xref: /linux/drivers/rtc/rtc-ds1305.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3  *
4  * Copyright (C) 2008 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/rtc.h>
15 #include <linux/workqueue.h>
16 
17 #include <linux/spi/spi.h>
18 #include <linux/spi/ds1305.h>
19 
20 
21 /*
22  * Registers ... mask DS1305_WRITE into register address to write,
23  * otherwise you're reading it.  All non-bitmask values are BCD.
24  */
25 #define DS1305_WRITE		0x80
26 
27 
28 /* RTC date/time ... the main special cases are that we:
29  *  - Need fancy "hours" encoding in 12hour mode
30  *  - Don't rely on the "day-of-week" field (or tm_wday)
31  *  - Are a 21st-century clock (2000 <= year < 2100)
32  */
33 #define DS1305_RTC_LEN		7		/* bytes for RTC regs */
34 
35 #define DS1305_SEC		0x00		/* register addresses */
36 #define DS1305_MIN		0x01
37 #define DS1305_HOUR		0x02
38 #	define DS1305_HR_12		0x40	/* set == 12 hr mode */
39 #	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
40 #define DS1305_WDAY		0x03
41 #define DS1305_MDAY		0x04
42 #define DS1305_MON		0x05
43 #define DS1305_YEAR		0x06
44 
45 
46 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
47  * DS1305_ALM_DISABLE disables a match field (some combos are bad).
48  *
49  * NOTE that since we don't use WDAY, we limit ourselves to alarms
50  * only one day into the future (vs potentially up to a week).
51  *
52  * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
53  * don't currently support them.  We'd either need to do it only when
54  * no alarm is pending (not the standard model), or to use the second
55  * alarm (implying that this is a DS1305 not DS1306, *and* that either
56  * it's wired up a second IRQ we know, or that INTCN is set)
57  */
58 #define DS1305_ALM_LEN		4		/* bytes for ALM regs */
59 #define DS1305_ALM_DISABLE	0x80
60 
61 #define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
62 #define DS1305_ALM1(r)		(0x0b + (r))
63 
64 
65 /* three control registers */
66 #define DS1305_CONTROL_LEN	3		/* bytes of control regs */
67 
68 #define DS1305_CONTROL		0x0f		/* register addresses */
69 #	define DS1305_nEOSC		0x80	/* low enables oscillator */
70 #	define DS1305_WP		0x40	/* write protect */
71 #	define DS1305_INTCN		0x04	/* clear == only int0 used */
72 #	define DS1306_1HZ		0x04	/* enable 1Hz output */
73 #	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
74 #	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
75 #define DS1305_STATUS		0x10
76 /* status has just AEIx bits, mirrored as IRQFx */
77 #define DS1305_TRICKLE		0x11
78 /* trickle bits are defined in <linux/spi/ds1305.h> */
79 
80 /* a bunch of NVRAM */
81 #define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
82 
83 #define DS1305_NVRAM		0x20		/* register addresses */
84 
85 
86 struct ds1305 {
87 	struct spi_device	*spi;
88 	struct rtc_device	*rtc;
89 
90 	struct work_struct	work;
91 
92 	unsigned long		flags;
93 #define FLAG_EXITING	0
94 
95 	bool			hr12;
96 	u8			ctrl[DS1305_CONTROL_LEN];
97 };
98 
99 
100 /*----------------------------------------------------------------------*/
101 
102 /*
103  * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
104  * software (like a bootloader) which may require it.
