1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale FlexTimer Module (FTM) alarm device driver. 4 * 5 * Copyright 2014 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * 8 */ 9 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/of_address.h> 15 #include <linux/of_irq.h> 16 #include <linux/platform_device.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/module.h> 20 #include <linux/fsl/ftm.h> 21 #include <linux/rtc.h> 22 #include <linux/time.h> 23 #include <linux/acpi.h> 24 #include <linux/pm_wakeirq.h> 25 26 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT) 27 28 /* 29 * Select Fixed frequency clock (32KHz) as clock source 30 * of FlexTimer Module 31 */ 32 #define FTM_SC_CLKS_FIXED_FREQ 0x02 33 #define FIXED_FREQ_CLK 32000 34 35 /* Select 128 (2^7) as divider factor */ 36 #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK) 37 38 /* Maximum counter value in FlexTimer's CNT registers */ 39 #define MAX_COUNT_VAL 0xffff 40 41 struct ftm_rtc { 42 struct rtc_device *rtc_dev; 43 void __iomem *base; 44 bool big_endian; 45 u32 alarm_freq; 46 }; 47 48 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg) 49 { 50 if (dev->big_endian) 51 return ioread32be(dev->base + reg); 52 else 53 return ioread32(dev->base + reg); 54 } 55 56 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val) 57 { 58 if (dev->big_endian) 59 iowrite32be(val, dev->base + reg); 60 else 61 iowrite32(val, dev->base + reg); 62 } 63 64 static inline void ftm_counter_enable(struct ftm_rtc *rtc) 65 { 66 u32 val; 67 68 /* select and enable counter clock source */ 69 val = rtc_readl(rtc, FTM_SC); 70 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); 71 val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ)); 72 rtc_writel(rtc, FTM_SC, val); 73 } 74 75 static inline void ftm_counter_disable(struct ftm_rtc *rtc) 76 { 77 u32 val; 78 79 /* disable counter clock source */ 80 val = rtc_readl(rtc, FTM_SC); 81 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); 82 rtc_writel(rtc, FTM_SC, val); 83 } 84 85 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc) 86 { 87 unsigned int timeout = 100; 88 89 /* 90 *Fix errata A-007728 for flextimer 91 * If the FTM counter reaches the FTM_MOD value between 92 * the reading of the TOF bit and the writing of 0 to 93 * the TOF bit, the process of clearing the TOF bit 94 * does not work as expected when FTMx_CONF[NUMTOF] != 0 95 * and the current TOF count is less than FTMx_CONF[NUMTOF]. 96 * If the above condition is met, the TOF bit remains set. 97 * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the 98 * TOF interrupt also remains asserted. 99 * 100 * Above is the errata discription 101 * 102 * In one word: software clearing TOF bit not works when 103 * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter 104 * reaches the FTM_MOD value. 105 * 106 * The workaround is clearing TOF bit until it works 107 * (FTM counter doesn't always reache the FTM_MOD anyway), 108 * which may cost some cycles. 109 */ 110 while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--) 111 rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF)); 112 } 113 114 static inline void ftm_irq_enable(struct ftm_rtc *rtc) 115 { 116 u32 val; 117 118 val = rtc_readl(rtc, FTM_SC); 119 val |= FTM_SC_TOIE; 120 rtc_writel(rtc, FTM_SC, val); 121 } 122 123 static inline void ftm_irq_disable(struct ftm_rtc *rtc) 124 { 125 u32 val; 126 127 val = rtc_readl(rtc, FTM_SC); 128 val &= ~FTM_SC_TOIE; 129 rtc_writel(rtc, FTM_SC, val); 130 } 131 132 static inline void ftm_reset_counter(struct ftm_rtc *rtc) 133 { 134 /* 135 * The CNT register contains the FTM counter value. 136 * Reset clears the CNT register. Writing any value to COUNT 137 * updates the counter with its initial value, CNTIN. 138 */ 139 rtc_writel(rtc, FTM_CNT, 0x00); 140 } 141 142 static void ftm_clean_alarm(struct ftm_rtc *rtc) 143 { 144 ftm_counter_disable(rtc); 145 146 rtc_writel(rtc, FTM_CNTIN, 0x00); 147 rtc_writel(rtc, FTM_MOD, ~0U); 148 149 ftm_reset_counter(rtc); 150 } 151 152 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev) 153 { 154 struct ftm_rtc *rtc = dev; 155 156 rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF); 157 158 ftm_irq_acknowledge(rtc); 159 ftm_irq_disable(rtc); 160 ftm_clean_alarm(rtc); 161 162 return IRQ_HANDLED; 163 } 164 165 static int ftm_rtc_alarm_irq_enable(struct device *dev, 166 unsigned int enabled) 167 { 168 struct ftm_rtc *rtc = dev_get_drvdata(dev); 169 170 if (enabled) 171 ftm_irq_enable(rtc); 172 else 173 ftm_irq_disable(rtc); 174 175 return 0; 176 } 177 178 /* 179 * Note: 180 * The function is not really getting time from the RTC 181 * since FlexTimer is not a RTC device, but we need to 182 * get time to setup alarm, so we are using system time 183 * for now. 184 */ 185 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm) 186 { 187 rtc_time64_to_tm(ktime_get_real_seconds(), tm); 188 189 return 0; 190 } 191 192 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) 193 { 194 return 0; 195 } 196 197 /* 198 * 1. Select fixed frequency clock (32KHz) as clock source; 199 * 2. Select 128 (2^7) as divider factor; 200 * So clock is 250 Hz (32KHz/128). 