xref: /linux/drivers/rtc/rtc-m48t59.c (revision 6b830c6a023ff6e8fe05dbe47a9e5cd276df09ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ST M48T59 RTC driver
4  *
5  * Copyright (c) 2007 Wind River Systems, Inc.
6  *
7  * Author: Mark Zhan <rongkai.zhan@windriver.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/io.h>
14 #include <linux/device.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtc.h>
17 #include <linux/rtc/m48t59.h>
18 #include <linux/bcd.h>
19 #include <linux/slab.h>
20 
21 #ifndef NO_IRQ
22 #define NO_IRQ	(-1)
23 #endif
24 
25 #define M48T59_READ(reg) (pdata->read_byte(dev, pdata->offset + reg))
26 #define M48T59_WRITE(val, reg) \
27 	(pdata->write_byte(dev, pdata->offset + reg, val))
28 
29 #define M48T59_SET_BITS(mask, reg)	\
30 	M48T59_WRITE((M48T59_READ(reg) | (mask)), (reg))
31 #define M48T59_CLEAR_BITS(mask, reg)	\
32 	M48T59_WRITE((M48T59_READ(reg) & ~(mask)), (reg))
33 
34 struct m48t59_private {
35 	void __iomem *ioaddr;
36 	int irq;
37 	struct rtc_device *rtc;
38 	spinlock_t lock; /* serialize the NVRAM and RTC access */
39 };
40 
41 /*
42  * This is the generic access method when the chip is memory-mapped
43  */
44 static void
45 m48t59_mem_writeb(struct device *dev, u32 ofs, u8 val)
46 {
47 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
48 
49 	writeb(val, m48t59->ioaddr+ofs);
50 }
51 
52 static u8
53 m48t59_mem_readb(struct device *dev, u32 ofs)
54 {
55 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
56 
57 	return readb(m48t59->ioaddr+ofs);
58 }
59 
60 /*
61  * NOTE: M48T59 only uses BCD mode
62  */
63 static int m48t59_rtc_read_time(struct device *dev, struct rtc_time *tm)
64 {
65 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
66 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
67 	unsigned long flags;
68 	u8 val;
69 
70 	spin_lock_irqsave(&m48t59->lock, flags);
71 	/* Issue the READ command */
72 	M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
73 
74 	tm->tm_year	= bcd2bin(M48T59_READ(M48T59_YEAR)) + pdata->yy_offset;
75 	/* tm_mon is 0-11 */
76 	tm->tm_mon	= bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
77 	tm->tm_mday	= bcd2bin(M48T59_READ(M48T59_MDAY));
78 
79 	val = M48T59_READ(M48T59_WDAY);
80 	if ((pdata->type == M48T59RTC_TYPE_M48T59) &&
81 	    (val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB)) {
82 		dev_dbg(dev, "Century bit is enabled\n");
83 		tm->tm_year += 100;	/* one century */
84 	}
85 
86 	tm->tm_wday	= bcd2bin(val & 0x07);
87 	tm->tm_hour	= bcd2bin(M48T59_READ(M48T59_HOUR) & 0x3F);
88 	tm->tm_min	= bcd2bin(M48T59_READ(M48T59_MIN) & 0x7F);
89 	tm->tm_sec	= bcd2bin(M48T59_READ(M48T59_SEC) & 0x7F);
90 
91 	/* Clear the READ bit */
92 	M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
93 	spin_unlock_irqrestore(&m48t59->lock, flags);
94 
95 	dev_dbg(dev, "RTC read time %ptR\n", tm);
96 	return 0;
97 }
98 
99 static int m48t59_rtc_set_time(struct device *dev, struct rtc_time *tm)
100 {
101 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
102 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
103 	unsigned long flags;
104 	u8 val = 0;
105 	int year = tm->tm_year - pdata->yy_offset;
106 
107 	dev_dbg(dev, "RTC set time %04d-%02d-%02d %02d/%02d/%02d\n",
108 		year + 1900, tm->tm_mon, tm->tm_mday,
109 		tm->tm_hour, tm->tm_min, tm->tm_sec);
110 
111 	if (year < 0)
112 		return -EINVAL;
113 
114 	spin_lock_irqsave(&m48t59->lock, flags);
115 	/* Issue the WRITE command */
116 	M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
117 
118 	M48T59_WRITE((bin2bcd(tm->tm_sec) & 0x7F), M48T59_SEC);
119 	M48T59_WRITE((bin2bcd(tm->tm_min) & 0x7F), M48T59_MIN);
120 	M48T59_WRITE((bin2bcd(tm->tm_hour) & 0x3F), M48T59_HOUR);