105  */
106 
107 static unsigned bcd2hour(u8 bcd)
108 {
109 	if (bcd & DS1305_HR_12) {
110 		unsigned	hour = 0;
111 
112 		bcd &= ~DS1305_HR_12;
113 		if (bcd & DS1305_HR_PM) {
114 			hour = 12;
115 			bcd &= ~DS1305_HR_PM;
116 		}
117 		hour += bcd2bin(bcd);
118 		return hour - 1;
119 	}
120 	return bcd2bin(bcd);
121 }
122 
123 static u8 hour2bcd(bool hr12, int hour)
124 {
125 	if (hr12) {
126 		hour++;
127 		if (hour <= 12)
128 			return DS1305_HR_12 | bin2bcd(hour);
129 		hour -= 12;
130 		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
131 	}
132 	return bin2bcd(hour);
133 }
134 
135 /*----------------------------------------------------------------------*/
136 
137 /*
138  * Interface to RTC framework
139  */
140 
141 #ifdef CONFIG_RTC_INTF_DEV
142 
143 /*
144  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
145  */
146 static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
147 {
148 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
149 	u8		buf[2];
150 	int		status = -ENOIOCTLCMD;
151 
152 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
153 	buf[1] = ds1305->ctrl[0];
154 
155 	switch (cmd) {
156 	case RTC_AIE_OFF:
157 		status = 0;
158 		if (!(buf[1] & DS1305_AEI0))
159 			goto done;
160 		buf[1] &= ~DS1305_AEI0;
161 		break;
162 
163 	case RTC_AIE_ON:
164 		status = 0;
165 		if (ds1305->ctrl[0] & DS1305_AEI0)
166 			goto done;
167 		buf[1] |= DS1305_AEI0;
168 		break;
169 	}
170 	if (status == 0) {
171 		status = spi_write_then_read(ds1305->spi, buf, sizeof buf,
172 				NULL, 0);
173 		if (status >= 0)
174 			ds1305->ctrl[0] = buf[1];
175 	}
176 
177 done:
178 	return status;
179 }
180 
181 #else
182 #define ds1305_ioctl	NULL
183 #endif
184 
185 /*
186  * Get/set of date and time is pretty normal.
187  */
188 
189 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
190 {
191 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
192 	u8		addr = DS1305_SEC;
193 	u8		buf[DS1305_RTC_LEN];
194 	int		status;
195 
196 	/* Use write-then-read to get all the date/time registers
197 	 * since dma from stack is nonportable
198 	 */
199 	status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
200 			buf, sizeof buf);
201 	if (status < 0)
202 		return status;
203 
204 	dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
205 		"read", buf[0], buf[1], buf[2], buf[3],
206 		buf[4], buf[5], buf[6]);
207 
208 	/* Decode the registers */
209 	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
210 	time->tm_min = bcd2bin(buf[DS1305_MIN]);
211 	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
212 	time->tm_wday = buf[DS1305_WDAY] - 1;
213 	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
214 	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
215 	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
216 
217 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
218 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219 		"read", time->tm_sec, time->tm_min,
220 		time->tm_hour, time->tm_mday,
221 		time->tm_mon, time->tm_year, time->tm_wday);
222 
223 	/* Time may not be set */
224 	return rtc_valid_tm(time);
225 }
226 
227 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
228 {
229 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
230 	u8		buf[1 + DS1305_RTC_LEN];
231 	u8		*bp = buf;
232 
233 	dev_vdbg(dev, "%s secs=%d, mins=%d, "
234 		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
235 		"write", time->tm_sec, time->tm_min,
236 		time->tm_hour, time->tm_mday,
237 		time->tm_mon, time->tm_year, time->tm_wday);
238 
239 	/* Write registers starting at the first time/date address. */
240 	*bp++ = DS1305_WRITE | DS1305_SEC;
241 
242 	*bp++ = bin2bcd(time->tm_sec);
243 	*bp++ = bin2bcd(time->tm_min);
244 	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
245 	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
246 	*bp++ = bin2bcd(time->tm_mday);
247 	*bp++ = bin2bcd(time->tm_mon + 1);
248 	*bp++ = bin2bcd(time->tm_year - 100);
249 
250 	dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
251 		"write", buf[1], buf[2], buf[3],
252 		buf[4], buf[5], buf[6], buf[7]);
253 
254 	/* use write-then-read since dma from stack is nonportable */
255 	return spi_write_then_read(ds1305->spi, buf, sizeof buf,
256 			NULL, 0);
257 }
258 
259 /*
260  * Get/set of alarm is a bit funky:
261  *
262  * - First there's the inherent raciness of getting the (partitioned)
263  *   status of an alarm that could trigger while we're reading parts
264  *   of that status.
