xref: /linux/drivers/rtc/rtc-imxdi.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2010 Orex Computed Radiography
4  */
5 
6 /*
7  * The code contained herein is licensed under the GNU General Public
8  * License. You may obtain a copy of the GNU General Public License
9  * Version 2 or later at the following locations:
10  *
11  * http://www.opensource.org/licenses/gpl-license.html
12  * http://www.gnu.org/copyleft/gpl.html
13  */
14 
15 /* based on rtc-mc13892.c */
16 
17 /*
18  * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
19  * to implement a Linux RTC. Times and alarms are truncated to seconds.
20  * Since the RTC framework performs API locking via rtc->ops_lock the
21  * only simultaneous accesses we need to deal with is updating DryIce
22  * registers while servicing an alarm.
23  *
24  * Note that reading the DSR (DryIce Status Register) automatically clears
25  * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
26  * LP (Low Power) domain and set the WCF upon completion. Writes to the
27  * DIER (DryIce Interrupt Enable Register) are the only exception. These
28  * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
29  * not supported by the hardware.
30  */
31 
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/workqueue.h>
41 #include <linux/of.h>
42 
43 /* DryIce Register Definitions */
44 
45 #define DTCMR     0x00           /* Time Counter MSB Reg */
46 #define DTCLR     0x04           /* Time Counter LSB Reg */
47 
48 #define DCAMR     0x08           /* Clock Alarm MSB Reg */
49 #define DCALR     0x0c           /* Clock Alarm LSB Reg */
50 #define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
51 
52 #define DCR       0x10           /* Control Reg */
53 #define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
54 #define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
55 #define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
56 #define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
57 #define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
58 #define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
59 #define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
60 #define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
61 #define DCR_TCE   (1 << 3)       /* Time Counter Enable */
62 #define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
63 
64 #define DSR       0x14           /* Status Reg */
65 #define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
66 #define DSR_ETBD  (1 << 22)      /* External tamper B detected */
67 #define DSR_ETAD  (1 << 21)      /* External tamper A detected */
68 #define DSR_EBD   (1 << 20)      /* External boot detected */
69 #define DSR_SAD   (1 << 19)      /* SCC alarm detected */
70 #define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
71 #define DSR_CTD   (1 << 17)      /* Clock tamper detected */
72 #define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
73 #define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
74 #define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
75 #define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
76 #define DSR_WEF   (1 << 7)       /* Write Error Flag */
77 #define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
78 #define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
79 #define DSR_TCO   (1 << 2)       /* time counter overflow */
80 #define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
81 #define DSR_SVF   (1 << 0)       /* Security Violation Flag */
82 
83 #define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
84 #define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
85 #define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
86 #define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
87 #define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
88 #define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
89 
90 #define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
91 
92 #define DTCR      0x28           /* DryIce Tamper Configuration Reg */
93 #define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
94 #define DTCR_TOE  (1 << 8)       /* time overflow enabled */
95 #define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
96 #define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
97 #define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
98 #define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
99 #define DTCR_SAIE (1 << 3)       /* SCC enabled */
100 #define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
101 #define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
102 #define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
103 
104 #define DGPR      0x3c           /* DryIce General Purpose Reg */
105 
106 /**
107  * struct imxdi_dev - private imxdi rtc data
108  * @pdev: pionter to platform dev
109  * @rtc: pointer to rtc struct
110  * @ioaddr: IO registers pointer
111  * @irq: dryice normal interrupt
112  * @clk: input reference clock
113  * @dsr: copy of the DSR register
114  * @irq_lock: interrupt enable register (DIER) lock
115  * @write_wait: registers write complete queue
116  * @write_mutex: serialize registers write
117  * @work: schedule alarm work
118  */
119 struct imxdi_dev {
120 	struct platform_device *pdev;
121 	struct rtc_device *rtc;
122 	void __iomem *ioaddr;
123 	int irq;
124 	struct clk *clk;
125 	u32 dsr;
126 	spinlock_t irq_lock;
127 	wait_queue_head_t write_wait;
128 	struct mutex write_mutex;
129 	struct work_struct work;
130 };
131 
132 /* Some background:
133  *
134  * The DryIce unit is a complex security/tamper monitor device. To be able do
135  * its job in a useful manner it runs a bigger statemachine to bring it into
136  * security/tamper failure state and once again to bring it out of this state.
