xref: /linux/drivers/rtc/rtc-mxc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11 
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 
22 #define RTC_INPUT_CLK_32768HZ	(0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ	(0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ	(0x02 << 5)
25 
26 #define RTC_SW_BIT      (1 << 0)
27 #define RTC_ALM_BIT     (1 << 2)
28 #define RTC_1HZ_BIT     (1 << 4)
29 #define RTC_2HZ_BIT     (1 << 7)
30 #define RTC_SAM0_BIT    (1 << 8)
31 #define RTC_SAM1_BIT    (1 << 9)
32 #define RTC_SAM2_BIT    (1 << 10)
33 #define RTC_SAM3_BIT    (1 << 11)
34 #define RTC_SAM4_BIT    (1 << 12)
35 #define RTC_SAM5_BIT    (1 << 13)
36 #define RTC_SAM6_BIT    (1 << 14)
37 #define RTC_SAM7_BIT    (1 << 15)
38 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 			 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 			 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41 
42 #define RTC_ENABLE_BIT  (1 << 7)
43 
44 #define MAX_PIE_NUM     9
45 #define MAX_PIE_FREQ    512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 	{ 2,		RTC_2HZ_BIT },
48 	{ 4,		RTC_SAM0_BIT },
49 	{ 8,		RTC_SAM1_BIT },
50 	{ 16,		RTC_SAM2_BIT },
51 	{ 32,		RTC_SAM3_BIT },
52 	{ 64,		RTC_SAM4_BIT },
53 	{ 128,		RTC_SAM5_BIT },
54 	{ 256,		RTC_SAM6_BIT },
55 	{ MAX_PIE_FREQ,	RTC_SAM7_BIT },
56 };
57 
58 #define MXC_RTC_TIME	0
59 #define MXC_RTC_ALARM	1
60 
61 #define RTC_HOURMIN	0x00	/*  32bit rtc hour/min counter reg */
62 #define RTC_SECOND	0x04	/*  32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM	0x08	/*  32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC	0x0C	/*  32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL	0x10	/*  32bit rtc control reg */
66 #define RTC_RTCISR	0x14	/*  32bit rtc interrupt status reg */
67 #define RTC_RTCIENR	0x18	/*  32bit rtc interrupt enable reg */
68 #define RTC_STPWCH	0x1C	/*  32bit rtc stopwatch min reg */
69 #define RTC_DAYR	0x20	/*  32bit rtc days counter reg */
70 #define RTC_DAYALARM	0x24	/*  32bit rtc day alarm reg */
71 #define RTC_TEST1	0x28	/*  32bit rtc test reg 1 */
72 #define RTC_TEST2	0x2C	/*  32bit rtc test reg 2 */
73 #define RTC_TEST3	0x30	/*  32bit rtc test reg 3 */
74 
75 enum imx_rtc_type {
76 	IMX1_RTC,
77 	IMX21_RTC,
78 };
79 
80 struct rtc_plat_data {
81 	struct rtc_device *rtc;
82 	void __iomem *ioaddr;
83 	int irq;
84 	struct clk *clk_ref;
85 	struct clk *clk_ipg;
86 	struct rtc_time g_rtc_alarm;
87 	enum imx_rtc_type devtype;
88 };
89 
90 static const struct platform_device_id imx_rtc_devtype[] = {
91 	{
92 		.name = "imx1-rtc",
93 		.driver_data = IMX1_RTC,
94 	}, {
95 		.name = "imx21-rtc",
96 		.driver_data = IMX21_RTC,
97 	}, {
98 		/* sentinel */
99 	}
100 };
101 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
102 
103 #ifdef CONFIG_OF
104 static const struct of_device_id imx_rtc_dt_ids[] = {
105 	{ .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
106 	{ .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
107 	{}
108 };
109 MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
110 #endif
111 
112 static inline int is_imx1_rtc(struct rtc_plat_data *data)
113 {
114 	return data->devtype == IMX1_RTC;
115 }
116 
117 /*
118  * This function is used to obtain the RTC time or the alarm value in
119  * second.