265  *
266  * - Second there's its limited range (we could increase it a bit by
267  *   relying on WDAY), which means it will easily roll over.
268  *
269  * - Third there's the choice of two alarms and alarm signals.
270  *   Here we use ALM0 and expect that nINT0 (open drain) is used;
271  *   that's the only real option for DS1306 runtime alarms, and is
272  *   natural on DS1305.
273  *
274  * - Fourth, there's also ALM1, and a second interrupt signal:
275  *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
276  *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
277  *       and it won't work when VCC1 is active.
278  *
279  *   So to be most general, we should probably set both alarms to the
280  *   same value, letting ALM1 be the wakeup event source on DS1306
281  *   and handling several wiring options on DS1305.
282  *
283  * - Fifth, we support the polled mode (as well as possible; why not?)
284  *   even when no interrupt line is wired to an IRQ.
285  */
286 
287 /*
288  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
289  */
290 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
291 {
292 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
293 	struct spi_device *spi = ds1305->spi;
294 	u8		addr;
295 	int		status;
296 	u8		buf[DS1305_ALM_LEN];
297 
298 	/* Refresh control register cache BEFORE reading ALM0 registers,
299 	 * since reading alarm registers acks any pending IRQ.  That
300 	 * makes returning "pending" status a bit of a lie, but that bit
301 	 * of EFI status is at best fragile anyway (given IRQ handlers).
302 	 */
303 	addr = DS1305_CONTROL;
304 	status = spi_write_then_read(spi, &addr, sizeof addr,
305 			ds1305->ctrl, sizeof ds1305->ctrl);
306 	if (status < 0)
307 		return status;
308 
309 	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
310 	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
311 
312 	/* get and check ALM0 registers */
313 	addr = DS1305_ALM0(DS1305_SEC);
314 	status = spi_write_then_read(spi, &addr, sizeof addr,
315 			buf, sizeof buf);
316 	if (status < 0)
317 		return status;
318 
319 	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
320 		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
321 		buf[DS1305_HOUR], buf[DS1305_WDAY]);
322 
323 	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
324 			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
325 			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
326 		return -EIO;
327 
328 	/* Stuff these values into alm->time and let RTC framework code
329 	 * fill in the rest ... and also handle rollover to tomorrow when
330 	 * that's needed.
331 	 */
332 	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
333 	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
334 	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
335 	alm->time.tm_mday = -1;
336 	alm->time.tm_mon = -1;
337 	alm->time.tm_year = -1;
338 	/* next three fields are unused by Linux */
339 	alm->time.tm_wday = -1;
340 	alm->time.tm_mday = -1;
341 	alm->time.tm_isdst = -1;
342 
343 	return 0;
344 }
345 
346 /*
347  * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
348  */
349 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
350 {
351 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
352 	struct spi_device *spi = ds1305->spi;
353 	unsigned long	now, later;
354 	struct rtc_time	tm;
355 	int		status;
356 	u8		buf[1 + DS1305_ALM_LEN];
357 
358 	/* convert desired alarm to time_t */
359 	status = rtc_tm_to_time(&alm->time, &later);
360 	if (status < 0)
361 		return status;
362 
363 	/* Read current time as time_t */
364 	status = ds1305_get_time(dev, &tm);
365 	if (status < 0)
366 		return status;
367 	status = rtc_tm_to_time(&tm, &now);
368 	if (status < 0)
369 		return status;
370 
371 	/* make sure alarm fires within the next 24 hours */
372 	if (later <= now)
373 		return -EINVAL;