121 	M48T59_WRITE((bin2bcd(tm->tm_mday) & 0x3F), M48T59_MDAY);
122 	/* tm_mon is 0-11 */
123 	M48T59_WRITE((bin2bcd(tm->tm_mon + 1) & 0x1F), M48T59_MONTH);
124 	M48T59_WRITE(bin2bcd(year % 100), M48T59_YEAR);
125 
126 	if (pdata->type == M48T59RTC_TYPE_M48T59 && (year >= 100))
127 		val = (M48T59_WDAY_CEB | M48T59_WDAY_CB);
128 	val |= (bin2bcd(tm->tm_wday) & 0x07);
129 	M48T59_WRITE(val, M48T59_WDAY);
130 
131 	/* Clear the WRITE bit */
132 	M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
133 	spin_unlock_irqrestore(&m48t59->lock, flags);
134 	return 0;
135 }
136 
137 /*
138  * Read alarm time and date in RTC
139  */
140 static int m48t59_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
141 {
142 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
143 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
144 	struct rtc_time *tm = &alrm->time;
145 	unsigned long flags;
146 	u8 val;
147 
148 	/* If no irq, we don't support ALARM */
149 	if (m48t59->irq == NO_IRQ)
150 		return -EIO;
151 
152 	spin_lock_irqsave(&m48t59->lock, flags);
153 	/* Issue the READ command */
154 	M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
155 
156 	tm->tm_year = bcd2bin(M48T59_READ(M48T59_YEAR)) + pdata->yy_offset;
157 	/* tm_mon is 0-11 */
158 	tm->tm_mon = bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
159 
160 	val = M48T59_READ(M48T59_WDAY);
161 	if ((val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB))
162 		tm->tm_year += 100;	/* one century */
163 
164 	tm->tm_mday = bcd2bin(M48T59_READ(M48T59_ALARM_DATE));
165 	tm->tm_hour = bcd2bin(M48T59_READ(M48T59_ALARM_HOUR));
166 	tm->tm_min = bcd2bin(M48T59_READ(M48T59_ALARM_MIN));
167 	tm->tm_sec = bcd2bin(M48T59_READ(M48T59_ALARM_SEC));
168 
169 	/* Clear the READ bit */
170 	M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
171 	spin_unlock_irqrestore(&m48t59->lock, flags);
172 
173 	dev_dbg(dev, "RTC read alarm time %ptR\n", tm);
174 	return rtc_valid_tm(tm);
175 }
176 
177 /*
178  * Set alarm time and date in RTC
179  */
180 static int m48t59_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
181 {
182 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
183 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
184 	struct rtc_time *tm = &alrm->time;
185 	u8 mday, hour, min, sec;
186 	unsigned long flags;
187 	int year = tm->tm_year - pdata->yy_offset;
188 
189 	/* If no irq, we don't support ALARM */
190 	if (m48t59->irq == NO_IRQ)
191 		return -EIO;
192 
193 	if (year < 0)
194 		return -EINVAL;
195 
196 	/*
197 	 * 0xff means "always match"
198 	 */
199 	mday = tm->tm_mday;
200 	mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
201 	if (mday == 0xff)
202 		mday = M48T59_READ(M48T59_MDAY);
203 
204 	hour = tm->tm_hour;
205 	hour = (hour < 24) ? bin2bcd(hour) : 0x00;
206 
207 	min = tm->tm_min;
208 	min = (min < 60) ? bin2bcd(min) : 0x00;
209 
210 	sec = tm->tm_sec;
211 	sec = (sec < 60) ? bin2bcd(sec) : 0x00;
212 
213 	spin_lock_irqsave(&m48t59->lock, flags);
214 	/* Issue the WRITE command */
215 	M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
216 
217 	M48T59_WRITE(mday, M48T59_ALARM_DATE);
218 	M48T59_WRITE(hour, M48T59_ALARM_HOUR);
219 	M48T59_WRITE(min, M48T59_ALARM_MIN);
220 	M48T59_WRITE(sec, M48T59_ALARM_SEC);
221 
222 	/* Clear the WRITE bit */
223 	M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
224 	spin_unlock_irqrestore(&m48t59->lock, flags);
225 
226 	dev_dbg(dev, "RTC set alarm time %04d-%02d-%02d %02d/%02d/%02d\n",
227 		year + 1900, tm->tm_mon, tm->tm_mday,
228 		tm->tm_hour, tm->tm_min, tm->tm_sec);
229 	return 0;
230 }
231 
232 /*
233  * Handle commands from user-space
234  */
235 static int m48t59_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
236 {
