xref: /linux/drivers/rtc/rtc-fsl-ftm-alarm.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale FlexTimer Module (FTM) alarm device driver.
4  *
5  * Copyright 2014 Freescale Semiconductor, Inc.
6  * Copyright 2019-2020 NXP
7  *
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/module.h>
20 #include <linux/fsl/ftm.h>
21 #include <linux/rtc.h>
22 #include <linux/time.h>
23 #include <linux/acpi.h>
24 #include <linux/pm_wakeirq.h>
25 
26 #define FTM_SC_CLK(c)		((c) << FTM_SC_CLK_MASK_SHIFT)
27 
28 /*
29  * Select Fixed frequency clock (32KHz) as clock source
30  * of FlexTimer Module
31  */
32 #define FTM_SC_CLKS_FIXED_FREQ	0x02
33 #define FIXED_FREQ_CLK		32000
34 
35 /* Select 128 (2^7) as divider factor */
36 #define MAX_FREQ_DIV		(1 << FTM_SC_PS_MASK)
37 
38 /* Maximum counter value in FlexTimer's CNT registers */
39 #define MAX_COUNT_VAL		0xffff
40 
41 struct ftm_rtc {
42 	struct rtc_device *rtc_dev;
43 	void __iomem *base;
44 	bool big_endian;
45 	u32 alarm_freq;
46 };
47 
48 static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
49 {
50 	if (dev->big_endian)
51 		return ioread32be(dev->base + reg);
52 	else
53 		return ioread32(dev->base + reg);
54 }
55 
56 static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
57 {
58 	if (dev->big_endian)
59 		iowrite32be(val, dev->base + reg);
60 	else
61 		iowrite32(val, dev->base + reg);
62 }
63 
64 static inline void ftm_counter_enable(struct ftm_rtc *rtc)
65 {
66 	u32 val;
67 
68 	/* select and enable counter clock source */
69 	val = rtc_readl(rtc, FTM_SC);
70 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
71 	val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
72 	rtc_writel(rtc, FTM_SC, val);
73 }
74 
75 static inline void ftm_counter_disable(struct ftm_rtc *rtc)
76 {
77 	u32 val;
78 
79 	/* disable counter clock source */
80 	val = rtc_readl(rtc, FTM_SC);
81 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
82 	rtc_writel(rtc, FTM_SC, val);
83 }
84 
85 static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
86 {
87 	unsigned int timeout = 100;
88 
89 	/*
90 	 *Fix errata A-007728 for flextimer
91 	 *	If the FTM counter reaches the FTM_MOD value between
92 	 *	the reading of the TOF bit and the writing of 0 to
93 	 *	the TOF bit, the process of clearing the TOF bit
94 	 *	does not work as expected when FTMx_CONF[NUMTOF] != 0
95 	 *	and the current TOF count is less than FTMx_CONF[NUMTOF].
96 	 *	If the above condition is met, the TOF bit remains set.
97 	 *	If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
98 	 *	TOF interrupt also remains asserted.
99 	 *
100 	 *	Above is the errata discription
101 	 *
102 	 *	In one word: software clearing TOF bit not works when
103 	 *	FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
104 	 *	reaches the FTM_MOD value.
105 	 *
106 	 *	The workaround is clearing TOF bit until it works
107 	 *	(FTM counter doesn't always reache the FTM_MOD anyway),
108 	 *	which may cost some cycles.
109 	 */
110 	while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
111 		rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
112 }
113 
114 static inline void ftm_irq_enable(struct ftm_rtc *rtc)
115 {
116 	u32 val;
117 
118 	val = rtc_readl(rtc, FTM_SC);
119 	val |= FTM_SC_TOIE;
120 	rtc_writel(rtc, FTM_SC, val);
121 }
122 
123 static inline void ftm_irq_disable(struct ftm_rtc *rtc)
124 {
125 	u32 val;
126 
127 	val = rtc_readl(rtc, FTM_SC);
128 	val &= ~FTM_SC_TOIE;
129 	rtc_writel(rtc, FTM_SC, val);
130 }
131 
132 static inline void ftm_reset_counter(struct ftm_rtc *rtc)
133 {
134 	/*
135 	 * The CNT register contains the FTM counter value.
136 	 * Reset clears the CNT register. Writing any value to COUNT
137 	 * updates the counter with its initial value, CNTIN.
138 	 */
139 	rtc_writel(rtc, FTM_CNT, 0x00);
140 }
141 
142 static void ftm_clean_alarm(struct ftm_rtc *rtc)
143 {
144 	ftm_counter_disable(rtc);
145 
146 	rtc_writel(rtc, FTM_CNTIN, 0x00);
147 	rtc_writel(rtc, FTM_MOD, ~0U);
148 
149 	ftm_reset_counter(rtc);
150 }
151 
152 static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
153 {
154 	struct ftm_rtc *rtc = dev;
155 
156 	rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
157 
158 	ftm_irq_acknowledge(rtc);
159 	ftm_irq_disable(rtc);
160 	ftm_clean_alarm(rtc);
161 
162 	return IRQ_HANDLED;
163 }
164 
165 static int ftm_rtc_alarm_irq_enable(struct device *dev,
166 		unsigned int enabled)
167 {
168 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
169 
170 	if (enabled)
171 		ftm_irq_enable(rtc);
172 	else
173 		ftm_irq_disable(rtc);
174 
175 	return 0;
176 }
177 
178 /*
179  * Note:
180  *	The function is not really getting time from the RTC
181  *	since FlexTimer is not a RTC device, but we need to
182  *	get time to setup alarm, so we are using system time
183  *	for now.