374 	if ((later - now) > 24 * 60 * 60)
375 		return -EDOM;
376 
377 	/* disable alarm if needed */
378 	if (ds1305->ctrl[0] & DS1305_AEI0) {
379 		ds1305->ctrl[0] &= ~DS1305_AEI0;
380 
381 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
382 		buf[1] = ds1305->ctrl[0];
383 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
384 		if (status < 0)
385 			return status;
386 	}
387 
388 	/* write alarm */
389 	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
390 	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
391 	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
392 	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
393 	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
394 
395 	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
396 		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
397 		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
398 
399 	status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
400 	if (status < 0)
401 		return status;
402 
403 	/* enable alarm if requested */
404 	if (alm->enabled) {
405 		ds1305->ctrl[0] |= DS1305_AEI0;
406 
407 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
408 		buf[1] = ds1305->ctrl[0];
409 		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
410 	}
411 
412 	return status;
413 }
414 
415 #ifdef CONFIG_PROC_FS
416 
417 static int ds1305_proc(struct device *dev, struct seq_file *seq)
418 {
419 	struct ds1305	*ds1305 = dev_get_drvdata(dev);
420 	char		*diodes = "no";
421 	char		*resistors = "";
422 
423 	/* ctrl[2] is treated as read-only; no locking needed */
424 	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
425 		switch (ds1305->ctrl[2] & 0x0c) {
426 		case DS1305_TRICKLE_DS2:
427 			diodes = "2 diodes, ";
428 			break;
429 		case DS1305_TRICKLE_DS1:
430 			diodes = "1 diode, ";
431 			break;
432 		default:
433 			goto done;
434 		}
435 		switch (ds1305->ctrl[2] & 0x03) {
436 		case DS1305_TRICKLE_2K:
437 			resistors = "2k Ohm";
438 			break;
439 		case DS1305_TRICKLE_4K:
440 			resistors = "4k Ohm";
441 			break;
442 		case DS1305_TRICKLE_8K:
443 			resistors = "8k Ohm";
444 			break;
445 		default:
446 			diodes = "no";
447 			break;
448 		}
449 	}
450 
451 done:
452 	return seq_printf(seq,
453 			"trickle_charge\t: %s%s\n",
454 			diodes, resistors);
455 }
456 
457 #else
458 #define ds1305_proc	NULL
459 #endif
460 
461 static const struct rtc_class_ops ds1305_ops = {
462 	.ioctl		= ds1305_ioctl,
463 	.read_time	= ds1305_get_time,
464 	.set_time	= ds1305_set_time,
465 	.read_alarm	= ds1305_get_alarm,
466 	.set_alarm	= ds1305_set_alarm,
467 	.proc		= ds1305_proc,
468 };
469 
470 static void ds1305_work(struct work_struct *work)
471 {
472 	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
473 	struct mutex	*lock = &ds1305->rtc->ops_lock;
474 	struct spi_device *spi = ds1305->spi;
475 	u8		buf[3];
476 	int		status;
477 
478 	/* lock to protect ds1305->ctrl */
479 	mutex_lock(lock);
480 
481 	/* Disable the IRQ, and clear its status ... for now, we "know"
482 	 * that if more than one alarm is active, they're in sync.
483 	 * Note that reading ALM data registers also clears IRQ status.
484 	 */
485 	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
486 	ds1305->ctrl[1] = 0;
487 
488 	buf[0] = DS1305_WRITE | DS1305_CONTROL;
489 	buf[1] = ds1305->ctrl[0];
490 	buf[2] = 0;
491 
492 	status = spi_write_then_read(spi, buf, sizeof buf,
493 			NULL, 0);
494 	if (status < 0)
495 		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
496 
497 	mutex_unlock(lock);
498 
499 	if (!test_bit(FLAG_EXITING, &ds1305->flags))
500 		enable_irq(spi->irq);
501 
502 	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
503 }
504 
505 /*
506  * This "real" IRQ handler hands off to a workqueue mostly to allow
507  * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
508  * I/O requests in IRQ context (to clear the IRQ status).
