1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright 2010 Orex Computed Radiography 5 */ 6 7 /* 8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block 9 * to implement a Linux RTC. Times and alarms are truncated to seconds. 10 * Since the RTC framework performs API locking via rtc->ops_lock the 11 * only simultaneous accesses we need to deal with is updating DryIce 12 * registers while servicing an alarm. 13 * 14 * Note that reading the DSR (DryIce Status Register) automatically clears 15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the 16 * LP (Low Power) domain and set the WCF upon completion. Writes to the 17 * DIER (DryIce Interrupt Enable Register) are the only exception. These 18 * occur at normal bus speeds and do not set WCF. Periodic interrupts are 19 * not supported by the hardware. 20 */ 21 22 #include <linux/io.h> 23 #include <linux/clk.h> 24 #include <linux/delay.h> 25 #include <linux/module.h> 26 #include <linux/platform_device.h> 27 #include <linux/rtc.h> 28 #include <linux/sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/workqueue.h> 31 #include <linux/of.h> 32 33 /* DryIce Register Definitions */ 34 35 #define DTCMR 0x00 /* Time Counter MSB Reg */ 36 #define DTCLR 0x04 /* Time Counter LSB Reg */ 37 38 #define DCAMR 0x08 /* Clock Alarm MSB Reg */ 39 #define DCALR 0x0c /* Clock Alarm LSB Reg */ 40 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */ 41 42 #define DCR 0x10 /* Control Reg */ 43 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */ 44 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */ 45 #define DCR_KSSL (1 << 27) /* Key-select soft lock */ 46 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */ 47 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */ 48 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */ 49 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */ 50 #define DCR_FSHL (1 << 16) /* Failure state hard lock */ 51 #define DCR_TCE (1 << 3) /* Time Counter Enable */ 52 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */ 53 54 #define DSR 0x14 /* Status Reg */ 55 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */ 56 #define DSR_ETBD (1 << 22) /* External tamper B detected */ 57 #define DSR_ETAD (1 << 21) /* External tamper A detected */ 58 #define DSR_EBD (1 << 20) /* External boot detected */ 59 #define DSR_SAD (1 << 19) /* SCC alarm detected */ 60 #define DSR_TTD (1 << 18) /* Temperature tamper detected */ 61 #define DSR_CTD (1 << 17) /* Clock tamper detected */ 62 #define DSR_VTD (1 << 16) /* Voltage tamper detected */ 63 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */ 64 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */ 65 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/ 66 #define DSR_WEF (1 << 7) /* Write Error Flag */ 67 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */ 68 #define DSR_MCO (1 << 3) /* monotonic counter overflow */ 69 #define DSR_TCO (1 << 2) /* time counter overflow */ 70 #define DSR_NVF (1 << 1) /* Non-Valid Flag */ 71 #define DSR_SVF (1 << 0) /* Security Violation Flag */ 72 73 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */ 74 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */ 75 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */ 76 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */ 77 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */ 78 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */ 79 80 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */ 81 82 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */ 83 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */ 84 #define DTCR_TOE (1 << 8) /* time overflow enabled */ 85 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */ 86 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */ 87 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */ 88 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */ 89 #define DTCR_SAIE (1 << 3) /* SCC enabled */ 90 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */ 91 #define DTCR_CTE (1 << 1) /* clock tamper enabled */ 92 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */ 93 94 #define DGPR 0x3c /* DryIce General Purpose Reg */ 95 96 /** 97 * struct imxdi_dev - private imxdi rtc data 98 * @pdev: pionter to platform dev 99 * @rtc: pointer to rtc struct 100 * @ioaddr: IO registers pointer 101 * @clk: input reference clock 102 * @dsr: copy of the DSR register 103 * @irq_lock: interrupt enable register (DIER) lock 104 * @write_wait: registers write complete queue 105 * @write_mutex: serialize registers write 106 * @work: schedule alarm work 107 */ 108 struct imxdi_dev { 109 struct platform_device *pdev; 110 struct rtc_device *rtc; 111 void __iomem *ioaddr; 112 struct clk *clk; 113 u32 dsr; 114 spinlock_t irq_lock; 115 wait_queue_head_t write_wait; 116 struct mutex write_mutex; 117 struct work_struct work; 118 }; 119 120 /* Some background: 121 * 122 * The DryIce unit is a complex security/tamper monitor device. To be able do 123 * its job in a useful manner it runs a bigger statemachine to bring it into 124 * security/tamper failure state and once again to bring it out of this state. 125 * 126 * This unit can be in one of three states: 127 * 128 * - "NON-VALID STATE" 129 * always after the battery power was removed 130 * - "FAILURE STATE" 131 * if one of the enabled security events has happened 132 * - "VALID STATE" 133 * if the unit works as expected 134 * 135 * Everything stops when the unit enters the failure state including the RTC 136 * counter (to be able to detect the time the security event happened). 137 * 138 * The following events (when enabled) let the DryIce unit enter the failure 139 * state: 140 * 141 * - wire-mesh-tamper detect 142 * - external tamper B detect 143 * - external tamper A detect 144 * - temperature tamper detect 145 * - clock tamper detect 146 * - voltage tamper detect 147 * - RTC counter overflow 148 * - monotonic counter overflow 149 * - external boot 150 * 151 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we 152 * can only detect this state. In this case the unit is completely locked and 153 * must force a second "SYSTEM POR" to bring the DryIce into the 154 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible. 155 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case 156 * a battery power cycle is required. 157 * 158 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE" 159 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last 160 * task, we bring back this unit into life. 161 */ 162 163 /* 164 * Do a write into the unit without interrupt support. 165 * We do not need to check the WEF here, because the only reason this kind of 166 * write error can happen is if we write to the unit twice within the 122 us 167 * interval. This cannot happen, since we are using this function only while 168 * setting up the unit. 169 */ 170 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val, 171 unsigned reg) 172 { 173 /* do the register write */ 174 writel(val, imxdi->ioaddr + reg); 175 176 /* 177 * now it takes four 32,768 kHz clock cycles to take 178 * the change into effect = 122 us 179 */ 180 usleep_range(130, 200); 181 } 182 183 static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr) 184 { 185 u32 dtcr; 186 187 dtcr = readl(imxdi->ioaddr + DTCR); 188 189 dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n"); 190 /* the following flags force a transition into the "FAILURE