xref: /linux/drivers/rtc/rtc-mcp795.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI Driver for Microchip MCP795 RTC
4  *
5  * Copyright (C) Josef Gajdusek <atx@atx.name>
6  *
7  * based on other Linux RTC drivers
8  *
9  * Device datasheet:
10  * https://ww1.microchip.com/downloads/en/DeviceDoc/22280A.pdf
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/device.h>
16 #include <linux/printk.h>
17 #include <linux/spi/spi.h>
18 #include <linux/rtc.h>
19 #include <linux/of.h>
20 #include <linux/bcd.h>
21 #include <linux/delay.h>
22 
23 /* MCP795 Instructions, see datasheet table 3-1 */
24 #define MCP795_EEREAD	0x03
25 #define MCP795_EEWRITE	0x02
26 #define MCP795_EEWRDI	0x04
27 #define MCP795_EEWREN	0x06
28 #define MCP795_SRREAD	0x05
29 #define MCP795_SRWRITE	0x01
30 #define MCP795_READ	0x13
31 #define MCP795_WRITE	0x12
32 #define MCP795_UNLOCK	0x14
33 #define MCP795_IDWRITE	0x32
34 #define MCP795_IDREAD	0x33
35 #define MCP795_CLRWDT	0x44
36 #define MCP795_CLRRAM	0x54
37 
38 /* MCP795 RTCC registers, see datasheet table 4-1 */
39 #define MCP795_REG_SECONDS	0x01
40 #define MCP795_REG_DAY		0x04
41 #define MCP795_REG_MONTH	0x06
42 #define MCP795_REG_CONTROL	0x08
43 #define MCP795_REG_ALM0_SECONDS	0x0C
44 #define MCP795_REG_ALM0_DAY	0x0F
45 
46 #define MCP795_ST_BIT		BIT(7)
47 #define MCP795_24_BIT		BIT(6)
48 #define MCP795_LP_BIT		BIT(5)
49 #define MCP795_EXTOSC_BIT	BIT(3)
50 #define MCP795_OSCON_BIT	BIT(5)
51 #define MCP795_ALM0_BIT		BIT(4)
52 #define MCP795_ALM1_BIT		BIT(5)
53 #define MCP795_ALM0IF_BIT	BIT(3)
54 #define MCP795_ALM0C0_BIT	BIT(4)
55 #define MCP795_ALM0C1_BIT	BIT(5)
56 #define MCP795_ALM0C2_BIT	BIT(6)
57 
58 #define SEC_PER_DAY		(24 * 60 * 60)
59 
60 static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
61 {
62 	struct spi_device *spi = to_spi_device(dev);
63 	int ret;
64 	u8 tx[2];
65 
66 	tx[0] = MCP795_READ;
67 	tx[1] = addr;
68 	ret = spi_write_then_read(spi, tx, sizeof(tx), buf, count);
69 
70 	if (ret)
71 		dev_err(dev, "Failed reading %d bytes from address %x.\n",
72 					count, addr);
73 
74 	return ret;
75 }
76 
77 static int mcp795_rtcc_write(struct device *dev, u8 addr, u8 *data, u8 count)
78 {
79 	struct spi_device *spi = to_spi_device(dev);
80 	int ret;
81 	u8 tx[257];
82 
83 	tx[0] = MCP795_WRITE;
84 	tx[1] = addr;
85 	memcpy(&tx[2], data, count);
86 
87 	ret = spi_write(spi, tx, 2 + count);
88 
89 	if (ret)
90 		dev_err(dev, "Failed to write %d bytes to address %x.\n",
91 					count, addr);
92 
93 	return ret;
94 }
95 
96 static int mcp795_rtcc_set_bits(struct device *dev, u8 addr, u8 mask, u8 state)
97 {
98 	int ret;
99 	u8 tmp;
100 
101 	ret = mcp795_rtcc_read(dev, addr, &tmp, 1);
102 	if (ret)
103 		return ret;
104 
105 	if ((tmp & mask) != state) {
106 		tmp = (tmp & ~mask) | state;
107 		ret = mcp795_rtcc_write(dev, addr, &tmp, 1);
108 	}
109 
110 	return ret;
111 }
112 
113 static int mcp795_stop_oscillator(struct device *dev, bool *extosc)
114 {
115 	int retries = 5;
116 	int ret;
117 	u8 data;
118 
119 	ret = mcp795_rtcc_set_bits(dev, MCP795_REG_SECONDS, MCP795_ST_BIT, 0);
120 	if (ret)
121 		return ret;
122 	ret = mcp795_rtcc_read(dev, MCP795_REG_CONTROL, &data, 1);
123 	if (ret)