237 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
238 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&m48t59->lock, flags);
242 	if (enabled)
243 		M48T59_WRITE(M48T59_INTR_AFE, M48T59_INTR);
244 	else
245 		M48T59_WRITE(0x00, M48T59_INTR);
246 	spin_unlock_irqrestore(&m48t59->lock, flags);
247 
248 	return 0;
249 }
250 
251 static int m48t59_rtc_proc(struct device *dev, struct seq_file *seq)
252 {
253 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
254 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
255 	unsigned long flags;
256 	u8 val;
257 
258 	spin_lock_irqsave(&m48t59->lock, flags);
259 	val = M48T59_READ(M48T59_FLAGS);
260 	spin_unlock_irqrestore(&m48t59->lock, flags);
261 
262 	seq_printf(seq, "battery\t\t: %s\n",
263 		 (val & M48T59_FLAGS_BF) ? "low" : "normal");
264 	return 0;
265 }
266 
267 /*
268  * IRQ handler for the RTC
269  */
270 static irqreturn_t m48t59_rtc_interrupt(int irq, void *dev_id)
271 {
272 	struct device *dev = (struct device *)dev_id;
273 	struct m48t59_plat_data *pdata = dev_get_platdata(dev);
274 	struct m48t59_private *m48t59 = dev_get_drvdata(dev);
275 	u8 event;
276 
277 	spin_lock(&m48t59->lock);
278 	event = M48T59_READ(M48T59_FLAGS);
279 	spin_unlock(&m48t59->lock);
280 
281 	if (event & M48T59_FLAGS_AF) {
282 		rtc_update_irq(m48t59->rtc, 1, (RTC_AF | RTC_IRQF));
283 		return IRQ_HANDLED;
284 	}
285 
286 	return IRQ_NONE;
287 }
288 
289 static const struct rtc_class_ops m48t59_rtc_ops = {
290 	.read_time	= m48t59_rtc_read_time,
291 	.set_time	= m48t59_rtc_set_time,
292 	.read_alarm	= m48t59_rtc_readalarm,
293 	.set_alarm	= m48t59_rtc_setalarm,
294 	.proc		= m48t59_rtc_proc,
295 	.alarm_irq_enable = m48t59_rtc_alarm_irq_enable,
296 };
297 
298 static int m48t59_nvram_read(void *priv, unsigned int offset, void *val,
299 			     size_t size)
300 {
301 	struct platform_device *pdev = priv;
302 	struct device *dev = &pdev->dev;
303 	struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
304 	struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
305 	ssize_t cnt = 0;
306 	unsigned long flags;
307 	u8 *buf = val;
308 
309 	spin_lock_irqsave(&m48t59->lock, flags);
310 
311 	for (; cnt < size; cnt++)
312 		*buf++ = M48T59_READ(cnt);
313 
314 	spin_unlock_irqrestore(&m48t59->lock, flags);
315 
316 	return 0;
317 }
318 
319 static int m48t59_nvram_write(void *priv, unsigned int offset, void *val,
320 			      size_t size)
321 {
322 	struct platform_device *pdev = priv;
323 	struct device *dev = &pdev->dev;
324 	struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
325 	struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
326 	ssize_t cnt = 0;
327 	unsigned long flags;
328 	u8 *buf = val;
329 
330 	spin_lock_irqsave(&m48t59->lock, flags);
331 
332 	for (; cnt < size; cnt++)
333 		M48T59_WRITE(*buf++, cnt);
334 
335 	spin_unlock_irqrestore(&m48t59->lock, flags);
336 
337 	return 0;
338 }
339 
340 static int m48t59_rtc_probe(struct platform_device *pdev)
341 {
342 	struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
343 	struct m48t59_private *m48t59 = NULL;
344 	struct resource *res;
345 	int ret = -ENOMEM;
346 	struct nvmem_config nvmem_cfg = {
347 		.name = "m48t59-",
348 		.word_size = 1,
349 		.stride = 1,
350 		.reg_read = m48t59_nvram_read,
351 		.reg_write = m48t59_nvram_write,
352 		.priv = pdev,
353 	};
354 
355 	/* This chip could be memory-mapped or I/O-mapped */
356 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
357 	if (!res) {
358 		res = platform_get_resource(pdev, IORESOURCE_IO, 0);
359 		if (!res)
360 			return -EINVAL;
361 	}
362 
363 	if (res->flags & IORESOURCE_IO) {
364 		/* If we are I/O-mapped, the platform should provide
365 		 * the operations accessing chip registers.