STATE" */ 191 if (dsr & DSR_VTD) 192 dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n", 193 dtcr & DTCR_VTE ? "" : "Spurious "); 194 195 if (dsr & DSR_CTD) 196 dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n", 197 dtcr & DTCR_CTE ? "" : "Spurious "); 198 199 if (dsr & DSR_TTD) 200 dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n", 201 dtcr & DTCR_TTE ? "" : "Spurious "); 202 203 if (dsr & DSR_SAD) 204 dev_emerg(&imxdi->pdev->dev, 205 "%sSecure Controller Alarm Event\n", 206 dtcr & DTCR_SAIE ? "" : "Spurious "); 207 208 if (dsr & DSR_EBD) 209 dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n", 210 dtcr & DTCR_EBE ? "" : "Spurious "); 211 212 if (dsr & DSR_ETAD) 213 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n", 214 dtcr & DTCR_ETAE ? "" : "Spurious "); 215 216 if (dsr & DSR_ETBD) 217 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n", 218 dtcr & DTCR_ETBE ? "" : "Spurious "); 219 220 if (dsr & DSR_WTD) 221 dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n", 222 dtcr & DTCR_WTE ? "" : "Spurious "); 223 224 if (dsr & DSR_MCO) 225 dev_emerg(&imxdi->pdev->dev, 226 "%sMonotonic-counter Overflow Event\n", 227 dtcr & DTCR_MOE ? "" : "Spurious "); 228 229 if (dsr & DSR_TCO) 230 dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n", 231 dtcr & DTCR_TOE ? "" : "Spurious "); 232 } 233 234 static void di_what_is_to_be_done(struct imxdi_dev *imxdi, 235 const char *power_supply) 236 { 237 dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n", 238 power_supply); 239 } 240 241 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr) 242 { 243 u32 dcr; 244 245 dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr); 246 247 /* report the cause */ 248 di_report_tamper_info(imxdi, dsr); 249 250 dcr = readl(imxdi->ioaddr + DCR); 251 252 if (dcr & DCR_FSHL) { 253 /* we are out of luck */ 254 di_what_is_to_be_done(imxdi, "battery"); 255 return -ENODEV; 256 } 257 /* 258 * with the next SYSTEM POR we will transit from the "FAILURE STATE" 259 * into the "NON-VALID STATE" + "FAILURE STATE" 260 */ 261 di_what_is_to_be_done(imxdi, "main"); 262 263 return -ENODEV; 264 } 265 266 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr) 267 { 268 /* initialize alarm */ 269 di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR); 270 di_write_busy_wait(imxdi, 0, DCALR); 271 272 /* clear alarm flag */ 273 if (dsr & DSR_CAF) 274 di_write_busy_wait(imxdi, DSR_CAF, DSR); 275 276 return 0; 277 } 278 279 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr) 280 { 281 u32 dcr, sec; 282 283 /* 284 * lets disable all sources which can force the DryIce unit into 285 * the "FAILURE STATE" for now 286 */ 287 di_write_busy_wait(imxdi, 0x00000000, DTCR); 288 /* and lets protect them at runtime from any change */ 289 di_write_busy_wait(imxdi, DCR_TDCSL, DCR); 290 291 sec = readl(imxdi->ioaddr + DTCMR); 292 if (sec != 0) 293 dev_warn(&imxdi->pdev->dev, 294 "The security violation has happened at %u seconds\n", 295 sec); 296 /* 297 * the timer cannot be set/modified if 298 * - the TCHL or TCSL bit is set in DCR 299 */ 300 dcr = readl(imxdi->ioaddr + DCR); 301 if (!(dcr & DCR_TCE)) { 302 if (dcr & DCR_TCHL) { 303 /* we are out of luck */ 304 di_what_is_to_be_done(imxdi, "battery"); 305 return -ENODEV; 306 } 307 if (dcr & DCR_TCSL) { 308 di_what_is_to_be_done(imxdi, "main"); 309 return -ENODEV; 310 } 311 } 312 /* 313 * - the timer counter stops/is stopped if 314 * - its overflow flag is set (TCO in DSR) 315 * -> clear overflow bit to make it count again 316 * - NVF is set in DSR 317 * -> clear non-valid bit to make it count again 318 * - its TCE (DCR) is cleared 319 * -> set TCE to make it count 320 * - it was never set before 321 * -> write