124 		return ret;
125 	*extosc = !!(data & MCP795_EXTOSC_BIT);
126 	ret = mcp795_rtcc_set_bits(
127 				dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, 0);
128 	if (ret)
129 		return ret;
130 	/* wait for the OSCON bit to clear */
131 	do {
132 		usleep_range(700, 800);
133 		ret = mcp795_rtcc_read(dev, MCP795_REG_DAY, &data, 1);
134 		if (ret)
135 			break;
136 		if (!(data & MCP795_OSCON_BIT))
137 			break;
138 
139 	} while (--retries);
140 
141 	return !retries ? -EIO : ret;
142 }
143 
144 static int mcp795_start_oscillator(struct device *dev, bool *extosc)
145 {
146 	if (extosc) {
147 		u8 data = *extosc ? MCP795_EXTOSC_BIT : 0;
148 		int ret;
149 
150 		ret = mcp795_rtcc_set_bits(
151 			dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, data);
152 		if (ret)
153 			return ret;
154 	}
155 	return mcp795_rtcc_set_bits(
156 			dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
157 }
158 
159 /* Enable or disable Alarm 0 in RTC */
160 static int mcp795_update_alarm(struct device *dev, bool enable)
161 {
162 	int ret;
163 
164 	dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
165 
166 	if (enable) {
167 		/* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
168 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
169 					MCP795_ALM0IF_BIT, 0);
170 		if (ret)
171 			return ret;
172 		/* enable alarm 0 */
173 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
174 					MCP795_ALM0_BIT, MCP795_ALM0_BIT);
175 	} else {
176 		/* disable alarm 0 and alarm 1 */
177 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
178 					MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
179 	}
180 	return ret;
181 }
182 
183 static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
184 {
185 	int ret;
186 	u8 data[7];
187 	bool extosc;
188 
189 	/* Stop RTC and store current value of EXTOSC bit */
190 	ret = mcp795_stop_oscillator(dev, &extosc);
191 	if (ret)
192 		return ret;
193 
194 	/* Read first, so we can leave config bits untouched */
195 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
196 
197 	if (ret)
198 		return ret;
199 
200 	data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
201 	data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
202 	data[2] = bin2bcd(tim->tm_hour);
203 	data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
204 	data[4] = bin2bcd(tim->tm_mday);
205 	data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
206 
207 	if (tim->tm_year > 100)
208 		tim->tm_year -= 100;
209 
210 	data[6] = bin2bcd(tim->tm_year);
211 
212 	/* Always write the date and month using a separate Write command.
213 	 * This is a workaround for a know silicon issue that some combinations
214 	 * of date and month values may result in the date being reset to 1.
215 	 */
216 	ret = mcp795_rtcc_write(dev, MCP795_REG_SECONDS, data, 5);
217 	if (ret)
218 		return ret;
219 
220 	ret = mcp795_rtcc_write(dev, MCP795_REG_MONTH, &data[5], 2);
221 	if (ret)
222 		return ret;
223 
224 	/* Start back RTC and restore previous value of EXTOSC bit.
225 	 * There is no need to clear EXTOSC bit when the previous value was 0
226 	 * because it was already cleared when stopping the RTC oscillator.
