xref: /linux/drivers/rtc/rtc-fsl-ftm-alarm.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale FlexTimer Module (FTM) alarm device driver.
4  *
5  * Copyright 2014 Freescale Semiconductor, Inc.
6  * Copyright 2019 NXP
7  *
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/module.h>
20 #include <linux/fsl/ftm.h>
21 #include <linux/rtc.h>
22 #include <linux/time.h>
23 
24 #define FTM_SC_CLK(c)		((c) << FTM_SC_CLK_MASK_SHIFT)
25 
26 /*
27  * Select Fixed frequency clock (32KHz) as clock source
28  * of FlexTimer Module
29  */
30 #define FTM_SC_CLKS_FIXED_FREQ	0x02
31 #define FIXED_FREQ_CLK		32000
32 
33 /* Select 128 (2^7) as divider factor */
34 #define MAX_FREQ_DIV		(1 << FTM_SC_PS_MASK)
35 
36 /* Maximum counter value in FlexTimer's CNT registers */
37 #define MAX_COUNT_VAL		0xffff
38 
39 struct ftm_rtc {
40 	struct rtc_device *rtc_dev;
41 	void __iomem *base;
42 	bool big_endian;
43 	u32 alarm_freq;
44 };
45 
46 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
47 {
48 	if (dev->big_endian)
49 		return ioread32be(dev->base + reg);
50 	else
51 		return ioread32(dev->base + reg);
52 }
53 
54 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
55 {
56 	if (dev->big_endian)
57 		iowrite32be(val, dev->base + reg);
58 	else
59 		iowrite32(val, dev->base + reg);
60 }
61 
62 static inline void ftm_counter_enable(struct ftm_rtc *rtc)
63 {
64 	u32 val;
65 
66 	/* select and enable counter clock source */
67 	val = rtc_readl(rtc, FTM_SC);
68 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
69 	val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
70 	rtc_writel(rtc, FTM_SC, val);
71 }
72 
73 static inline void ftm_counter_disable(struct ftm_rtc *rtc)
74 {
75 	u32 val;
76 
77 	/* disable counter clock source */
78 	val = rtc_readl(rtc, FTM_SC);
79 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
80 	rtc_writel(rtc, FTM_SC, val);
81 }
82 
83 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
84 {
85 	unsigned int timeout = 100;
86 
87 	/*
88 	 *Fix errata A-007728 for flextimer
89 	 *	If the FTM counter reaches the FTM_MOD value between
90 	 *	the reading of the TOF bit and the writing of 0 to
91 	 *	the TOF bit, the process of clearing the TOF bit
92 	 *	does not work as expected when FTMx_CONF[NUMTOF] != 0
93 	 *	and the current TOF count is less than FTMx_CONF[NUMTOF].
94 	 *	If the above condition is met, the TOF bit remains set.
95 	 *	If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
96 	 *	TOF interrupt also remains asserted.
97 	 *
98 	 *	Above is the errata discription
99 	 *
100 	 *	In one word: software clearing TOF bit not works when
101 	 *	FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
102 	 *	reaches the FTM_MOD value.
103 	 *
104 	 *	The workaround is clearing TOF bit until it works
105 	 *	(FTM counter doesn't always reache the FTM_MOD anyway),
106 	 *	which may cost some cycles.
107 	 */
108 	while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
109 		rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
110 }
111 
112 static inline void ftm_irq_enable(struct ftm_rtc *rtc)
113 {
114 	u32 val;
115 
116 	val = rtc_readl(rtc, FTM_SC);
117 	val |= FTM_SC_TOIE;
118 	rtc_writel(rtc, FTM_SC, val);
119 }
120 
121 static inline void ftm_irq_disable(struct ftm_rtc *rtc)
122 {
123 	u32 val;
124 
125 	val = rtc_readl(rtc, FTM_SC);
126 	val &= ~FTM_SC_TOIE;
127 	rtc_writel(rtc, FTM_SC, val);
128 }
129 
130 static inline void ftm_reset_counter(struct ftm_rtc *rtc)
131 {
132 	/*
133 	 * The CNT register contains the FTM counter value.
134 	 * Reset clears the CNT register. Writing any value to COUNT
135 	 * updates the counter with its initial value, CNTIN.
136 	 */
137 	rtc_writel(rtc, FTM_CNT, 0x00);
138 }
139 
140 static void ftm_clean_alarm(struct ftm_rtc *rtc)
141 {
142 	ftm_counter_disable(rtc);
143 
144 	rtc_writel(rtc, FTM_CNTIN, 0x00);
145 	rtc_writel(rtc, FTM_MOD, ~0U);
146 
147 	ftm_reset_counter(rtc);
148 }
149 
150 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
151 {
152 	struct ftm_rtc *rtc = dev;
153 
154 	ftm_irq_acknowledge(rtc);
155 	ftm_irq_disable(rtc);
156 	ftm_clean_alarm(rtc);
157 
158 	return IRQ_HANDLED;
159 }
160 
161 static int ftm_rtc_alarm_irq_enable(struct device *dev,
162 		unsigned int enabled)
163 {
164 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
165 
166 	if (enabled)
167 		ftm_irq_enable(rtc);
168 	else
169 		ftm_irq_disable(rtc);
170 
171 	return 0;
172 }
173 
174 /*
175  * Note:
176  *	The function is not really getting time from the RTC
177  *	since FlexTimer is not a RTC device, but we need to
178  *	get time to setup alarm, so we are using system time
179  *	for now.
