec = tod - min * 60; 147 148 temp = (hr << 8) + min; 149 150 switch (time_alarm) { 151 case MXC_RTC_TIME: 152 writew(day, ioaddr + RTC_DAYR); 153 writew(sec, ioaddr + RTC_SECOND); 154 writew(temp, ioaddr + RTC_HOURMIN); 155 break; 156 case MXC_RTC_ALARM: 157 writew(day, ioaddr + RTC_DAYALARM); 158 writew(sec, ioaddr + RTC_ALRM_SEC); 159 writew(temp, ioaddr + RTC_ALRM_HM); 160 break; 161 } 162 } 163 164 /* 165 * This function updates the RTC alarm registers and then clears all the 166 * interrupt status bits. 167 */ 168 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm) 169 { 170 time64_t time; 171 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 172 void __iomem *ioaddr = pdata->ioaddr; 173 174 time = rtc_tm_to_time64(alrm); 175 176 /* clear all the interrupt status bits */ 177 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR); 178 set_alarm_or_time(dev, MXC_RTC_ALARM, time); 179 } 180 181 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit, 182 unsigned int enabled) 183 { 184 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 185 void __iomem *ioaddr = pdata->ioaddr; 186 u32 reg; 187 unsigned long flags; 188 189 spin_lock_irqsave(&pdata->rtc->irq_lock, flags); 190 reg = readw(ioaddr + RTC_RTCIENR); 191 192 if (enabled) 193 reg |= bit; 194 else 195 reg &= ~bit; 196 197 writew(reg, ioaddr + RTC_RTCIENR); 198 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); 199 } 200 201 /* This function is the RTC interrupt service routine. */ 202 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id) 203 { 204 struct platform_device *pdev = dev_id; 205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 206 void __iomem *ioaddr = pdata->ioaddr; 207 unsigned long flags; 208 u32 status; 209 u32 events = 0; 210 211 spin_lock_irqsave(&pdata->rtc->irq_lock, flags); 212 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR); 213 /* clear interrupt sources */ 214 writew(status, ioaddr + RTC_RTCISR); 215 216 /* update irq data & counter */ 217 if (status & RTC_ALM_BIT) { 218 events |= (RTC_AF | RTC_IRQF); 219 /* RTC alarm should be one-shot */ 220 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0); 221 } 222 223 if (status & PIT_ALL_ON) 224 events |= (RTC_PF | RTC_IRQF); 225 226 rtc_update_irq(pdata->rtc, 1, events); 227 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); 228 229 return IRQ_HANDLED; 230 } 231 232 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 233 { 234 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled); 235 return 0; 236 } 237 238 /* 239 * This function reads the current RTC time into tm in Gregorian date. 240 */ 241 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm) 242 { 243 time64_t val; 244 245 /* Avoid roll-over from reading the different registers */ 246 do { 247 val = get_alarm_or_time(dev, MXC_RTC_TIME); 248 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME)); 249 250 rtc_time64_to_tm(val, tm); 251 252 return 0; 253 } 254 255 /* 256 * This function sets the internal RTC time based on tm in Gregorian date. 257 */ 258 static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm) 259 { 260 time64_t time = rtc_tm_to_time64(tm); 261 262 /* Avoid roll-over from reading the different registers */ 263 do { 264 set_alarm_or_time(dev, MXC_RTC_TIME, time); 265 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME)); 266 267 return 0; 268 } 269 270 /* 271 * This function reads the current alarm value into the passed in 'alrm' 272 * argument. It updates the alrm's pending field value based on the whether 273 * an alarm interrupt occurs or not. 274 */ 275 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 276 { 277 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 278 void __iomem *ioaddr = pdata->ioaddr; 279 280 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time); 281 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0; 282 283 return 0; 284 } 285 286 /* 287 * This function sets the RTC alarm based on passed in alrm. 288 */ 289 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 290 { 291 struct rtc_plat_data *pdata = dev_get_drvdata(dev); 292 293 rtc_update_alarm(dev, &alrm->time); 294 295 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time)); 296 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled); 297 298 return 0; 299 } 300 301 /* RTC layer */ 302 static const struct rtc_class_ops mxc_rtc_ops = { 303 .read_time = mxc_rtc_read_time, 304 .set_time = mxc_rtc_set_time, 305 .read_alarm = mxc_rtc_read_alarm, 306 .set_alarm = mxc_rtc_set_alarm, 307 .alarm_irq_enable = mxc_rtc_alarm_irq_enable, 308 }; 309 310 static int mxc_rtc_probe(struct platform_device *pdev) 311 { 312 struct rtc_device *rtc; 313 struct rtc_plat_data *pdata = NULL; 314 u32 reg; 315 unsigned long rate; 316 int ret; 317 const struct of_device_id *of_id; 318 319 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 320 if (!pdata) 321 return -ENOMEM; 322 323 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev); 324 if (of_id) 325 pdata->devtype = (enum imx_rtc_type)of_id->data; 326 else 327 pdata->devtype = pdev->id_entry->driver_data; 328 329 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0); 330 if (IS_ERR(pdata->ioaddr)) 331 return PTR_ERR(pdata->ioaddr); 332 333 rtc = devm_rtc_allocate_device(&pdev->dev); 334 if (IS_ERR(rtc)) 335 return PTR_ERR(rtc); 336 337 pdata->rtc = rtc; 338 rtc->ops = &mxc_rtc_ops; 339 if (is_imx1_rtc(pdata)) { 340 struct rtc_time tm; 341 342 /* 9bit days + hours minutes seconds */ 343 rtc->range_max = (1 << 9) * 86400 - 1; 344 345 /* 346 * Set the start date as beginning of the current year. This can 347 * be overridden using device tree. 348 */ 349 rtc_time64_to_tm(ktime_get_real_seconds(), &tm); 350 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0); 351 rtc->set_start_time = true; 352 } else { 353 /* 16bit days + hours minutes seconds */ 354 rtc->range_max = (1 << 16) * 86400ULL - 1; 355 } 356 357 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 358 if (IS_ERR(pdata->clk_ipg)) { 359 dev_err(&pdev->dev, "unable to get ipg clock!\n"); 360 return PTR_ERR(pdata->clk_ipg); 361 } 362 363 ret = clk_prepare_enable(pdata->clk_ipg); 364 if (ret) 365 return ret; 366 367 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref"); 368 if (IS_ERR(pdata->clk_ref)) { 369 dev_err(&pdev->dev, "unable to get ref clock!\n"); 370 ret = PTR_ERR(pdata->clk_ref); 371 goto exit_put_clk_ipg; 372 } 373 374 ret = clk_prepare_enable(pdata->clk_ref); 375 if (ret) 376 goto exit_put_clk_ipg; 377 378 rate = clk_get_rate(pdata->clk_ref); 379 380 if (rate == 32768) 381 reg = RTC_INPUT_CLK_32768HZ; 382 else if (rate == 32000) 383 reg = RTC_INPUT_CLK_32000HZ; 384 else if (rate == 38400) 385 reg = RTC_INPUT_CLK_38400HZ; 386 else { 387 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate); 388 ret = -EINVAL; 389 goto exit_put_clk_ref; 390 } 391 392 reg |= RTC_ENABLE_BIT; 393 writew(reg, (pdata->ioaddr + RTC_RTCCTL)); 394 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) { 395 dev_err(&pdev->dev, "hardware module can't be enabled!\n"); 396 ret = -EIO; 397 goto exit_put_clk_ref; 398 } 399 400 platform_set_drvdata(pdev, pdata); 401 402 /* Configure and enable the RTC */ 403 pdata->irq = platform_get_irq(pdev, 0); 404 405 if (pdata->irq >= 0 && 406 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 407 IRQF_SHARED, pdev->name, pdev) < 0) { 408 dev_warn(&pdev->dev, "interrupt not available.\n"); 409 pdata->irq = -1; 410 } 411 412 if (pdata->irq >= 0) { 413 device_init_wakeup(&pdev->dev, 1); 414 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq); 415 if (ret) 416 dev_err(&pdev->dev, "failed to enable irq wake\n"); 417 } 418 419 ret = rtc_register_device(rtc); 420 if (ret) 421 goto exit_put_clk_ref; 422 423 return 0; 424 425 exit_put_clk_ref: 426 clk_disable_unprepare(pdata->clk_ref); 427 exit_put_clk_ipg: 428 clk_disable_unprepare(pdata->clk_ipg); 429 430 return ret; 431 } 432 433 static int mxc_rtc_remove(struct platform_device *pdev) 434 { 435 struct rtc_plat_data *pdata = platform_get_drvdata(pdev); 436 437 clk_disable_unprepare(pdata->clk_ref); 438 clk_disable_unprepare(pdata->clk_ipg); 439 440 return 0; 441 } 442 443 static struct platform_driver mxc_rtc_driver = { 444 .driver = { 445 .name = "mxc_rtc", 446 .of_match_table = of_match_ptr(imx_rtc_dt_ids), 447 }, 448 .id_table = imx_rtc_devtype, 449 .probe = mxc_rtc_probe, 450 .remove = mxc_rtc_remove, 451 }; 452 453 module_platform_driver(mxc_rtc_driver) 454 455 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>"); 456 MODULE_DESCRIPTION("RTC driver for Freescale MXC"); 457 MODULE_LICENSE("GPL"); 458 459