xref: /linux/drivers/rtc/rtc-imxdi.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2010 Orex Computed Radiography
5  */
6 
7 /*
8  * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
9  * to implement a Linux RTC. Times and alarms are truncated to seconds.
10  * Since the RTC framework performs API locking via rtc->ops_lock the
11  * only simultaneous accesses we need to deal with is updating DryIce
12  * registers while servicing an alarm.
13  *
14  * Note that reading the DSR (DryIce Status Register) automatically clears
15  * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
16  * LP (Low Power) domain and set the WCF upon completion. Writes to the
17  * DIER (DryIce Interrupt Enable Register) are the only exception. These
18  * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
19  * not supported by the hardware.
20  */
21 
22 #include <linux/io.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/rtc.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/workqueue.h>
31 #include <linux/of.h>
32 
33 /* DryIce Register Definitions */
34 
35 #define DTCMR     0x00           /* Time Counter MSB Reg */
36 #define DTCLR     0x04           /* Time Counter LSB Reg */
37 
38 #define DCAMR     0x08           /* Clock Alarm MSB Reg */
39 #define DCALR     0x0c           /* Clock Alarm LSB Reg */
40 #define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
41 
42 #define DCR       0x10           /* Control Reg */
43 #define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
44 #define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
45 #define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
46 #define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
47 #define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
48 #define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
49 #define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
50 #define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
51 #define DCR_TCE   (1 << 3)       /* Time Counter Enable */
52 #define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
53 
54 #define DSR       0x14           /* Status Reg */
55 #define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
56 #define DSR_ETBD  (1 << 22)      /* External tamper B detected */
57 #define DSR_ETAD  (1 << 21)      /* External tamper A detected */
58 #define DSR_EBD   (1 << 20)      /* External boot detected */
59 #define DSR_SAD   (1 << 19)      /* SCC alarm detected */
60 #define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
61 #define DSR_CTD   (1 << 17)      /* Clock tamper detected */
62 #define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
63 #define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
64 #define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
65 #define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
66 #define DSR_WEF   (1 << 7)       /* Write Error Flag */
67 #define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
68 #define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
69 #define DSR_TCO   (1 << 2)       /* time counter overflow */
70 #define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
71 #define DSR_SVF   (1 << 0)       /* Security Violation Flag */
72 
73 #define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
74 #define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
75 #define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
76 #define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
77 #define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
78 #define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
79 
80 #define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
81 
82 #define DTCR      0x28           /* DryIce Tamper Configuration Reg */
83 #define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
84 #define DTCR_TOE  (1 << 8)       /* time overflow enabled */
85 #define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
86 #define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
87 #define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
88 #define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
89 #define DTCR_SAIE (1 << 3)       /* SCC enabled */
90 #define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
91 #define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
92 #define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
93 
94 #define DGPR      0x3c           /* DryIce General Purpose Reg */
95 
96 /**
97  * struct imxdi_dev - private imxdi rtc data
98  * @pdev: pointer to platform dev
99  * @rtc: pointer to rtc struct
100  * @ioaddr: IO registers pointer
101  * @clk: input reference clock
102  * @dsr: copy of the DSR register
103  * @irq_lock: interrupt enable register (DIER) lock
104  * @write_wait: registers write complete queue
105  * @write_mutex: serialize registers write
106  * @work: schedule alarm work
107  */
108 struct imxdi_dev {
109 	struct platform_device *pdev;
110 	struct rtc_device *rtc;
111 	void __iomem *ioaddr;
112 	struct clk *clk;
113 	u32 dsr;
114 	spinlock_t irq_lock;
115 	wait_queue_head_t write_wait;
116 	struct mutex write_mutex;
117 	struct work_struct work;
118 };
119 
120 /* Some background:
121  *
122  * The DryIce unit is a complex security/tamper monitor device. To be able do
123  * its job in a useful manner it runs a bigger statemachine to bring it into
124  * security/tamper failure state and once again to bring it out of this state.
125  *
126  * This unit can be in one of three states:
127  *
128  * - "NON-VALID STATE"
129  *   always after the battery power was removed
130  * - "FAILURE STATE"
131  *   if one of the enabled security events has happened
132  * - "VALID STATE"
133  *   if the unit works as expected
134  *
135  * Everything stops when the unit enters the failure state including the RTC
136  * counter (to be able to detect the time the security event happened).