366 		 */
367 		if (!pdata || !pdata->write_byte || !pdata->read_byte)
368 			return -EINVAL;
369 	} else if (res->flags & IORESOURCE_MEM) {
370 		/* we are memory-mapped */
371 		if (!pdata) {
372 			pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata),
373 						GFP_KERNEL);
374 			if (!pdata)
375 				return -ENOMEM;
376 			/* Ensure we only kmalloc platform data once */
377 			pdev->dev.platform_data = pdata;
378 		}
379 		if (!pdata->type)
380 			pdata->type = M48T59RTC_TYPE_M48T59;
381 
382 		/* Try to use the generic memory read/write ops */
383 		if (!pdata->write_byte)
384 			pdata->write_byte = m48t59_mem_writeb;
385 		if (!pdata->read_byte)
386 			pdata->read_byte = m48t59_mem_readb;
387 	}
388 
389 	m48t59 = devm_kzalloc(&pdev->dev, sizeof(*m48t59), GFP_KERNEL);
390 	if (!m48t59)
391 		return -ENOMEM;
392 
393 	m48t59->ioaddr = pdata->ioaddr;
394 
395 	if (!m48t59->ioaddr) {
396 		/* ioaddr not mapped externally */
397 		m48t59->ioaddr = devm_ioremap(&pdev->dev, res->start,
398 						resource_size(res));
399 		if (!m48t59->ioaddr)
400 			return ret;
401 	}
402 
403 	/* Try to get irq number. We also can work in
404 	 * the mode without IRQ.
405 	 */
406 	m48t59->irq = platform_get_irq_optional(pdev, 0);
407 	if (m48t59->irq <= 0)
408 		m48t59->irq = NO_IRQ;
409 
410 	if (m48t59->irq != NO_IRQ) {
411 		ret = devm_request_irq(&pdev->dev, m48t59->irq,
412 				m48t59_rtc_interrupt, IRQF_SHARED,
413 				"rtc-m48t59", &pdev->dev);
414 		if (ret)
415 			return ret;
416 	}
417 
418 	m48t59->rtc = devm_rtc_allocate_device(&pdev->dev);
419 	if (IS_ERR(m48t59->rtc))
420 		return PTR_ERR(m48t59->rtc);
421 
422 	switch (pdata->type) {
423 	case M48T59RTC_TYPE_M48T59:
424 		pdata->offset = 0x1ff0;
425 		break;
426 	case M48T59RTC_TYPE_M48T02:
427 		clear_bit(RTC_FEATURE_ALARM, m48t59->rtc->features);
428 		pdata->offset = 0x7f0;
429 		break;
430 	case M48T59RTC_TYPE_M48T08:
431 		clear_bit(RTC_FEATURE_ALARM, m48t59->rtc->features);
432 		pdata->offset = 0x1ff0;
433 		break;
434 	default:
435 		dev_err(&pdev->dev, "Unknown RTC type\n");
436 		return -ENODEV;
437 	}
438 
439 	spin_lock_init(&m48t59->lock);
440 	platform_set_drvdata(pdev, m48t59);
441 
442 	m48t59->rtc->ops = &m48t59_rtc_ops;
443 	m48t59->rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
444 	m48t59->rtc->range_max = RTC_TIMESTAMP_END_2099;
445 
446 	nvmem_cfg.size = pdata->offset;
447 	ret = devm_rtc_nvmem_register(m48t59->rtc, &nvmem_cfg);
448 	if (ret)
449 		return ret;
450 
451 	ret = devm_rtc_register_device(m48t59->rtc);
452 	if (ret)
453 		return ret;
454 
455 	return 0;
456 }
457 
458 /* work with hotplug and coldplug */
459 MODULE_ALIAS("platform:rtc-m48t59");
460 
461 static struct platform_driver m48t59_rtc_driver = {
462 	.driver		= {
463 		.name	= "rtc-m48t59",
464 	},
465 	.probe		= m48t59_rtc_probe,
466 };
467 
468 module_platform_driver(m48t59_rtc_driver);
469 
470 MODULE_AUTHOR("Mark Zhan <rongkai.zhan@windriver.com>");
471 MODULE_DESCRIPTION("M48T59/M48T02/M48T08 RTC driver");
472 MODULE_LICENSE("GPL");
473