509  */
510 static irqreturn_t ds1305_irq(int irq, void *p)
511 {
512 	struct ds1305		*ds1305 = p;
513 
514 	disable_irq(irq);
515 	schedule_work(&ds1305->work);
516 	return IRQ_HANDLED;
517 }
518 
519 /*----------------------------------------------------------------------*/
520 
521 /*
522  * Interface for NVRAM
523  */
524 
525 static void msg_init(struct spi_message *m, struct spi_transfer *x,
526 		u8 *addr, size_t count, char *tx, char *rx)
527 {
528 	spi_message_init(m);
529 	memset(x, 0, 2 * sizeof(*x));
530 
531 	x->tx_buf = addr;
532 	x->len = 1;
533 	spi_message_add_tail(x, m);
534 
535 	x++;
536 
537 	x->tx_buf = tx;
538 	x->rx_buf = rx;
539 	x->len = count;
540 	spi_message_add_tail(x, m);
541 }
542 
543 static ssize_t
544 ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
545 		char *buf, loff_t off, size_t count)
546 {
547 	struct spi_device	*spi;
548 	u8			addr;
549 	struct spi_message	m;
550 	struct spi_transfer	x[2];
551 	int			status;
552 
553 	spi = container_of(kobj, struct spi_device, dev.kobj);
554 
555 	if (unlikely(off >= DS1305_NVRAM_LEN))
556 		return 0;
557 	if (count >= DS1305_NVRAM_LEN)
558 		count = DS1305_NVRAM_LEN;
559 	if ((off + count) > DS1305_NVRAM_LEN)
560 		count = DS1305_NVRAM_LEN - off;
561 	if (unlikely(!count))
562 		return count;
563 
564 	addr = DS1305_NVRAM + off;
565 	msg_init(&m, x, &addr, count, NULL, buf);
566 
567 	status = spi_sync(spi, &m);
568 	if (status < 0)
569 		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
570 	return (status < 0) ? status : count;
571 }
572 
573 static ssize_t
574 ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
575 		char *buf, loff_t off, size_t count)
576 {
577 	struct spi_device	*spi;
578 	u8			addr;
579 	struct spi_message	m;
580 	struct spi_transfer	x[2];
581 	int			status;
582 
583 	spi = container_of(kobj, struct spi_device, dev.kobj);
584 
585 	if (unlikely(off >= DS1305_NVRAM_LEN))
586 		return -EFBIG;
587 	if (count >= DS1305_NVRAM_LEN)
588 		count = DS1305_NVRAM_LEN;
589 	if ((off + count) > DS1305_NVRAM_LEN)
590 		count = DS1305_NVRAM_LEN - off;
591 	if (unlikely(!count))
592 		return count;
593 
594 	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
595 	msg_init(&m, x, &addr, count, buf, NULL);
596 
597 	status = spi_sync(spi, &m);
598 	if (status < 0)
599 		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
600 	return (status < 0) ? status : count;
601 }
602 
603 static struct bin_attribute nvram = {
604 	.attr.name	= "nvram",
605 	.attr.mode	= S_IRUGO | S_IWUSR,
606 	.read		= ds1305_nvram_read,
607 	.write		= ds1305_nvram_write,
608 	.size		= DS1305_NVRAM_LEN,
609 };
610 
611 /*----------------------------------------------------------------------*/
612 
613 /*
614  * Interface to SPI stack
615  */
616 
617 static int __devinit ds1305_probe(struct spi_device *spi)
618 {
619 	struct ds1305			*ds1305;
620 	struct rtc_device		*rtc;
621 	int				status;
622 	u8				addr, value;
623 	struct ds1305_platform_data	*pdata = spi->dev.platform_data;
624 	bool				write_ctrl = false;
625 
626 	/* Sanity check board setup data.  This may be hooked up
627 	 * in 3wire mode, but we don't care.  Note that unless
628 	 * there's an inverter in place, this needs SPI_CS_HIGH!