137  *
138  * The following events (when enabled) let the DryIce unit enter the failure
139  * state:
140  *
141  * - wire-mesh-tamper detect
142  * - external tamper B detect
143  * - external tamper A detect
144  * - temperature tamper detect
145  * - clock tamper detect
146  * - voltage tamper detect
147  * - RTC counter overflow
148  * - monotonic counter overflow
149  * - external boot
150  *
151  * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
152  * can only detect this state. In this case the unit is completely locked and
153  * must force a second "SYSTEM POR" to bring the DryIce into the
154  * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
155  * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
156  * a battery power cycle is required.
157  *
158  * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
159  * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
160  * task, we bring back this unit into life.
161  */
162 
163 /*
164  * Do a write into the unit without interrupt support.
165  * We do not need to check the WEF here, because the only reason this kind of
166  * write error can happen is if we write to the unit twice within the 122 us
167  * interval. This cannot happen, since we are using this function only while
168  * setting up the unit.
169  */
170 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
171 			       unsigned reg)
172 {
173 	/* do the register write */
174 	writel(val, imxdi->ioaddr + reg);
175 
176 	/*
177 	 * now it takes four 32,768 kHz clock cycles to take
178 	 * the change into effect = 122 us
179 	 */
180 	usleep_range(130, 200);
181 }
182 
183 static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
184 {
185 	u32 dtcr;
186 
187 	dtcr = readl(imxdi->ioaddr + DTCR);
188 
189 	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
190 	/* the following flags force a transition into the "FAILURE STATE" */
191 	if (dsr & DSR_VTD)
192 		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
193 			  dtcr & DTCR_VTE ? "" : "Spurious ");
194 
195 	if (dsr & DSR_CTD)
196 		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
197 			  dtcr & DTCR_CTE ? "" : "Spurious ");
198 
199 	if (dsr & DSR_TTD)
200 		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
201 			  dtcr & DTCR_TTE ? "" : "Spurious ");
202 
203 	if (dsr & DSR_SAD)
204 		dev_emerg(&imxdi->pdev->dev,
205 			  "%sSecure Controller Alarm Event\n",
206 			  dtcr & DTCR_SAIE ? "" : "Spurious ");
207 
208 	if (dsr & DSR_EBD)
209 		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
210 			  dtcr & DTCR_EBE ? "" : "Spurious ");
211 
212 	if (dsr & DSR_ETAD)
213 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
214 			  dtcr & DTCR_ETAE ? "" : "Spurious ");
215 
216 	if (dsr & DSR_ETBD)
217 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
218 			  dtcr & DTCR_ETBE ? "" : "Spurious ");
219 
220 	if (dsr & DSR_WTD)
221 		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
222 			  dtcr & DTCR_WTE ? "" : "Spurious ");
223 
224 	if (dsr & DSR_MCO)
225 		dev_emerg(&imxdi->pdev->dev,
226 			  "%sMonotonic-counter Overflow Event\n",
227 			  dtcr & DTCR_MOE ? "" : "Spurious ");
228 
229 	if (dsr & DSR_TCO)
230 		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
231 			  dtcr & DTCR_TOE ? "" : "Spurious ");
232 }
233 
234 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
235 				  const char *power_supply)
236 {
237 	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
238 		  power_supply);
239 }
240 
241 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
242 {
243 	u32 dcr;
244 
245 	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
246 
247 	/* report the cause */
248 	di_report_tamper_info(imxdi, dsr);
249 
250 	dcr = readl(imxdi->ioaddr + DCR);
251 
252 	if (dcr & DCR_FSHL) {
253 		/* we are out of luck */
254 		di_what_is_to_be_done(imxdi, "battery");
255 		return -ENODEV;
256 	}
257 	/*
258 	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
259 	 * into the "NON-VALID STATE" + "FAILURE STATE"
260 	 */
261 	di_what_is_to_be_done(imxdi, "main");
262 
263 	return -ENODEV;
264 }
265 
266 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
267 {
268 	/* initialize alarm */