120  */
121 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
122 {
123 	struct platform_device *pdev = to_platform_device(dev);
124 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
125 	void __iomem *ioaddr = pdata->ioaddr;
126 	u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
127 
128 	switch (time_alarm) {
129 	case MXC_RTC_TIME:
130 		day = readw(ioaddr + RTC_DAYR);
131 		hr_min = readw(ioaddr + RTC_HOURMIN);
132 		sec = readw(ioaddr + RTC_SECOND);
133 		break;
134 	case MXC_RTC_ALARM:
135 		day = readw(ioaddr + RTC_DAYALARM);
136 		hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
137 		sec = readw(ioaddr + RTC_ALRM_SEC);
138 		break;
139 	}
140 
141 	hr = hr_min >> 8;
142 	min = hr_min & 0xff;
143 
144 	return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
145 }
146 
147 /*
148  * This function sets the RTC alarm value or the time value.
149  */
150 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
151 {
152 	u32 tod, day, hr, min, sec, temp;
153 	struct platform_device *pdev = to_platform_device(dev);
154 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
155 	void __iomem *ioaddr = pdata->ioaddr;
156 
157 	day = div_s64_rem(time, 86400, &tod);
158 
159 	/* time is within a day now */
160 	hr = tod / 3600;
161 	tod -= hr * 3600;
162 
163 	/* time is within an hour now */
164 	min = tod / 60;
165 	sec = tod - min * 60;
166 
167 	temp = (hr << 8) + min;
168 
169 	switch (time_alarm) {
170 	case MXC_RTC_TIME:
171 		writew(day, ioaddr + RTC_DAYR);
172 		writew(sec, ioaddr + RTC_SECOND);
173 		writew(temp, ioaddr + RTC_HOURMIN);
174 		break;
175 	case MXC_RTC_ALARM:
176 		writew(day, ioaddr + RTC_DAYALARM);
177 		writew(sec, ioaddr + RTC_ALRM_SEC);
178 		writew(temp, ioaddr + RTC_ALRM_HM);
179 		break;
180 	}
181 }
182 
183 /*
184  * This function updates the RTC alarm registers and then clears all the
185  * interrupt status bits.
186  */
187 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
188 {
189 	time64_t time;
190 	struct platform_device *pdev = to_platform_device(dev);
191 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
192 	void __iomem *ioaddr = pdata->ioaddr;
193 
194 	time = rtc_tm_to_time64(alrm);
195 
196 	/* clear all the interrupt status bits */
197 	writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
198 	set_alarm_or_time(dev, MXC_RTC_ALARM, time);
199 }
200 
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202 				unsigned int enabled)
203 {
204 	struct platform_device *pdev = to_platform_device(dev);
205 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 	void __iomem *ioaddr = pdata->ioaddr;
207 	u32 reg;
208 
209 	spin_lock_irq(&pdata->rtc->irq_lock);
210 	reg = readw(ioaddr + RTC_RTCIENR);
211 
212 	if (enabled)
213 		reg |= bit;
214 	else
215 		reg &= ~bit;
216 
217 	writew(reg, ioaddr + RTC_RTCIENR);
218 	spin_unlock_irq(&pdata->rtc->irq_lock);
219 }
220 
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223 {
224 	struct platform_device *pdev = dev_id;
225 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226 	void __iomem *ioaddr = pdata->ioaddr;
227 	unsigned long flags;
228 	u32 status;
229 	u32 events = 0;
230 
231 	spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232 	status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233 	/* clear interrupt sources */
234 	writew(status, ioaddr + RTC_RTCISR);
235 
236 	/* update irq data & counter */
237 	if (status & RTC_ALM_BIT) {
238 		events |= (RTC_AF | RTC_IRQF);
239 		/* RTC alarm should be one-shot */
240 		mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241 	}
242 
243 	if (status & PIT_ALL_ON)
244 		events |= (RTC_PF | RTC_IRQF);
245 
246 	rtc_update_irq(pdata->rtc, 1, events);
247 	spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
248 
249 	return IRQ_HANDLED;
250 }
251 
252 /*
253  * Clear all interrupts and release the IRQ
254  */
255 static void mxc_rtc_release(struct device *dev)
256 {
257 	struct platform_device *pdev = to_platform_device(dev);
258 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
259 	void __iomem *ioaddr = pdata->ioaddr;
260 
261 	spin_lock_irq(&pdata->rtc->irq_lock);
262 
263 	/* Disable all rtc interrupts */
264 	writew(0, ioaddr + RTC_RTCIENR);
265 
266 	/* Clear all interrupt status */
267 	writew(0xffffffff, ioaddr + RTC_RTCISR);
268 
269 	spin_unlock_irq(&pdata->rtc->irq_lock);
270 }
271 
272 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
273 {
274 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
275 	return 0;
276 }
277 
278 /*
279  * This function reads the current RTC time into tm in Gregorian date.