137  *
138  * This unit can be in one of three states:
139  *
140  * - "NON-VALID STATE"
141  *   always after the battery power was removed
142  * - "FAILURE STATE"
143  *   if one of the enabled security events has happened
144  * - "VALID STATE"
145  *   if the unit works as expected
146  *
147  * Everything stops when the unit enters the failure state including the RTC
148  * counter (to be able to detect the time the security event happened).
149  *
150  * The following events (when enabled) let the DryIce unit enter the failure
151  * state:
152  *
153  * - wire-mesh-tamper detect
154  * - external tamper B detect
155  * - external tamper A detect
156  * - temperature tamper detect
157  * - clock tamper detect
158  * - voltage tamper detect
159  * - RTC counter overflow
160  * - monotonic counter overflow
161  * - external boot
162  *
163  * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
164  * can only detect this state. In this case the unit is completely locked and
165  * must force a second "SYSTEM POR" to bring the DryIce into the
166  * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
167  * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
168  * a battery power cycle is required.
169  *
170  * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
171  * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
172  * task, we bring back this unit into life.
173  */
174 
175 /*
176  * Do a write into the unit without interrupt support.
177  * We do not need to check the WEF here, because the only reason this kind of
178  * write error can happen is if we write to the unit twice within the 122 us
179  * interval. This cannot happen, since we are using this function only while
180  * setting up the unit.
181  */
182 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
183 			       unsigned reg)
184 {
185 	/* do the register write */
186 	writel(val, imxdi->ioaddr + reg);
187 
188 	/*
189 	 * now it takes four 32,768 kHz clock cycles to take
190 	 * the change into effect = 122 us
191 	 */
192 	usleep_range(130, 200);
193 }
194 
195 static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
196 {
197 	u32 dtcr;
198 
199 	dtcr = readl(imxdi->ioaddr + DTCR);
200 
201 	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
202 	/* the following flags force a transition into the "FAILURE STATE" */
203 	if (dsr & DSR_VTD)
204 		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
205 			  dtcr & DTCR_VTE ? "" : "Spurious ");
206 
207 	if (dsr & DSR_CTD)
208 		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
209 			  dtcr & DTCR_CTE ? "" : "Spurious ");
210 
211 	if (dsr & DSR_TTD)
212 		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
213 			  dtcr & DTCR_TTE ? "" : "Spurious ");
214 
215 	if (dsr & DSR_SAD)
216 		dev_emerg(&imxdi->pdev->dev,
217 			  "%sSecure Controller Alarm Event\n",
218 			  dtcr & DTCR_SAIE ? "" : "Spurious ");
219 
220 	if (dsr & DSR_EBD)
221 		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
222 			  dtcr & DTCR_EBE ? "" : "Spurious ");
223 
224 	if (dsr & DSR_ETAD)
225 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
226 			  dtcr & DTCR_ETAE ? "" : "Spurious ");
227 
228 	if (dsr & DSR_ETBD)
229 		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
230 			  dtcr & DTCR_ETBE ? "" : "Spurious ");
231 
232 	if (dsr & DSR_WTD)
233 		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
234 			  dtcr & DTCR_WTE ? "" : "Spurious ");
235 
236 	if (dsr & DSR_MCO)
237 		dev_emerg(&imxdi->pdev->dev,
238 			  "%sMonotonic-counter Overflow Event\n",
239 			  dtcr & DTCR_MOE ? "" : "Spurious ");
240 
241 	if (dsr & DSR_TCO)
242 		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
243 			  dtcr & DTCR_TOE ? "" : "Spurious ");
244 }
245 
246 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
247 				  const char *power_supply)
248 {
249 	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
250 		  power_supply);
251 }
252 
253 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
254 {
255 	u32 dcr;
256 
257 	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
258 
259 	/* report the cause */
260 	di_report_tamper_info(imxdi, dsr);
261 
262 	dcr = readl(imxdi->ioaddr + DCR);
263 
264 	if (dcr & DCR_FSHL) {
265 		/* we are out of luck */
266 		di_what_is_to_be_done(imxdi, "battery");
267 		return -ENODEV;
268 	}
269 	/*