180  */
181 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
182 {
183 	rtc_time64_to_tm(ktime_get_real_seconds(), tm);
184 
185 	return 0;
186 }
187 
188 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
189 {
190 	return 0;
191 }
192 
193 /*
194  * 1. Select fixed frequency clock (32KHz) as clock source;
195  * 2. Select 128 (2^7) as divider factor;
196  * So clock is 250 Hz (32KHz/128).
197  *
198  * 3. FlexTimer's CNT register is a 32bit register,
199  * but the register's 16 bit as counter value,it's other 16 bit
200  * is reserved.So minimum counter value is 0x0,maximum counter
201  * value is 0xffff.
202  * So max alarm value is 262 (65536 / 250) seconds
203  */
204 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
205 {
206 	time64_t alm_time;
207 	unsigned long long cycle;
208 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
209 
210 	alm_time = rtc_tm_to_time64(&alm->time);
211 
212 	ftm_clean_alarm(rtc);
213 	cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
214 	if (cycle > MAX_COUNT_VAL) {
215 		pr_err("Out of alarm range {0~262} seconds.\n");
216 		return -ERANGE;
217 	}
218 
219 	ftm_irq_disable(rtc);
220 
221 	/*
222 	 * The counter increments until the value of MOD is reached,
223 	 * at which point the counter is reloaded with the value of CNTIN.
224 	 * The TOF (the overflow flag) bit is set when the FTM counter
225 	 * changes from MOD to CNTIN. So we should using the cycle - 1.
226 	 */
227 	rtc_writel(rtc, FTM_MOD, cycle - 1);
228 
229 	ftm_counter_enable(rtc);
230 	ftm_irq_enable(rtc);
231 
232 	return 0;
233 
234 }
235 
236 static const struct rtc_class_ops ftm_rtc_ops = {
237 	.read_time		= ftm_rtc_read_time,
238 	.read_alarm		= ftm_rtc_read_alarm,
239 	.set_alarm		= ftm_rtc_set_alarm,
240 	.alarm_irq_enable	= ftm_rtc_alarm_irq_enable,
241 };
242 
243 static int ftm_rtc_probe(struct platform_device *pdev)
244 {
245 	struct device_node *np = pdev->dev.of_node;
246 	int irq;
247 	int ret;
248 	struct ftm_rtc *rtc;
249 
250 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
251 	if (unlikely(!rtc)) {
252 		dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
253 		return -ENOMEM;
254 	}
255 
256 	platform_set_drvdata(pdev, rtc);
257 
258 	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
259 	if (IS_ERR(rtc->rtc_dev))
260 		return PTR_ERR(rtc->rtc_dev);
261 
262 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
263 	if (IS_ERR(rtc->base)) {
264 		dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
265 		return PTR_ERR(rtc->base);
266 	}
267 
268 	irq = irq_of_parse_and_map(np, 0);
269 	if (irq <= 0) {
270 		dev_err(&pdev->dev, "unable to get IRQ from DT, %d\n", irq);
271 		return -EINVAL;
272 	}
273 
274 	ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
275 			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), rtc);
276 	if (ret < 0) {
277 		dev_err(&pdev->dev, "failed to request irq\n");
278 		return ret;
279 	}
280 
281 	rtc->big_endian = of_property_read_bool(np, "big-endian");
282 	rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
283 	rtc->rtc_dev->ops = &ftm_rtc_ops;
284 
285 	device_init_wakeup(&pdev->dev, true);
286 
287 	ret = rtc_register_device(rtc->rtc_dev);
288 	if (ret) {
289 		dev_err(&pdev->dev, "can't register rtc device\n");
290 		return ret;
291 	}
292 
293 	return 0;
294 }
295 
296 static const struct of_device_id ftm_rtc_match[] = {
297 	{ .compatible = "fsl,ls1012a-ftm-alarm", },
298 	{ .compatible = "fsl,ls1021a-ftm-alarm", },
299 	{ .compatible = "fsl,ls1028a-ftm-alarm", },
300 	{ .compatible = "fsl,ls1043a-ftm-alarm", },
301 	{ .compatible = "fsl,ls1046a-ftm-alarm", },
302 	{ .compatible = "fsl,ls1088a-ftm-alarm", },
303 	{ .compatible = "fsl,ls208xa-ftm-alarm", },
304 	{ .compatible = "fsl,lx2160a-ftm-alarm", },
305 	{ },
306 };
307 
308 static struct platform_driver ftm_rtc_driver = {
309 	.probe		= ftm_rtc_probe,
310 	.driver		= {
311 		.name	= "ftm-alarm",
312 		.of_match_table = ftm_rtc_match,
313 	},
314 };
315 
316 static int __init ftm_alarm_init(void)
317 {
318 	return platform_driver_register(&ftm_rtc_driver);
319 }
320 
321 device_initcall(ftm_alarm_init);
322 
323 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
324 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
325 MODULE_LICENSE("GPL");
326