629 	 */
630 	if ((spi->bits_per_word && spi->bits_per_word != 8)
631 			|| (spi->max_speed_hz > 2000000)
632 			|| !(spi->mode & SPI_CPHA))
633 		return -EINVAL;
634 
635 	/* set up driver data */
636 	ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
637 	if (!ds1305)
638 		return -ENOMEM;
639 	ds1305->spi = spi;
640 	spi_set_drvdata(spi, ds1305);
641 
642 	/* read and cache control registers */
643 	addr = DS1305_CONTROL;
644 	status = spi_write_then_read(spi, &addr, sizeof addr,
645 			ds1305->ctrl, sizeof ds1305->ctrl);
646 	if (status < 0) {
647 		dev_dbg(&spi->dev, "can't %s, %d\n",
648 				"read", status);
649 		goto fail0;
650 	}
651 
652 	dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
653 			"read", ds1305->ctrl[0],
654 			ds1305->ctrl[1], ds1305->ctrl[2]);
655 
656 	/* Sanity check register values ... partially compensating for the
657 	 * fact that SPI has no device handshake.  A pullup on MISO would
658 	 * make these tests fail; but not all systems will have one.  If
659 	 * some register is neither 0x00 nor 0xff, a chip is likely there.
660 	 */
661 	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
662 		dev_dbg(&spi->dev, "RTC chip is not present\n");
663 		status = -ENODEV;
664 		goto fail0;
665 	}
666 	if (ds1305->ctrl[2] == 0)
667 		dev_dbg(&spi->dev, "chip may not be present\n");
668 
669 	/* enable writes if needed ... if we were paranoid it would
670 	 * make sense to enable them only when absolutely necessary.
671 	 */
672 	if (ds1305->ctrl[0] & DS1305_WP) {
673 		u8		buf[2];
674 
675 		ds1305->ctrl[0] &= ~DS1305_WP;
676 
677 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
678 		buf[1] = ds1305->ctrl[0];
679 		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
680 
681 		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
682 		if (status < 0)
683 			goto fail0;
684 	}
685 
686 	/* on DS1305, maybe start oscillator; like most low power
687 	 * oscillators, it may take a second to stabilize
688 	 */
689 	if (ds1305->ctrl[0] & DS1305_nEOSC) {
690 		ds1305->ctrl[0] &= ~DS1305_nEOSC;
691 		write_ctrl = true;
692 		dev_warn(&spi->dev, "SET TIME!\n");
693 	}
694 
695 	/* ack any pending IRQs */
696 	if (ds1305->ctrl[1]) {
697 		ds1305->ctrl[1] = 0;
698 		write_ctrl = true;
699 	}
700 
701 	/* this may need one-time (re)init */
702 	if (pdata) {
703 		/* maybe enable trickle charge */
704 		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
705 			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
706 						| pdata->trickle;
707 			write_ctrl = true;
708 		}
709 
710 		/* on DS1306, configure 1 Hz signal */
711 		if (pdata->is_ds1306) {
712 			if (pdata->en_1hz) {
713 				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
714 					ds1305->ctrl[0] |= DS1306_1HZ;
715 					write_ctrl = true;
716 				}
717 			} else {
718 				if (ds1305->ctrl[0] & DS1306_1HZ) {
719 					ds1305->ctrl[0] &= ~DS1306_1HZ;
720 					write_ctrl = true;
721 				}
722 			}
723 		}
724 	}
725 
726 	if (write_ctrl) {
727 		u8		buf[4];
728 
729 		buf[0] = DS1305_WRITE | DS1305_CONTROL;
730 		buf[1] = ds1305->ctrl[0];
731 		buf[2] = ds1305->ctrl[1];
732 		buf[3] = ds1305->ctrl[2];
733 		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