269 	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
270 	di_write_busy_wait(imxdi, 0, DCALR);
271 
272 	/* clear alarm flag */
273 	if (dsr & DSR_CAF)
274 		di_write_busy_wait(imxdi, DSR_CAF, DSR);
275 
276 	return 0;
277 }
278 
279 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
280 {
281 	u32 dcr, sec;
282 
283 	/*
284 	 * lets disable all sources which can force the DryIce unit into
285 	 * the "FAILURE STATE" for now
286 	 */
287 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
288 	/* and lets protect them at runtime from any change */
289 	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
290 
291 	sec = readl(imxdi->ioaddr + DTCMR);
292 	if (sec != 0)
293 		dev_warn(&imxdi->pdev->dev,
294 			 "The security violation has happened at %u seconds\n",
295 			 sec);
296 	/*
297 	 * the timer cannot be set/modified if
298 	 * - the TCHL or TCSL bit is set in DCR
299 	 */
300 	dcr = readl(imxdi->ioaddr + DCR);
301 	if (!(dcr & DCR_TCE)) {
302 		if (dcr & DCR_TCHL) {
303 			/* we are out of luck */
304 			di_what_is_to_be_done(imxdi, "battery");
305 			return -ENODEV;
306 		}
307 		if (dcr & DCR_TCSL) {
308 			di_what_is_to_be_done(imxdi, "main");
309 			return -ENODEV;
310 		}
311 	}
312 	/*
313 	 * - the timer counter stops/is stopped if
314 	 *   - its overflow flag is set (TCO in DSR)
315 	 *      -> clear overflow bit to make it count again
316 	 *   - NVF is set in DSR
317 	 *      -> clear non-valid bit to make it count again
318 	 *   - its TCE (DCR) is cleared
319 	 *      -> set TCE to make it count
320 	 *   - it was never set before
321 	 *      -> write a time into it (required again if the NVF was set)
322 	 */
323 	/* state handled */
324 	di_write_busy_wait(imxdi, DSR_NVF, DSR);
325 	/* clear overflow flag */
326 	di_write_busy_wait(imxdi, DSR_TCO, DSR);
327 	/* enable the counter */
328 	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
329 	/* set and trigger it to make it count */
330 	di_write_busy_wait(imxdi, sec, DTCMR);
331 
332 	/* now prepare for the valid state */
333 	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
334 }
335 
336 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
337 {
338 	u32 dcr;
339 
340 	/*
341 	 * now we must first remove the tamper sources in order to get the
342 	 * device out of the "FAILURE STATE"
343 	 * To disable any of the following sources we need to modify the DTCR
344 	 */
345 	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
346 			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
347 		dcr = __raw_readl(imxdi->ioaddr + DCR);
348 		if (dcr & DCR_TDCHL) {
349 			/*
350 			 * the tamper register is locked. We cannot disable the
351 			 * tamper detection. The TDCHL can only be reset by a
352 			 * DRYICE POR, but we cannot force a DRYICE POR in
353 			 * software because we are still in "FAILURE STATE".
354 			 * We need a DRYICE POR via battery power cycling....
355 			 */
356 			/*
357 			 * out of luck!
358 			 * we cannot disable them without a DRYICE POR
359 			 */
360 			di_what_is_to_be_done(imxdi, "battery");
361 			return -ENODEV;
362 		}
363 		if (dcr & DCR_TDCSL) {
364 			/* a soft lock can be removed by a SYSTEM POR */
365 			di_what_is_to_be_done(imxdi, "main");
366 			return -ENODEV;
367 		}
368 	}
369 
370 	/* disable all sources */
371 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
372 
373 	/* clear the status bits now */
374 	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
375 			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
376 			DSR_MCO | DSR_TCO), DSR);
377 
378 	dsr = readl(imxdi->ioaddr + DSR);
379 	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
380 			DSR_WCF | DSR_WEF)) != 0)
381 		dev_warn(&imxdi->pdev->dev,
382 			 "There are still some sources of pain in DSR: %08x!\n",
383 			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
384 				 DSR_WCF | DSR_WEF));
385 
386 	/*
387 	 * now we are trying to clear the "Security-violation flag" to
388 	 * get the DryIce out of this state
389 	 */
390 	di_write_busy_wait(imxdi, DSR_SVF, DSR);
391 
392 	/* success? */
393 	dsr = readl(imxdi->ioaddr + DSR);
394 	if (dsr & DSR_SVF) {
395 		dev_crit(&imxdi->pdev->dev,
396 			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