270 	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
271 	 * into the "NON-VALID STATE" + "FAILURE STATE"
272 	 */
273 	di_what_is_to_be_done(imxdi, "main");
274 
275 	return -ENODEV;
276 }
277 
278 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
279 {
280 	/* initialize alarm */
281 	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
282 	di_write_busy_wait(imxdi, 0, DCALR);
283 
284 	/* clear alarm flag */
285 	if (dsr & DSR_CAF)
286 		di_write_busy_wait(imxdi, DSR_CAF, DSR);
287 
288 	return 0;
289 }
290 
291 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
292 {
293 	u32 dcr, sec;
294 
295 	/*
296 	 * lets disable all sources which can force the DryIce unit into
297 	 * the "FAILURE STATE" for now
298 	 */
299 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
300 	/* and lets protect them at runtime from any change */
301 	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
302 
303 	sec = readl(imxdi->ioaddr + DTCMR);
304 	if (sec != 0)
305 		dev_warn(&imxdi->pdev->dev,
306 			 "The security violation has happened at %u seconds\n",
307 			 sec);
308 	/*
309 	 * the timer cannot be set/modified if
310 	 * - the TCHL or TCSL bit is set in DCR
311 	 */
312 	dcr = readl(imxdi->ioaddr + DCR);
313 	if (!(dcr & DCR_TCE)) {
314 		if (dcr & DCR_TCHL) {
315 			/* we are out of luck */
316 			di_what_is_to_be_done(imxdi, "battery");
317 			return -ENODEV;
318 		}
319 		if (dcr & DCR_TCSL) {
320 			di_what_is_to_be_done(imxdi, "main");
321 			return -ENODEV;
322 		}
323 	}
324 	/*
325 	 * - the timer counter stops/is stopped if
326 	 *   - its overflow flag is set (TCO in DSR)
327 	 *      -> clear overflow bit to make it count again
328 	 *   - NVF is set in DSR
329 	 *      -> clear non-valid bit to make it count again
330 	 *   - its TCE (DCR) is cleared
331 	 *      -> set TCE to make it count
332 	 *   - it was never set before
333 	 *      -> write a time into it (required again if the NVF was set)
334 	 */
335 	/* state handled */
336 	di_write_busy_wait(imxdi, DSR_NVF, DSR);
337 	/* clear overflow flag */
338 	di_write_busy_wait(imxdi, DSR_TCO, DSR);
339 	/* enable the counter */
340 	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
341 	/* set and trigger it to make it count */
342 	di_write_busy_wait(imxdi, sec, DTCMR);
343 
344 	/* now prepare for the valid state */
345 	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
346 }
347 
348 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
349 {
350 	u32 dcr;
351 
352 	/*
353 	 * now we must first remove the tamper sources in order to get the
354 	 * device out of the "FAILURE STATE"
355 	 * To disable any of the following sources we need to modify the DTCR
356 	 */
357 	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
358 			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
359 		dcr = __raw_readl(imxdi->ioaddr + DCR);
360 		if (dcr & DCR_TDCHL) {
361 			/*
362 			 * the tamper register is locked. We cannot disable the
363 			 * tamper detection. The TDCHL can only be reset by a
364 			 * DRYICE POR, but we cannot force a DRYICE POR in
365 			 * softwere because we are still in "FAILURE STATE".
366 			 * We need a DRYICE POR via battery power cycling....
367 			 */
368 			/*
369 			 * out of luck!
370 			 * we cannot disable them without a DRYICE POR
371 			 */
372 			di_what_is_to_be_done(imxdi, "battery");
373 			return -ENODEV;
374 		}
375 		if (dcr & DCR_TDCSL) {
376 			/* a soft lock can be removed by a SYSTEM POR */
377 			di_what_is_to_be_done(imxdi, "main");
378 			return -ENODEV;
379 		}
380 	}
381 
382 	/* disable all sources */
383 	di_write_busy_wait(imxdi, 0x00000000, DTCR);
384 
385 	/* clear the status bits now */
386 	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
387 			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
388 			DSR_MCO | DSR_TCO), DSR);
389 
390 	dsr = readl(imxdi->ioaddr + DSR);
391 	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
392 			DSR_WCF | DSR_WEF)) != 0)
393 		dev_warn(&imxdi->pdev->dev,
394 			 "There are still some sources of pain in DSR: %08x!\n",
395 			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
396 				 DSR_WCF | DSR_WEF));
397 
398 	/*
399 	 * now we are trying to clear the "Security-violation flag" to
400 	 * get the DryIce out of this state
401 	 */
402 	di_write_busy_wait(imxdi, DSR_SVF, DSR);
403 
404 	/* success? */