a time into it (required again if the NVF was set) 322 */ 323 /* state handled */ 324 di_write_busy_wait(imxdi, DSR_NVF, DSR); 325 /* clear overflow flag */ 326 di_write_busy_wait(imxdi, DSR_TCO, DSR); 327 /* enable the counter */ 328 di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR); 329 /* set and trigger it to make it count */ 330 di_write_busy_wait(imxdi, sec, DTCMR); 331 332 /* now prepare for the valid state */ 333 return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR)); 334 } 335 336 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr) 337 { 338 u32 dcr; 339 340 /* 341 * now we must first remove the tamper sources in order to get the 342 * device out of the "FAILURE STATE" 343 * To disable any of the following sources we need to modify the DTCR 344 */ 345 if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD | 346 DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) { 347 dcr = __raw_readl(imxdi->ioaddr + DCR); 348 if (dcr & DCR_TDCHL) { 349 /* 350 * the tamper register is locked. We cannot disable the 351 * tamper detection. The TDCHL can only be reset by a 352 * DRYICE POR, but we cannot force a DRYICE POR in 353 * softwere because we are still in "FAILURE STATE". 354 * We need a DRYICE POR via battery power cycling.... 355 */ 356 /* 357 * out of luck! 358 * we cannot disable them without a DRYICE POR 359 */ 360 di_what_is_to_be_done(imxdi, "battery"); 361 return -ENODEV; 362 } 363 if (dcr & DCR_TDCSL) { 364 /* a soft lock can be removed by a SYSTEM POR */ 365 di_what_is_to_be_done(imxdi, "main"); 366 return -ENODEV; 367 } 368 } 369 370 /* disable all sources */ 371 di_write_busy_wait(imxdi, 0x00000000, DTCR); 372 373 /* clear the status bits now */ 374 di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | 375 DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD | 376 DSR_MCO | DSR_TCO), DSR); 377 378 dsr = readl(imxdi->ioaddr + DSR); 379 if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF | 380 DSR_WCF | DSR_WEF)) != 0) 381 dev_warn(&imxdi->pdev->dev, 382 "There are still some sources of pain in DSR: %08x!\n", 383 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF | 384 DSR_WCF | DSR_WEF)); 385 386 /* 387 * now we are trying to clear the "Security-violation flag" to 388 * get the DryIce out of this state 389 */ 390 di_write_busy_wait(imxdi, DSR_SVF, DSR); 391 392 /* success? */ 393 dsr = readl(imxdi->ioaddr + DSR); 394 if (dsr & DSR_SVF) { 395 dev_crit(&imxdi->pdev->dev, 396 "Cannot clear the security violation flag. We are ending up in an endless loop!\n"); 397 /* last resort */ 398 di_what_is_to_be_done(imxdi, "battery"); 399 return -ENODEV; 400 } 401 402 /* 403 * now we have left the "FAILURE STATE" and ending up in the 404 * "NON-VALID STATE" time to recover everything 405 */ 406 return di_handle_invalid_state(imxdi, dsr); 407 } 408 409 static int di_handle_state(struct imxdi_dev *imxdi) 410 { 411 int rc; 412 u32 dsr; 413 414 dsr = readl(imxdi->ioaddr + DSR); 415 416 switch (dsr & (DSR_NVF | DSR_SVF)) { 417 case DSR_NVF: 418 dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n"); 419 rc = di_handle_invalid_state(imxdi, dsr); 420 break; 421 case DSR_SVF: 422 dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n"); 423 rc = di_handle_failure_state(imxdi, dsr); 424 break; 425 case DSR_NVF | DSR_SVF: 426 dev_warn(&imxdi->pdev->dev, 427 "Failure+Invalid stated unit detected\n"); 428 rc = di_handle_invalid_and_failure_state(imxdi, dsr); 429 break; 430 default: 431 dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n"); 432 rc = di_handle_valid_state(imxdi, dsr); 433 } 434 435 return rc; 436 } 437 438 /* 439 * enable a dryice interrupt 440 */ 441 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr) 