280  */
281 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
282 {
283 	time64_t val;
284 
285 	/* Avoid roll-over from reading the different registers */
286 	do {
287 		val = get_alarm_or_time(dev, MXC_RTC_TIME);
288 	} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
289 
290 	rtc_time64_to_tm(val, tm);
291 
292 	return 0;
293 }
294 
295 /*
296  * This function sets the internal RTC time based on tm in Gregorian date.
297  */
298 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
299 {
300 	struct platform_device *pdev = to_platform_device(dev);
301 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
302 
303 	/*
304 	 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
305 	 */
306 	if (is_imx1_rtc(pdata)) {
307 		struct rtc_time tm;
308 
309 		rtc_time64_to_tm(time, &tm);
310 		tm.tm_year = 70;
311 		time = rtc_tm_to_time64(&tm);
312 	}
313 
314 	/* Avoid roll-over from reading the different registers */
315 	do {
316 		set_alarm_or_time(dev, MXC_RTC_TIME, time);
317 	} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
318 
319 	return 0;
320 }
321 
322 /*
323  * This function reads the current alarm value into the passed in 'alrm'
324  * argument. It updates the alrm's pending field value based on the whether
325  * an alarm interrupt occurs or not.
326  */
327 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
328 {
329 	struct platform_device *pdev = to_platform_device(dev);
330 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
331 	void __iomem *ioaddr = pdata->ioaddr;
332 
333 	rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
334 	alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
335 
336 	return 0;
337 }
338 
339 /*
340  * This function sets the RTC alarm based on passed in alrm.
341  */
342 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
343 {
344 	struct platform_device *pdev = to_platform_device(dev);
345 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
346 
347 	rtc_update_alarm(dev, &alrm->time);
348 
349 	memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
350 	mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
351 
352 	return 0;
353 }
354 
355 /* RTC layer */
356 static struct rtc_class_ops mxc_rtc_ops = {
357 	.release		= mxc_rtc_release,
358 	.read_time		= mxc_rtc_read_time,
359 	.set_mmss64		= mxc_rtc_set_mmss,
360 	.read_alarm		= mxc_rtc_read_alarm,
361 	.set_alarm		= mxc_rtc_set_alarm,
362 	.alarm_irq_enable	= mxc_rtc_alarm_irq_enable,
363 };
364 
365 static int mxc_rtc_probe(struct platform_device *pdev)
366 {
367 	struct resource *res;
368 	struct rtc_device *rtc;
369 	struct rtc_plat_data *pdata = NULL;
370 	u32 reg;
371 	unsigned long rate;
372 	int ret;
373 	const struct of_device_id *of_id;
374 
375 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
376 	if (!pdata)
377 		return -ENOMEM;
378 
379 	of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
380 	if (of_id)
381 		pdata->devtype = (enum imx_rtc_type)of_id->data;
382 	else
383 		pdata->devtype = pdev->id_entry->driver_data;
384 
385 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
386 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
387 	if (IS_ERR(pdata->ioaddr))
388 		return PTR_ERR(pdata->ioaddr);
389 
390 	pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