405 	dsr = readl(imxdi->ioaddr + DSR);
406 	if (dsr & DSR_SVF) {
407 		dev_crit(&imxdi->pdev->dev,
408 			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
409 		/* last resort */
410 		di_what_is_to_be_done(imxdi, "battery");
411 		return -ENODEV;
412 	}
413 
414 	/*
415 	 * now we have left the "FAILURE STATE" and ending up in the
416 	 * "NON-VALID STATE" time to recover everything
417 	 */
418 	return di_handle_invalid_state(imxdi, dsr);
419 }
420 
421 static int di_handle_state(struct imxdi_dev *imxdi)
422 {
423 	int rc;
424 	u32 dsr;
425 
426 	dsr = readl(imxdi->ioaddr + DSR);
427 
428 	switch (dsr & (DSR_NVF | DSR_SVF)) {
429 	case DSR_NVF:
430 		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
431 		rc = di_handle_invalid_state(imxdi, dsr);
432 		break;
433 	case DSR_SVF:
434 		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
435 		rc = di_handle_failure_state(imxdi, dsr);
436 		break;
437 	case DSR_NVF | DSR_SVF:
438 		dev_warn(&imxdi->pdev->dev,
439 			 "Failure+Invalid stated unit detected\n");
440 		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
441 		break;
442 	default:
443 		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
444 		rc = di_handle_valid_state(imxdi, dsr);
445 	}
446 
447 	return rc;
448 }
449 
450 /*
451  * enable a dryice interrupt
452  */
453 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
454 {
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&imxdi->irq_lock, flags);
458 	writel(readl(imxdi->ioaddr + DIER) | intr,
459 	       imxdi->ioaddr + DIER);
460 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
461 }
462 
463 /*
464  * disable a dryice interrupt
465  */
466 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
467 {
468 	unsigned long flags;
469 
470 	spin_lock_irqsave(&imxdi->irq_lock, flags);
471 	writel(readl(imxdi->ioaddr + DIER) & ~intr,
472 	       imxdi->ioaddr + DIER);
473 	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
474 }
475 
476 /*
477  * This function attempts to clear the dryice write-error flag.
478  *
479  * A dryice write error is similar to a bus fault and should not occur in
480  * normal operation.  Clearing the flag requires another write, so the root
481  * cause of the problem may need to be fixed before the flag can be cleared.
482  */
483 static void clear_write_error(struct imxdi_dev *imxdi)
484 {
485 	int cnt;
486 
487 	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
488 
489 	/* clear the write error flag */
490 	writel(DSR_WEF, imxdi->ioaddr + DSR);
491 
492 	/* wait for it to take effect */
493 	for (cnt = 0; cnt < 1000; cnt++) {
494 		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
495 			return;
496 		udelay(10);
497 	}
498 	dev_err(&imxdi->pdev->dev,
499 			"ERROR: Cannot clear write-error flag!\n");
500 }
501 
502 /*
503  * Write a dryice register and wait until it completes.
504  *
505  * This function uses interrupts to determine when the
506  * write has completed.
507  */
508 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
509 {
510 	int ret;
511 	int rc = 0;
512 
513 	/* serialize register writes */
514 	mutex_lock(&imxdi->write_mutex);
515 
516 	/* enable the write-complete interrupt */
517 	di_int_enable(imxdi, DIER_WCIE);
518 
519 	imxdi->dsr = 0;
520 
521 	/* do the register write */
522 	writel(val, imxdi->ioaddr + reg);
523 
524 	/* wait for the write to finish */
525 	ret = wait_event_interruptible_timeout(imxdi->write_wait,
526 			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
527 	if (ret < 0) {
528 		rc = ret;
529 		goto out;
530 	} else if (ret == 0) {
531 		dev_warn(&imxdi->pdev->dev,
532 				"Write-wait timeout "
533 				"val = 0x%08x reg = 0x%08x\n", val, reg);
534 	}
535 
536 	/* check for write error */
537 	if (imxdi->dsr & DSR_WEF) {
538 		clear_write_error(imxdi);
539 		rc = -EIO;
540 	}
541 
542 out:
543 	mutex_unlock(&imxdi->write_mutex);
544 
545 	return rc;
546 }
547 
548 /*
549  * read the seconds portion of the current time from the dryice time counter
550  */
551 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
552 {
553 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
554 	unsigned long now;
555 
556 	now = readl(imxdi->ioaddr + DTCMR);
557 	rtc_time_to_tm(now, tm);
558 
559 	return 0;
560 }
561 
562 /*
563  * set the seconds portion of dryice time counter and clear the
564  * fractional part.