442 { 443 unsigned long flags; 444 445 spin_lock_irqsave(&imxdi->irq_lock, flags); 446 writel(readl(imxdi->ioaddr + DIER) | intr, 447 imxdi->ioaddr + DIER); 448 spin_unlock_irqrestore(&imxdi->irq_lock, flags); 449 } 450 451 /* 452 * disable a dryice interrupt 453 */ 454 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr) 455 { 456 unsigned long flags; 457 458 spin_lock_irqsave(&imxdi->irq_lock, flags); 459 writel(readl(imxdi->ioaddr + DIER) & ~intr, 460 imxdi->ioaddr + DIER); 461 spin_unlock_irqrestore(&imxdi->irq_lock, flags); 462 } 463 464 /* 465 * This function attempts to clear the dryice write-error flag. 466 * 467 * A dryice write error is similar to a bus fault and should not occur in 468 * normal operation. Clearing the flag requires another write, so the root 469 * cause of the problem may need to be fixed before the flag can be cleared. 470 */ 471 static void clear_write_error(struct imxdi_dev *imxdi) 472 { 473 int cnt; 474 475 dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n"); 476 477 /* clear the write error flag */ 478 writel(DSR_WEF, imxdi->ioaddr + DSR); 479 480 /* wait for it to take effect */ 481 for (cnt = 0; cnt < 1000; cnt++) { 482 if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0) 483 return; 484 udelay(10); 485 } 486 dev_err(&imxdi->pdev->dev, 487 "ERROR: Cannot clear write-error flag!\n"); 488 } 489 490 /* 491 * Write a dryice register and wait until it completes. 492 * 493 * This function uses interrupts to determine when the 494 * write has completed. 495 */ 496 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg) 497 { 498 int ret; 499 int rc = 0; 500 501 /* serialize register writes */ 502 mutex_lock(&imxdi->write_mutex); 503 504 /* enable the write-complete interrupt */ 505 di_int_enable(imxdi, DIER_WCIE); 506 507 imxdi->dsr = 0; 508 509 /* do the register write */ 510 writel(val, imxdi->ioaddr + reg); 511 512 /* wait for the write to finish */ 513 ret = wait_event_interruptible_timeout(imxdi->write_wait, 514 imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1)); 515 if (ret < 0) { 516 rc = ret; 517 goto out; 518 } else if (ret == 0) { 519 dev_warn(&imxdi->pdev->dev, 520 "Write-wait timeout " 521 "val = 0x%08x reg = 0x%08x\n", val, reg); 522 } 523 524 /* check for write error */ 525 if (imxdi->dsr & DSR_WEF) { 526 clear_write_error(imxdi); 527 rc = -EIO; 528 } 529 530 out: 531 mutex_unlock(&imxdi->write_mutex); 532 533 return rc; 534 } 535 536 /* 537 * read the seconds portion of the current time from the dryice time counter 538 */ 539 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm) 540 { 541 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 542 unsigned long now; 543 544 now = readl(imxdi->ioaddr + DTCMR); 545 rtc_time64_to_tm(now, tm); 546 547 return 0; 548 } 549 550 /* 551 * set the seconds portion of dryice time counter and clear the 552 * fractional part. 553 */ 554 static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm) 555 { 556 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 557 u32 dcr, dsr; 558 int rc; 559 560 dcr = readl(imxdi->ioaddr + DCR); 561 dsr = readl(imxdi->ioaddr + DSR); 562 563 if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) { 564 if (dcr & DCR_TCHL) { 565 /* we are even more out of luck */ 566 di_what_is_to_be_done(imxdi, "battery"); 567 return -EPERM; 568 } 569 if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) { 570 /* we are out of luck for now */ 571 di_what_is_to_be_done(imxdi, "main"); 572 return -EPERM; 573 } 574 } 575 576 /* zero the fractional part first */ 577 rc = di_write_wait(imxdi, 0, DTCLR); 578 if (rc != 0) 579 return rc; 580 581 rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR); 582 if (rc != 0) 583 return rc; 584 585 return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR); 586 } 587 588 static int dryice_rtc_alarm_irq_enable(struct device *dev, 589 unsigned int enabled) 590 { 591 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 592 593 if (enabled) 594 di_int_enable(imxdi, DIER_CAIE); 595 else 596 di_int_disable(imxdi, DIER_CAIE); 597 598 return 0; 599 } 600 601 /* 602 * read the seconds portion of the alarm register. 