227 	 */
228 	ret = mcp795_start_oscillator(dev, extosc ? &extosc : NULL);
229 	if (ret)
230 		return ret;
231 
232 	dev_dbg(dev, "Set mcp795: %ptR\n", tim);
233 
234 	return 0;
235 }
236 
237 static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
238 {
239 	int ret;
240 	u8 data[7];
241 
242 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
243 
244 	if (ret)
245 		return ret;
246 
247 	tim->tm_sec	= bcd2bin(data[0] & 0x7F);
248 	tim->tm_min	= bcd2bin(data[1] & 0x7F);
249 	tim->tm_hour	= bcd2bin(data[2] & 0x3F);
250 	tim->tm_wday	= bcd2bin(data[3] & 0x07) - 1;
251 	tim->tm_mday	= bcd2bin(data[4] & 0x3F);
252 	tim->tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
253 	tim->tm_year	= bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
254 
255 	dev_dbg(dev, "Read from mcp795: %ptR\n", tim);
256 
257 	return 0;
258 }
259 
260 static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
261 {
262 	struct rtc_time now_tm;
263 	time64_t now;
264 	time64_t later;
265 	u8 tmp[6];
266 	int ret;
267 
268 	/* Read current time from RTC hardware */
269 	ret = mcp795_read_time(dev, &now_tm);
270 	if (ret)
271 		return ret;
272 	/* Get the number of seconds since 1970 */
273 	now = rtc_tm_to_time64(&now_tm);
274 	later = rtc_tm_to_time64(&alm->time);
275 	if (later <= now)
276 		return -EINVAL;
277 	/* make sure alarm fires within the next one year */
278 	if ((later - now) >=
279 		(SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
280 		return -EDOM;
281 	/* disable alarm */
282 	ret = mcp795_update_alarm(dev, false);
283 	if (ret)
284 		return ret;
285 	/* Read registers, so we can leave configuration bits untouched */
286 	ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
287 	if (ret)
288 		return ret;
289 
290 	alm->time.tm_year	= -1;
291 	alm->time.tm_isdst	= -1;
292 	alm->time.tm_yday	= -1;
293 
294 	tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
295 	tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
296 	tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
297 	tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
298 	/* set alarm match: seconds, minutes, hour, day, date and month */
299 	tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
300 	tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
301 	tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
302 
303 	ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
304 	if (ret)
305 		return ret;
306 
307 	/* enable alarm if requested */
308 	if (alm->enabled) {
309 		ret = mcp795_update_alarm(dev, true);
310 		if (ret)
311 			return ret;
312 		dev_dbg(dev, "Alarm IRQ armed\n");
313 	}
314 	dev_dbg(dev, "Set alarm: %ptRdr(%d) %ptRt\n",
315 		&alm->time, alm->time.tm_wday, &alm->time);
316 	return 0;
317 }
318 
319 static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
320 {
321 	u8 data[6];
322 	int ret;
323 
324 	ret = mcp795_rtcc_read(
325 			dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
326 	if (ret)
327 		return ret;
328 
329 	alm->time.tm_sec	= bcd2bin(data[0] & 0x7F);
330 	alm->time.tm_min	= bcd2bin(data[1] & 0x7F);
331 	alm->time.tm_hour	= bcd2bin(data[2] & 0x1F);
332 	alm->time.tm_wday	= bcd2bin(data[3] & 0x07) - 1;
333 	alm->time.tm_mday	= bcd2bin(data[4] & 0x3F);
334 	alm->time.tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
335 	alm->time.tm_year	= -1;
336 	alm->time.tm_isdst	= -1;
337 	alm->time.tm_yday	= -1;
338 
339 	dev_dbg(dev, "Read alarm: %ptRdr(%d) %ptRt\n",
340 		&alm->time, alm->time.tm_wday, &alm->time);
341 	return 0;
342 }
343 
344 static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
345 {
346 	return mcp795_update_alarm(dev, !!enabled);
347 }
348 
349 static irqreturn_t mcp795_irq(int irq, void *data)
350 {
351 	struct spi_device *spi = data;
352 	struct rtc_device *rtc = spi_get_drvdata(spi);
353 	int ret;
354 
355 	rtc_lock(rtc);
356 
357 	/* Disable alarm.