565  */
566 static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
567 {
568 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
569 	u32 dcr, dsr;
570 	int rc;
571 
572 	dcr = readl(imxdi->ioaddr + DCR);
573 	dsr = readl(imxdi->ioaddr + DSR);
574 
575 	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
576 		if (dcr & DCR_TCHL) {
577 			/* we are even more out of luck */
578 			di_what_is_to_be_done(imxdi, "battery");
579 			return -EPERM;
580 		}
581 		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
582 			/* we are out of luck for now */
583 			di_what_is_to_be_done(imxdi, "main");
584 			return -EPERM;
585 		}
586 	}
587 
588 	/* zero the fractional part first */
589 	rc = di_write_wait(imxdi, 0, DTCLR);
590 	if (rc != 0)
591 		return rc;
592 
593 	rc = di_write_wait(imxdi, secs, DTCMR);
594 	if (rc != 0)
595 		return rc;
596 
597 	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
598 }
599 
600 static int dryice_rtc_alarm_irq_enable(struct device *dev,
601 		unsigned int enabled)
602 {
603 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
604 
605 	if (enabled)
606 		di_int_enable(imxdi, DIER_CAIE);
607 	else
608 		di_int_disable(imxdi, DIER_CAIE);
609 
610 	return 0;
611 }
612 
613 /*
614  * read the seconds portion of the alarm register.
615  * the fractional part of the alarm register is always zero.
616  */
617 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
618 {
619 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
620 	u32 dcamr;
621 
622 	dcamr = readl(imxdi->ioaddr + DCAMR);
623 	rtc_time_to_tm(dcamr, &alarm->time);
624 
625 	/* alarm is enabled if the interrupt is enabled */
626 	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
627 
628 	/* don't allow the DSR read to mess up DSR_WCF */
629 	mutex_lock(&imxdi->write_mutex);
630 
631 	/* alarm is pending if the alarm flag is set */
632 	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
633 
634 	mutex_unlock(&imxdi->write_mutex);
635 
636 	return 0;
637 }
638 
639 /*
640  * set the seconds portion of dryice alarm register
641  */
642 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
643 {
644 	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
645 	unsigned long now;
646 	unsigned long alarm_time;
647 	int rc;
648 
649 	rc = rtc_tm_to_time(&alarm->time, &alarm_time);
650 	if (rc)
651 		return rc;
652 
653 	/* don't allow setting alarm in the past */
654 	now = readl(imxdi->ioaddr + DTCMR);
655 	if (alarm_time < now)
656 		return -EINVAL;
657 
658 	/* write the new alarm time */
659 	rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
660 	if (rc)
661 		return rc;
662 
663 	if (alarm->enabled)
664 		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
665 	else
666 		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
667 
668 	return 0;
669 }
670 
671 static struct rtc_class_ops dryice_rtc_ops = {
672 	.read_time		= dryice_rtc_read_time,
673 	.set_mmss		= dryice_rtc_set_mmss,
674 	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
675 	.read_alarm		= dryice_rtc_read_alarm,
676 	.set_alarm		= dryice_rtc_set_alarm,
677 };
678 
679 /*
680  * dryice "normal" interrupt handler
681  */
682 static irqreturn_t dryice_norm_irq(int irq, void *dev_id)
683 {
684 	struct imxdi_dev *imxdi = dev_id;
685 	u32 dsr, dier;
686 	irqreturn_t rc = IRQ_NONE;
687 
688 	dier = readl(imxdi->ioaddr + DIER);
689 	dsr = readl(imxdi->ioaddr + DSR);
690 
691 	/* handle the security violation event */
692 	if (dier & DIER_SVIE) {
693 		if (dsr & DSR_SVF) {
694 			/*
695 			 * Disable the interrupt when this kind of event has
696 			 * happened.
697 			 * There cannot be more than one event of this type,
698 			 * because it needs a complex state change
699 			 * including a main power cycle to get again out of
700 			 * this state.
701 			 */
702 			di_int_disable(imxdi, DIER_SVIE);
703 			/* report the violation */
704 			di_report_tamper_info(imxdi, dsr);
705 			rc = IRQ_HANDLED;
706 		}
707 	}
708 
709 	/* handle write complete and write error cases */
710 	if (dier & DIER_WCIE) {
711 		/*If the write wait queue is empty then there is no pending
712 		  operations. It means the interrupt is for DryIce -Security.