603 * the fractional part of the alarm register is always zero. 604 */ 605 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 606 { 607 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 608 u32 dcamr; 609 610 dcamr = readl(imxdi->ioaddr + DCAMR); 611 rtc_time64_to_tm(dcamr, &alarm->time); 612 613 /* alarm is enabled if the interrupt is enabled */ 614 alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0; 615 616 /* don't allow the DSR read to mess up DSR_WCF */ 617 mutex_lock(&imxdi->write_mutex); 618 619 /* alarm is pending if the alarm flag is set */ 620 alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0; 621 622 mutex_unlock(&imxdi->write_mutex); 623 624 return 0; 625 } 626 627 /* 628 * set the seconds portion of dryice alarm register 629 */ 630 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 631 { 632 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 633 int rc; 634 635 /* write the new alarm time */ 636 rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR); 637 if (rc) 638 return rc; 639 640 if (alarm->enabled) 641 di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */ 642 else 643 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */ 644 645 return 0; 646 } 647 648 static const struct rtc_class_ops dryice_rtc_ops = { 649 .read_time = dryice_rtc_read_time, 650 .set_time = dryice_rtc_set_time, 651 .alarm_irq_enable = dryice_rtc_alarm_irq_enable, 652 .read_alarm = dryice_rtc_read_alarm, 653 .set_alarm = dryice_rtc_set_alarm, 654 }; 655 656 /* 657 * interrupt handler for dryice "normal" and security violation interrupt 658 */ 659 static irqreturn_t dryice_irq(int irq, void *dev_id) 660 { 661 struct imxdi_dev *imxdi = dev_id; 662 u32 dsr, dier; 663 irqreturn_t rc = IRQ_NONE; 664 665 dier = readl(imxdi->ioaddr + DIER); 666 dsr = readl(imxdi->ioaddr + DSR); 667 668 /* handle the security violation event */ 669 if (dier & DIER_SVIE) { 670 if (dsr & DSR_SVF) { 671 /* 672 * Disable the interrupt when this kind of event has 673 * happened. 674 * There cannot be more than one event of this type, 675 * because it needs a complex state change 676 * including a main power cycle to get again out of 677 * this state. 678 */ 679 di_int_disable(imxdi, DIER_SVIE); 680 /* report the violation */ 681 di_report_tamper_info(imxdi, dsr); 682 rc = IRQ_HANDLED; 683 } 684 } 685 686 /* handle write complete and write error cases */ 687 if (dier & DIER_WCIE) { 688 /*If the write wait queue is empty then there is no pending 689 operations. It means the interrupt is for DryIce -Security. 690 IRQ must be returned as none.*/ 691 if (list_empty_careful(&imxdi->write_wait.head)) 692 return rc; 693 694 /* DSR_WCF clears itself on DSR read */ 695 if (dsr & (DSR_WCF | DSR_WEF)) { 696 /* mask the interrupt */ 697 di_int_disable(imxdi, DIER_WCIE); 698 699 /* save the dsr value for the wait queue */ 700 imxdi->dsr |= dsr; 701 702 wake_up_interruptible(&imxdi->write_wait); 703 rc = IRQ_HANDLED; 704 } 705 } 706 707 /* handle the alarm case */ 708 if (dier & DIER_CAIE) { 709 /* DSR_WCF clears itself on DSR read */ 710 if (dsr & DSR_CAF) { 711 /* mask the interrupt */ 712 di_int_disable(imxdi, DIER_CAIE); 713 714 /* finish alarm in user context */ 715 schedule_work(&imxdi->work); 716 rc = IRQ_HANDLED; 717 } 718 } 719 return rc; 720 } 721 722 /* 723 * post the alarm event from user context so it can sleep 724 * on the write completion. 