397 		/* last resort */
398 		di_what_is_to_be_done(imxdi, "battery");
399 		return -ENODEV;
400 	}
401 
402 	/*
403 	 * now we have left the "FAILURE STATE" and ending up in the
404 	 * "NON-VALID STATE" time to recover everything
405 	 */
406 	return di_handle_invalid_state(imxdi, dsr);
407 }
408 
409 static int di_handle_state(struct imxdi_dev *imxdi)
410 {
411 	int rc;
412 	u32 dsr;
413 
414 	dsr = readl(imxdi->ioaddr + DSR);
415 
416 	switch (dsr & (DSR_NVF | DSR_SVF)) {
417 	case DSR_NVF:
418 		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
419 		rc = di_handle_invalid_state(imxdi, dsr);
420 		break;
421 	case DSR_SVF:
422 		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
423 		rc = di_handle_failure_state(imxdi, dsr);
424 		break;
425 	case DSR_NVF | DSR_SVF:
426 		dev_warn(&imxdi->pdev->dev,
427 			 "Failure+Invalid stated unit detected\n");
428 		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
429 		break;
430 	default:
431 		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
432 		rc = di_handle_valid_state(imxdi, dsr);
433 	}
434 
435 	return rc;
436 }
437 
438 /*
439  * enable a dryice interrupt
440  */
441 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
442 {
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&imxdi->irq_lock, flags);
446 	writel(readl(imxdi->ioaddr + DIER) | intr,
447 	       imxdi->ioaddr + DIER);
448 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
449 }
450 
451 /*
452  * disable a dryice interrupt
453  */
454 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
455 {
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&imxdi->irq_lock, flags);
459 	writel(readl(imxdi->ioaddr + DIER) & ~intr,
460 	       imxdi->ioaddr + DIER);
461 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
462 }
463 
464 /*
465  * This function attempts to clear the dryice write-error flag.
466  *
467  * A dryice write error is similar to a bus fault and should not occur in
468  * normal operation.  Clearing the flag requires another write, so the root
469  * cause of the problem may need to be fixed before the flag can be cleared.
470  */
471 static void clear_write_error(struct imxdi_dev *imxdi)
472 {
473 	int cnt;
474 
475 	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
476 
477 	/* clear the write error flag */
478 	writel(DSR_WEF, imxdi->ioaddr + DSR);
479 
480 	/* wait for it to take effect */
481 	for (cnt = 0; cnt < 1000; cnt++) {
482 		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
483 			return;
484 		udelay(10);
485 	}
486 	dev_err(&imxdi->pdev->dev,
487 			"ERROR: Cannot clear write-error flag!\n");
488 }
489 
490 /*
491  * Write a dryice register and wait until it completes.
492  *
493  * This function uses interrupts to determine when the
494  * write has completed.
495  */
496 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
497 {
498 	int ret;
499 	int rc = 0;
500 
501 	/* serialize register writes */
502 	mutex_lock(&imxdi->write_mutex);
503 
504 	/* enable the write-complete interrupt */
505 	di_int_enable(imxdi, DIER_WCIE);
506 
507 	imxdi->dsr = 0;
508 
509 	/* do the register write */
510 	writel(val, imxdi->ioaddr + reg);
511 
512 	/* wait for the write to finish */
513 	ret = wait_event_interruptible_timeout(imxdi->write_wait,
514 			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
515 	if (ret < 0) {
516 		rc = ret;
517 		goto out;
518 	} else if (ret == 0) {
519 		dev_warn(&imxdi->pdev->dev,
520 				"Write-wait timeout "
521 				"val = 0x%08x reg = 0x%08x\n", val, reg);
522 	}
523 
524 	/* check for write error */
525 	if (imxdi->dsr & DSR_WEF) {
526 		clear_write_error(imxdi);
527 		rc = -EIO;
528 	}
529 
530 out:
531 	mutex_unlock(&imxdi->write_mutex);
532 
533 	return rc;
534 }
535 
536 /*
537  * read the seconds portion of the current time from the dryice time counter
538  */
539 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
540 {
541 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
542 	unsigned long now;
543 
544 	now = readl(imxdi->ioaddr + DTCMR);
545 	rtc_time64_to_tm(now, tm);
546 
547 	return 0;
548 }
549 
550 /*
551  * set the seconds portion of dryice time counter and clear the
552  * fractional part.