713 		  IRQ must be returned as none.*/
714 		if (list_empty_careful(&imxdi->write_wait.task_list))
715 			return rc;
716 
717 		/* DSR_WCF clears itself on DSR read */
718 		if (dsr & (DSR_WCF | DSR_WEF)) {
719 			/* mask the interrupt */
720 			di_int_disable(imxdi, DIER_WCIE);
721 
722 			/* save the dsr value for the wait queue */
723 			imxdi->dsr |= dsr;
724 
725 			wake_up_interruptible(&imxdi->write_wait);
726 			rc = IRQ_HANDLED;
727 		}
728 	}
729 
730 	/* handle the alarm case */
731 	if (dier & DIER_CAIE) {
732 		/* DSR_WCF clears itself on DSR read */
733 		if (dsr & DSR_CAF) {
734 			/* mask the interrupt */
735 			di_int_disable(imxdi, DIER_CAIE);
736 
737 			/* finish alarm in user context */
738 			schedule_work(&imxdi->work);
739 			rc = IRQ_HANDLED;
740 		}
741 	}
742 	return rc;
743 }
744 
745 /*
746  * post the alarm event from user context so it can sleep
747  * on the write completion.
748  */
749 static void dryice_work(struct work_struct *work)
750 {
751 	struct imxdi_dev *imxdi = container_of(work,
752 			struct imxdi_dev, work);
753 
754 	/* dismiss the interrupt (ignore error) */
755 	di_write_wait(imxdi, DSR_CAF, DSR);
756 
757 	/* pass the alarm event to the rtc framework. */
758 	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
759 }
760 
761 /*
762  * probe for dryice rtc device
763  */
764 static int __init dryice_rtc_probe(struct platform_device *pdev)
765 {
766 	struct resource *res;
767 	struct imxdi_dev *imxdi;
768 	int rc;
769 
770 	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
771 	if (!imxdi)
772 		return -ENOMEM;
773 
774 	imxdi->pdev = pdev;
775 
776 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
777 	imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
778 	if (IS_ERR(imxdi->ioaddr))
779 		return PTR_ERR(imxdi->ioaddr);
780 
781 	spin_lock_init(&imxdi->irq_lock);
782 
783 	imxdi->irq = platform_get_irq(pdev, 0);
784 	if (imxdi->irq < 0)
785 		return imxdi->irq;
786 
787 	init_waitqueue_head(&imxdi->write_wait);
788 
789 	INIT_WORK(&imxdi->work, dryice_work);
790 
791 	mutex_init(&imxdi->write_mutex);
792 
793 	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
794 	if (IS_ERR(imxdi->clk))
795 		return PTR_ERR(imxdi->clk);
796 	rc = clk_prepare_enable(imxdi->clk);
797 	if (rc)
798 		return rc;
799 
800 	/*
801 	 * Initialize dryice hardware
802 	 */
803 
804 	/* mask all interrupts */
805 	writel(0, imxdi->ioaddr + DIER);
806 
807 	rc = di_handle_state(imxdi);
808 	if (rc != 0)
809 		goto err;
810 
811 	rc = devm_request_irq(&pdev->dev, imxdi->irq, dryice_norm_irq,
812 			IRQF_SHARED, pdev->name, imxdi);
813 	if (rc) {
814 		dev_warn(&pdev->dev, "interrupt not available.\n");
815 		goto err;
816 	}
817 
818 	platform_set_drvdata(pdev, imxdi);
819 	imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
820 				  &dryice_rtc_ops, THIS_MODULE);
821 	if (IS_ERR(imxdi->rtc)) {
822 		rc = PTR_ERR(imxdi->rtc);
823 		goto err;
824 	}
825 
826 	return 0;
827 
828 err:
829 	clk_disable_unprepare(imxdi->clk);
830 
831 	return rc;
832 }
833 
834 static int __exit dryice_rtc_remove(struct platform_device *pdev)
835 {
836 	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
837 
838 	flush_work(&imxdi->work);
839 
840 	/* mask all interrupts */
841 	writel(0, imxdi->ioaddr + DIER);
842 
843 	clk_disable_unprepare(imxdi->clk);
844 
845 	return 0;
846 }
847 
848 #ifdef CONFIG_OF
849 static const struct of_device_id dryice_dt_ids[] = {
850 	{ .compatible = "fsl,imx25-rtc" },
851 	{ /* sentinel */ }
852 };
853 
854 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
855 #endif
856 
857 static struct platform_driver dryice_rtc_driver = {
858 	.driver = {
859 		   .name = "imxdi_rtc",
860 		   .of_match_table = of_match_ptr(dryice_dt_ids),
861 		   },
862 	.remove = __exit_p(dryice_rtc_remove),
863 };
864 
865 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
866 
867 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
868 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
869 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
870 MODULE_LICENSE("GPL");
871