725 */ 726 static void dryice_work(struct work_struct *work) 727 { 728 struct imxdi_dev *imxdi = container_of(work, 729 struct imxdi_dev, work); 730 731 /* dismiss the interrupt (ignore error) */ 732 di_write_wait(imxdi, DSR_CAF, DSR); 733 734 /* pass the alarm event to the rtc framework. */ 735 rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF); 736 } 737 738 /* 739 * probe for dryice rtc device 740 */ 741 static int __init dryice_rtc_probe(struct platform_device *pdev) 742 { 743 struct resource *res; 744 struct imxdi_dev *imxdi; 745 int norm_irq, sec_irq; 746 int rc; 747 748 imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL); 749 if (!imxdi) 750 return -ENOMEM; 751 752 imxdi->pdev = pdev; 753 754 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 755 imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res); 756 if (IS_ERR(imxdi->ioaddr)) 757 return PTR_ERR(imxdi->ioaddr); 758 759 spin_lock_init(&imxdi->irq_lock); 760 761 norm_irq = platform_get_irq(pdev, 0); 762 if (norm_irq < 0) 763 return norm_irq; 764 765 /* the 2nd irq is the security violation irq 766 * make this optional, don't break the device tree ABI 767 */ 768 sec_irq = platform_get_irq(pdev, 1); 769 if (sec_irq <= 0) 770 sec_irq = IRQ_NOTCONNECTED; 771 772 init_waitqueue_head(&imxdi->write_wait); 773 774 INIT_WORK(&imxdi->work, dryice_work); 775 776 mutex_init(&imxdi->write_mutex); 777 778 imxdi->rtc = devm_rtc_allocate_device(&pdev->dev); 779 if (IS_ERR(imxdi->rtc)) 780 return PTR_ERR(imxdi->rtc); 781 782 imxdi->clk = devm_clk_get(&pdev->dev, NULL); 783 if (IS_ERR(imxdi->clk)) 784 return PTR_ERR(imxdi->clk); 785 rc = clk_prepare_enable(imxdi->clk); 786 if (rc) 787 return rc; 788 789 /* 790 * Initialize dryice hardware 791 */ 792 793 /* mask all interrupts */ 794 writel(0, imxdi->ioaddr + DIER); 795 796 rc = di_handle_state(imxdi); 797 if (rc != 0) 798 goto err; 799 800 rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq, 801 IRQF_SHARED, pdev->name, imxdi); 802 if (rc) { 803 dev_warn(&pdev->dev, "interrupt not available.\n"); 804 goto err; 805 } 806 807 rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq, 808 IRQF_SHARED, pdev->name, imxdi); 809 if (rc) { 810 dev_warn(&pdev->dev, "security violation interrupt not available.\n"); 811 /* this is not an error, see above */ 812 } 813 814 platform_set_drvdata(pdev, imxdi); 815 816 imxdi->rtc->ops = &dryice_rtc_ops; 817 imxdi->rtc->range_max = U32_MAX; 818 819 rc = rtc_register_device(imxdi->rtc); 820 if (rc) 821 goto err; 822 823 return 0; 824 825 err: 826 clk_disable_unprepare(imxdi->clk); 827 828 return rc; 829 } 830 831 static int __exit dryice_rtc_remove(struct platform_device *pdev) 832 { 833 struct imxdi_dev *imxdi = platform_get_drvdata(pdev); 834 835 flush_work(&imxdi->work); 836 837 /* mask all interrupts */ 838 writel(0, imxdi->ioaddr + DIER); 839 840 clk_disable_unprepare(imxdi->clk); 841 842 return 0; 843 } 844 845 #ifdef CONFIG_OF 846 static const struct of_device_id dryice_dt_ids[] = { 847 { .compatible = "fsl,imx25-rtc" }, 848 { /* sentinel */ } 849 }; 850 851 MODULE_DEVICE_TABLE(of, dryice_dt_ids); 852 #endif 853 854 static struct platform_driver dryice_rtc_driver = { 855 .driver = { 856 .name = "imxdi_rtc", 857 .of_match_table = of_match_ptr(dryice_dt_ids), 858 }, 859 .remove = __exit_p(dryice_rtc_remove), 860 }; 861 862 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe); 863 864 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 865 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>"); 866 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)"); 867 MODULE_LICENSE("GPL"); 868