553  */
554 static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
555 {
556 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
557 	u32 dcr, dsr;
558 	int rc;
559 
560 	dcr = readl(imxdi->ioaddr + DCR);
561 	dsr = readl(imxdi->ioaddr + DSR);
562 
563 	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
564 		if (dcr & DCR_TCHL) {
565 			/* we are even more out of luck */
566 			di_what_is_to_be_done(imxdi, "battery");
567 			return -EPERM;
568 		}
569 		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
570 			/* we are out of luck for now */
571 			di_what_is_to_be_done(imxdi, "main");
572 			return -EPERM;
573 		}
574 	}
575 
576 	/* zero the fractional part first */
577 	rc = di_write_wait(imxdi, 0, DTCLR);
578 	if (rc != 0)
579 		return rc;
580 
581 	rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
582 	if (rc != 0)
583 		return rc;
584 
585 	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
586 }
587 
588 static int dryice_rtc_alarm_irq_enable(struct device *dev,
589 		unsigned int enabled)
590 {
591 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
592 
593 	if (enabled)
594 		di_int_enable(imxdi, DIER_CAIE);
595 	else
596 		di_int_disable(imxdi, DIER_CAIE);
597 
598 	return 0;
599 }
600 
601 /*
602  * read the seconds portion of the alarm register.
603  * the fractional part of the alarm register is always zero.
604  */
605 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
606 {
607 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
608 	u32 dcamr;
609 
610 	dcamr = readl(imxdi->ioaddr + DCAMR);
611 	rtc_time64_to_tm(dcamr, &alarm->time);
612 
613 	/* alarm is enabled if the interrupt is enabled */
614 	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
615 
616 	/* don't allow the DSR read to mess up DSR_WCF */
617 	mutex_lock(&imxdi->write_mutex);
618 
619 	/* alarm is pending if the alarm flag is set */
620 	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
621 
622 	mutex_unlock(&imxdi->write_mutex);
623 
624 	return 0;
625 }
626 
627 /*
628  * set the seconds portion of dryice alarm register
629  */
630 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
631 {
632 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
633 	int rc;
634 
635 	/* write the new alarm time */
636 	rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
637 	if (rc)
638 		return rc;
639 
640 	if (alarm->enabled)
641 		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
642 	else
643 		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
644 
645 	return 0;
646 }
647 
648 static const struct rtc_class_ops dryice_rtc_ops = {
649 	.read_time		= dryice_rtc_read_time,
650 	.set_time		= dryice_rtc_set_time,
651 	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
652 	.read_alarm		= dryice_rtc_read_alarm,
653 	.set_alarm		= dryice_rtc_set_alarm,
654 };
655 
656 /*
657  * interrupt handler for dryice "normal" and security violation interrupt
658  */
659 static irqreturn_t dryice_irq(int irq, void *dev_id)
660 {
661 	struct imxdi_dev *imxdi = dev_id;
662 	u32 dsr, dier;
663 	irqreturn_t rc = IRQ_NONE;
664 
665 	dier = readl(imxdi->ioaddr + DIER);
666 	dsr = readl(imxdi->ioaddr + DSR);
667 
668 	/* handle the security violation event */
669 	if (dier & DIER_SVIE) {
670 		if (dsr & DSR_SVF) {
671 			/*
672 			 * Disable the interrupt when this kind of event has
673 			 * happened.
674 			 * There cannot be more than one event of this type,
675 			 * because it needs a complex state change
676 			 * including a main power cycle to get again out of
677 			 * this state.
678 			 */
679 			di_int_disable(imxdi, DIER_SVIE);
680 			/* report the violation */
681 			di_report_tamper_info(imxdi, dsr);
682 			rc = IRQ_HANDLED;
683 		}
684 	}
685 
686 	/* handle write complete and write error cases */
687 	if (dier & DIER_WCIE) {
688 		/*If the write wait queue is empty then there is no pending
689 		  operations. It means the interrupt is for DryIce -Security.
690 		  IRQ must be returned as none.*/
691 		if (list_empty_careful(&imxdi->write_wait.head))
692 			return rc;
693 
694 		/* DSR_WCF clears itself on DSR read */
695 		if (dsr & (DSR_WCF | DSR_WEF)) {
696 			/* mask the interrupt */
697 			di_int_disable(imxdi, DIER_WCIE);
698 
699 			/* save the dsr value for the wait queue */
700 			imxdi->dsr |= dsr;
701 
702 			wake_up_interruptible(&imxdi->write_wait);
703 			rc = IRQ_HANDLED;
704 		}
705 	}
706 
707 	/* handle the alarm case */
708 	if (dier & DIER_CAIE) {
709 		/* DSR_WCF clears itself on DSR read */
710 		if (dsr & DSR_CAF) {
711 			/* mask the interrupt */
712 			di_int_disable(imxdi, DIER_CAIE);
713 
714 			/* finish alarm in user context */
715 			schedule_work(&imxdi->work);
716 			rc = IRQ_HANDLED;
717 		}
718 	}
719 	return rc;
720 }
721 
722 /*
723  * post the alarm event from user context so it can sleep
724  * on the write completion.