201 * 202 * 3. FlexTimer's CNT register is a 32bit register, 203 * but the register's 16 bit as counter value,it's other 16 bit 204 * is reserved.So minimum counter value is 0x0,maximum counter 205 * value is 0xffff. 206 * So max alarm value is 262 (65536 / 250) seconds 207 */ 208 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 209 { 210 time64_t alm_time; 211 unsigned long long cycle; 212 struct ftm_rtc *rtc = dev_get_drvdata(dev); 213 214 alm_time = rtc_tm_to_time64(&alm->time); 215 216 ftm_clean_alarm(rtc); 217 cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq; 218 if (cycle > MAX_COUNT_VAL) { 219 pr_err("Out of alarm range {0~262} seconds.\n"); 220 return -ERANGE; 221 } 222 223 ftm_irq_disable(rtc); 224 225 /* 226 * The counter increments until the value of MOD is reached, 227 * at which point the counter is reloaded with the value of CNTIN. 228 * The TOF (the overflow flag) bit is set when the FTM counter 229 * changes from MOD to CNTIN. So we should using the cycle - 1. 230 */ 231 rtc_writel(rtc, FTM_MOD, cycle - 1); 232 233 ftm_counter_enable(rtc); 234 ftm_irq_enable(rtc); 235 236 return 0; 237 238 } 239 240 static const struct rtc_class_ops ftm_rtc_ops = { 241 .read_time = ftm_rtc_read_time, 242 .read_alarm = ftm_rtc_read_alarm, 243 .set_alarm = ftm_rtc_set_alarm, 244 .alarm_irq_enable = ftm_rtc_alarm_irq_enable, 245 }; 246 247 static int ftm_rtc_probe(struct platform_device *pdev) 248 { 249 int irq; 250 int ret; 251 struct ftm_rtc *rtc; 252 253 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); 254 if (unlikely(!rtc)) { 255 dev_err(&pdev->dev, "cannot alloc memory for rtc\n"); 256 return -ENOMEM; 257 } 258 259 platform_set_drvdata(pdev, rtc); 260 261 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); 262 if (IS_ERR(rtc->rtc_dev)) 263 return PTR_ERR(rtc->rtc_dev); 264 265 rtc->base = devm_platform_ioremap_resource(pdev, 0); 266 if (IS_ERR(rtc->base)) { 267 dev_err(&pdev->dev, "cannot ioremap resource for rtc\n"); 268 return PTR_ERR(rtc->base); 269 } 270 271 irq = platform_get_irq(pdev, 0); 272 if (irq < 0) 273 return irq; 274 275 ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt, 276 0, dev_name(&pdev->dev), rtc); 277 if (ret < 0) { 278 dev_err(&pdev->dev, "failed to request irq\n"); 279 return ret; 280 } 281 282 rtc->big_endian = 283 device_property_read_bool(&pdev->dev, "big-endian"); 284 285 rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV; 286 rtc->rtc_dev->ops = &ftm_rtc_ops; 287 288 device_init_wakeup(&pdev->dev, true); 289 ret = dev_pm_set_wake_irq(&pdev->dev, irq); 290 if (ret) 291 dev_err(&pdev->dev, "failed to enable irq wake\n"); 292 293 ret = devm_rtc_register_device(rtc->rtc_dev); 294 if (ret) { 295 dev_err(&pdev->dev, "can't register rtc device\n"); 296 return ret; 297 } 298 299 return 0; 300 } 301 302 static const struct of_device_id ftm_rtc_match[] = { 303 { .compatible = "fsl,ls1012a-ftm-alarm", }, 304 { .compatible = "fsl,ls1021a-ftm-alarm", }, 305 { .compatible = "fsl,ls1028a-ftm-alarm", }, 306 { .compatible = "fsl,ls1043a-ftm-alarm", }, 307 { .compatible = "fsl,ls1046a-ftm-alarm", }, 308 { .compatible = "fsl,ls1088a-ftm-alarm", }, 309 { .compatible = "fsl,ls208xa-ftm-alarm", }, 310 { .compatible = "fsl,lx2160a-ftm-alarm", }, 311 { }, 312 }; 313 MODULE_DEVICE_TABLE(of, ftm_rtc_match); 314 315 static const struct acpi_device_id ftm_imx_acpi_ids[] = { 316 {"NXP0014",}, 317 { } 318 }; 319 MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids); 320 321 static struct platform_driver ftm_rtc_driver = { 322 .probe = ftm_rtc_probe, 323 .driver = { 324 .name = "ftm-alarm", 325 .of_match_table = ftm_rtc_match, 326 .acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids), 327 }, 328 }; 329 330 static int __init ftm_alarm_init(void) 331 { 332 return platform_driver_register(&ftm_rtc_driver); 333 } 334 335 device_initcall(ftm_alarm_init); 336 337 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver"); 338 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>"); 339 MODULE_LICENSE("GPL"); 340