184  */
185 static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
186 {
187 	rtc_time64_to_tm(ktime_get_real_seconds(), tm);
188 
189 	return 0;
190 }
191 
192 static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
193 {
194 	return 0;
195 }
196 
197 /*
198  * 1. Select fixed frequency clock (32KHz) as clock source;
199  * 2. Select 128 (2^7) as divider factor;
200  * So clock is 250 Hz (32KHz/128).
201  *
202  * 3. FlexTimer's CNT register is a 32bit register,
203  * but the register's 16 bit as counter value,it's other 16 bit
204  * is reserved.So minimum counter value is 0x0,maximum counter
205  * value is 0xffff.
206  * So max alarm value is 262 (65536 / 250) seconds
207  */
208 static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
209 {
210 	time64_t alm_time;
211 	unsigned long long cycle;
212 	struct ftm_rtc *rtc = dev_get_drvdata(dev);
213 
214 	alm_time = rtc_tm_to_time64(&alm->time);
215 
216 	ftm_clean_alarm(rtc);
217 	cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
218 	if (cycle > MAX_COUNT_VAL) {
219 		pr_err("Out of alarm range {0~262} seconds.\n");
220 		return -ERANGE;
221 	}
222 
223 	ftm_irq_disable(rtc);
224 
225 	/*
226 	 * The counter increments until the value of MOD is reached,
227 	 * at which point the counter is reloaded with the value of CNTIN.
228 	 * The TOF (the overflow flag) bit is set when the FTM counter
229 	 * changes from MOD to CNTIN. So we should using the cycle - 1.
230 	 */
231 	rtc_writel(rtc, FTM_MOD, cycle - 1);
232 
233 	ftm_counter_enable(rtc);
234 	ftm_irq_enable(rtc);
235 
236 	return 0;
237 
238 }
239 
240 static const struct rtc_class_ops ftm_rtc_ops = {
241 	.read_time		= ftm_rtc_read_time,
242 	.read_alarm		= ftm_rtc_read_alarm,
243 	.set_alarm		= ftm_rtc_set_alarm,
244 	.alarm_irq_enable	= ftm_rtc_alarm_irq_enable,
245 };
246 
247 static int ftm_rtc_probe(struct platform_device *pdev)
248 {
249 	int irq;
250 	int ret;
251 	struct ftm_rtc *rtc;
252 
253 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
254 	if (unlikely(!rtc)) {
255 		dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
256 		return -ENOMEM;
257 	}
258 
259 	platform_set_drvdata(pdev, rtc);
260 
261 	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
262 	if (IS_ERR(rtc->rtc_dev))
263 		return PTR_ERR(rtc->rtc_dev);
264 
265 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
266 	if (IS_ERR(rtc->base)) {
267 		dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
268 		return PTR_ERR(rtc->base);
269 	}
270 
271 	irq = platform_get_irq(pdev, 0);
272 	if (irq < 0)
273 		return irq;
274 
275 	ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
276 			       0, dev_name(&pdev->dev), rtc);
277 	if (ret < 0) {
278 		dev_err(&pdev->dev, "failed to request irq\n");
279 		return ret;
280 	}
281 
282 	rtc->big_endian =
283 		device_property_read_bool(&pdev->dev, "big-endian");
284 
285 	rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
286 	rtc->rtc_dev->ops = &ftm_rtc_ops;
287 
288 	device_init_wakeup(&pdev->dev, true);
289 	ret = dev_pm_set_wake_irq(&pdev->dev, irq);
290 	if (ret)
291 		dev_err(&pdev->dev, "failed to enable irq wake\n");
292 
293 	ret = devm_rtc_register_device(rtc->rtc_dev);
294 	if (ret) {
295 		dev_err(&pdev->dev, "can't register rtc device\n");
296 		return ret;
297 	}
298 
299 	return 0;
300 }
301 
302 static const struct of_device_id ftm_rtc_match[] = {
303 	{ .compatible = "fsl,ls1012a-ftm-alarm", },
304 	{ .compatible = "fsl,ls1021a-ftm-alarm", },
305 	{ .compatible = "fsl,ls1028a-ftm-alarm", },
306 	{ .compatible = "fsl,ls1043a-ftm-alarm", },
307 	{ .compatible = "fsl,ls1046a-ftm-alarm", },
308 	{ .compatible = "fsl,ls1088a-ftm-alarm", },
309 	{ .compatible = "fsl,ls208xa-ftm-alarm", },
310 	{ .compatible = "fsl,lx2160a-ftm-alarm", },
311 	{ },
312 };
313 
314 static const struct acpi_device_id ftm_imx_acpi_ids[] = {
315 	{"NXP0014",},
316 	{ }
317 };
318 MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
319 
320 static struct platform_driver ftm_rtc_driver = {
321 	.probe		= ftm_rtc_probe,
322 	.driver		= {
323 		.name	= "ftm-alarm",
324 		.of_match_table = ftm_rtc_match,
325 		.acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
326 	},
327 };
328 
329 static int __init ftm_alarm_init(void)
330 {
331 	return platform_driver_register(&ftm_rtc_driver);
332 }
333 
334 device_initcall(ftm_alarm_init);
335 
336 MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
337 MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
338 MODULE_LICENSE("GPL");
339