734 		if (status < 0) {
735 			dev_dbg(&spi->dev, "can't %s, %d\n",
736 					"write", status);
737 			goto fail0;
738 		}
739 
740 		dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
741 				"write", ds1305->ctrl[0],
742 				ds1305->ctrl[1], ds1305->ctrl[2]);
743 	}
744 
745 	/* see if non-Linux software set up AM/PM mode */
746 	addr = DS1305_HOUR;
747 	status = spi_write_then_read(spi, &addr, sizeof addr,
748 				&value, sizeof value);
749 	if (status < 0) {
750 		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
751 		goto fail0;
752 	}
753 
754 	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
755 	if (ds1305->hr12)
756 		dev_dbg(&spi->dev, "AM/PM\n");
757 
758 	/* register RTC ... from here on, ds1305->ctrl needs locking */
759 	rtc = rtc_device_register("ds1305", &spi->dev,
760 			&ds1305_ops, THIS_MODULE);
761 	if (IS_ERR(rtc)) {
762 		status = PTR_ERR(rtc);
763 		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
764 		goto fail0;
765 	}
766 	ds1305->rtc = rtc;
767 
768 	/* Maybe set up alarm IRQ; be ready to handle it triggering right
769 	 * away.  NOTE that we don't share this.  The signal is active low,
770 	 * and we can't ack it before a SPI message delay.  We temporarily
771 	 * disable the IRQ until it's acked, which lets us work with more
772 	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
773 	 */
774 	if (spi->irq) {
775 		INIT_WORK(&ds1305->work, ds1305_work);
776 		status = request_irq(spi->irq, ds1305_irq,
777 				0, dev_name(&rtc->dev), ds1305);
778 		if (status < 0) {
779 			dev_dbg(&spi->dev, "request_irq %d --> %d\n",
780 					spi->irq, status);
781 			goto fail1;
782 		}
783 	}
784 
785 	/* export NVRAM */
786 	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
787 	if (status < 0) {
788 		dev_dbg(&spi->dev, "register nvram --> %d\n", status);
789 		goto fail2;
790 	}
791 
792 	return 0;
793 
794 fail2:
795 	free_irq(spi->irq, ds1305);
796 fail1:
797 	rtc_device_unregister(rtc);
798 fail0:
799 	kfree(ds1305);
800 	return status;
801 }
802 
803 static int __devexit ds1305_remove(struct spi_device *spi)
804 {
805 	struct ds1305	*ds1305 = spi_get_drvdata(spi);
806 
807 	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
808 
809 	/* carefully shut down irq and workqueue, if present */
810 	if (spi->irq) {
811 		set_bit(FLAG_EXITING, &ds1305->flags);
812 		free_irq(spi->irq, ds1305);
813 		flush_scheduled_work();
814 	}
815 
816 	rtc_device_unregister(ds1305->rtc);
817 	spi_set_drvdata(spi, NULL);
818 	kfree(ds1305);
819 	return 0;
820 }
821 
822 static struct spi_driver ds1305_driver = {
823 	.driver.name	= "rtc-ds1305",
824 	.driver.owner	= THIS_MODULE,
825 	.probe		= ds1305_probe,
826 	.remove		= __devexit_p(ds1305_remove),
827 	/* REVISIT add suspend/resume */
828 };
829 
830 static int __init ds1305_init(void)
831 {
832 	return spi_register_driver(&ds1305_driver);
833 }
834 module_init(ds1305_init);
835 
836 static void __exit ds1305_exit(void)
837 {
838 	spi_unregister_driver(&ds1305_driver);
839 }
840 module_exit(ds1305_exit);
841 
842 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
843 MODULE_LICENSE("GPL");
844 MODULE_ALIAS("spi:rtc-ds1305");
845