358 	 * There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
359 	 * because it is done every time when alarm is enabled.
360 	 */
361 	ret = mcp795_update_alarm(&spi->dev, false);
362 	if (ret)
363 		dev_err(&spi->dev,
364 			"Failed to disable alarm in IRQ (ret=%d)\n", ret);
365 	rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
366 
367 	rtc_unlock(rtc);
368 
369 	return IRQ_HANDLED;
370 }
371 
372 static const struct rtc_class_ops mcp795_rtc_ops = {
373 		.read_time = mcp795_read_time,
374 		.set_time = mcp795_set_time,
375 		.read_alarm = mcp795_read_alarm,
376 		.set_alarm = mcp795_set_alarm,
377 		.alarm_irq_enable = mcp795_alarm_irq_enable
378 };
379 
380 static int mcp795_probe(struct spi_device *spi)
381 {
382 	struct rtc_device *rtc;
383 	int ret;
384 
385 	spi->mode = SPI_MODE_0;
386 	spi->bits_per_word = 8;
387 	ret = spi_setup(spi);
388 	if (ret) {
389 		dev_err(&spi->dev, "Unable to setup SPI\n");
390 		return ret;
391 	}
392 
393 	/* Start the oscillator but don't set the value of EXTOSC bit */
394 	mcp795_start_oscillator(&spi->dev, NULL);
395 	/* Clear the 12 hour mode flag*/
396 	mcp795_rtcc_set_bits(&spi->dev, 0x03, MCP795_24_BIT, 0);
397 
398 	rtc = devm_rtc_device_register(&spi->dev, "rtc-mcp795",
399 					&mcp795_rtc_ops, THIS_MODULE);
400 	if (IS_ERR(rtc))
401 		return PTR_ERR(rtc);
402 
403 	spi_set_drvdata(spi, rtc);
404 
405 	if (spi->irq > 0) {
406 		dev_dbg(&spi->dev, "Alarm support enabled\n");
407 
408 		/* Clear any pending alarm (ALM0IF bit) before requesting
409 		 * the interrupt.
410 		 */
411 		mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
412 					MCP795_ALM0IF_BIT, 0);
413 		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
414 				mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
415 				dev_name(&rtc->dev), spi);
416 		if (ret)
417 			dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
418 						spi->irq, ret);
419 		else
420 			device_init_wakeup(&spi->dev, true);
421 	}
422 	return 0;
423 }
424 
425 #ifdef CONFIG_OF
426 static const struct of_device_id mcp795_of_match[] = {
427 	{ .compatible = "maxim,mcp795" },
428 	{ }
429 };
430 MODULE_DEVICE_TABLE(of, mcp795_of_match);
431 #endif
432 
433 static const struct spi_device_id mcp795_spi_ids[] = {
434 	{ .name = "mcp795" },
435 	{ }
436 };
437 MODULE_DEVICE_TABLE(spi, mcp795_spi_ids);
438 
439 static struct spi_driver mcp795_driver = {
440 		.driver = {
441 				.name = "rtc-mcp795",
442 				.of_match_table = of_match_ptr(mcp795_of_match),
443 		},
444 		.probe = mcp795_probe,
445 		.id_table = mcp795_spi_ids,
446 };
447 
448 module_spi_driver(mcp795_driver);
449 
450 MODULE_DESCRIPTION("MCP795 RTC SPI Driver");
451 MODULE_AUTHOR("Josef Gajdusek <atx@atx.name>");
452 MODULE_LICENSE("GPL");
453 MODULE_ALIAS("spi:mcp795");
454