391 	if (IS_ERR(pdata->clk_ipg)) {
392 		dev_err(&pdev->dev, "unable to get ipg clock!\n");
393 		return PTR_ERR(pdata->clk_ipg);
394 	}
395 
396 	ret = clk_prepare_enable(pdata->clk_ipg);
397 	if (ret)
398 		return ret;
399 
400 	pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
401 	if (IS_ERR(pdata->clk_ref)) {
402 		dev_err(&pdev->dev, "unable to get ref clock!\n");
403 		ret = PTR_ERR(pdata->clk_ref);
404 		goto exit_put_clk_ipg;
405 	}
406 
407 	ret = clk_prepare_enable(pdata->clk_ref);
408 	if (ret)
409 		goto exit_put_clk_ipg;
410 
411 	rate = clk_get_rate(pdata->clk_ref);
412 
413 	if (rate == 32768)
414 		reg = RTC_INPUT_CLK_32768HZ;
415 	else if (rate == 32000)
416 		reg = RTC_INPUT_CLK_32000HZ;
417 	else if (rate == 38400)
418 		reg = RTC_INPUT_CLK_38400HZ;
419 	else {
420 		dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
421 		ret = -EINVAL;
422 		goto exit_put_clk_ref;
423 	}
424 
425 	reg |= RTC_ENABLE_BIT;
426 	writew(reg, (pdata->ioaddr + RTC_RTCCTL));
427 	if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
428 		dev_err(&pdev->dev, "hardware module can't be enabled!\n");
429 		ret = -EIO;
430 		goto exit_put_clk_ref;
431 	}
432 
433 	platform_set_drvdata(pdev, pdata);
434 
435 	/* Configure and enable the RTC */
436 	pdata->irq = platform_get_irq(pdev, 0);
437 
438 	if (pdata->irq >= 0 &&
439 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
440 			     IRQF_SHARED, pdev->name, pdev) < 0) {
441 		dev_warn(&pdev->dev, "interrupt not available.\n");
442 		pdata->irq = -1;
443 	}
444 
445 	if (pdata->irq >= 0)
446 		device_init_wakeup(&pdev->dev, 1);
447 
448 	rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
449 				  THIS_MODULE);
450 	if (IS_ERR(rtc)) {
451 		ret = PTR_ERR(rtc);
452 		goto exit_put_clk_ref;
453 	}
454 
455 	pdata->rtc = rtc;
456 
457 	return 0;
458 
459 exit_put_clk_ref:
460 	clk_disable_unprepare(pdata->clk_ref);
461 exit_put_clk_ipg:
462 	clk_disable_unprepare(pdata->clk_ipg);
463 
464 	return ret;
465 }
466 
467 static int mxc_rtc_remove(struct platform_device *pdev)
468 {
469 	struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
470 
471 	clk_disable_unprepare(pdata->clk_ref);
472 	clk_disable_unprepare(pdata->clk_ipg);
473 
474 	return 0;
475 }
476 
477 #ifdef CONFIG_PM_SLEEP
478 static int mxc_rtc_suspend(struct device *dev)
479 {
480 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
481 
482 	if (device_may_wakeup(dev))
483 		enable_irq_wake(pdata->irq);
484 
485 	return 0;
486 }
487 
488 static int mxc_rtc_resume(struct device *dev)
489 {
490 	struct rtc_plat_data *pdata = dev_get_drvdata(dev);
491 
492 	if (device_may_wakeup(dev))
493 		disable_irq_wake(pdata->irq);
494 
495 	return 0;
496 }
497 #endif
498 
499 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
500 
501 static struct platform_driver mxc_rtc_driver = {
502 	.driver = {
503 		   .name	= "mxc_rtc",
504 		   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
505 		   .pm		= &mxc_rtc_pm_ops,
506 	},
507 	.id_table = imx_rtc_devtype,
508 	.probe = mxc_rtc_probe,
509 	.remove = mxc_rtc_remove,
510 };
511 
512 module_platform_driver(mxc_rtc_driver)
513 
514 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
515 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
516 MODULE_LICENSE("GPL");
517 
518