725  */
726 static void dryice_work(struct work_struct *work)
727 {
728 	struct imxdi_dev *imxdi = container_of(work,
729 			struct imxdi_dev, work);
730 
731 	/* dismiss the interrupt (ignore error) */
732 	di_write_wait(imxdi, DSR_CAF, DSR);
733 
734 	/* pass the alarm event to the rtc framework. */
735 	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
736 }
737 
738 /*
739  * probe for dryice rtc device
740  */
741 static int __init dryice_rtc_probe(struct platform_device *pdev)
742 {
743 	struct imxdi_dev *imxdi;
744 	int norm_irq, sec_irq;
745 	int rc;
746 
747 	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
748 	if (!imxdi)
749 		return -ENOMEM;
750 
751 	imxdi->pdev = pdev;
752 
753 	imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
754 	if (IS_ERR(imxdi->ioaddr))
755 		return PTR_ERR(imxdi->ioaddr);
756 
757 	spin_lock_init(&imxdi->irq_lock);
758 
759 	norm_irq = platform_get_irq(pdev, 0);
760 	if (norm_irq < 0)
761 		return norm_irq;
762 
763 	/* the 2nd irq is the security violation irq
764 	 * make this optional, don't break the device tree ABI
765 	 */
766 	sec_irq = platform_get_irq(pdev, 1);
767 	if (sec_irq <= 0)
768 		sec_irq = IRQ_NOTCONNECTED;
769 
770 	init_waitqueue_head(&imxdi->write_wait);
771 
772 	INIT_WORK(&imxdi->work, dryice_work);
773 
774 	mutex_init(&imxdi->write_mutex);
775 
776 	imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
777 	if (IS_ERR(imxdi->rtc))
778 		return PTR_ERR(imxdi->rtc);
779 
780 	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
781 	if (IS_ERR(imxdi->clk))
782 		return PTR_ERR(imxdi->clk);
783 	rc = clk_prepare_enable(imxdi->clk);
784 	if (rc)
785 		return rc;
786 
787 	/*
788 	 * Initialize dryice hardware
789 	 */
790 
791 	/* mask all interrupts */
792 	writel(0, imxdi->ioaddr + DIER);
793 
794 	rc = di_handle_state(imxdi);
795 	if (rc != 0)
796 		goto err;
797 
798 	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
799 			      IRQF_SHARED, pdev->name, imxdi);
800 	if (rc) {
801 		dev_warn(&pdev->dev, "interrupt not available.\n");
802 		goto err;
803 	}
804 
805 	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
806 			      IRQF_SHARED, pdev->name, imxdi);
807 	if (rc) {
808 		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
809 		/* this is not an error, see above */
810 	}
811 
812 	platform_set_drvdata(pdev, imxdi);
813 
814 	imxdi->rtc->ops = &dryice_rtc_ops;
815 	imxdi->rtc->range_max = U32_MAX;
816 
817 	rc = devm_rtc_register_device(imxdi->rtc);
818 	if (rc)
819 		goto err;
820 
821 	return 0;
822 
823 err:
824 	clk_disable_unprepare(imxdi->clk);
825 
826 	return rc;
827 }
828 
829 static int __exit dryice_rtc_remove(struct platform_device *pdev)
830 {
831 	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
832 
833 	flush_work(&imxdi->work);
834 
835 	/* mask all interrupts */
836 	writel(0, imxdi->ioaddr + DIER);
837 
838 	clk_disable_unprepare(imxdi->clk);
839 
840 	return 0;
841 }
842 
843 static const struct of_device_id dryice_dt_ids[] = {
844 	{ .compatible = "fsl,imx25-rtc" },
845 	{ /* sentinel */ }
846 };
847 
848 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
849 
850 static struct platform_driver dryice_rtc_driver = {
851 	.driver = {
852 		   .name = "imxdi_rtc",
853 		   .of_match_table = dryice_dt_ids,
854 		   },
855 	.remove = __exit_p(dryice_rtc_remove),
856 };
857 
858 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
859 
860 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
861 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
862 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
863 MODULE_LICENSE("GPL");
864