1 /* 2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips 3 * 4 * Copyright (C) 2008 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/bcd.h> 14 #include <linux/slab.h> 15 #include <linux/rtc.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/spi/spi.h> 19 #include <linux/spi/ds1305.h> 20 21 22 /* 23 * Registers ... mask DS1305_WRITE into register address to write, 24 * otherwise you're reading it. All non-bitmask values are BCD. 25 */ 26 #define DS1305_WRITE 0x80 27 28 29 /* RTC date/time ... the main special cases are that we: 30 * - Need fancy "hours" encoding in 12hour mode 31 * - Don't rely on the "day-of-week" field (or tm_wday) 32 * - Are a 21st-century clock (2000 <= year < 2100) 33 */ 34 #define DS1305_RTC_LEN 7 /* bytes for RTC regs */ 35 36 #define DS1305_SEC 0x00 /* register addresses */ 37 #define DS1305_MIN 0x01 38 #define DS1305_HOUR 0x02 39 # define DS1305_HR_12 0x40 /* set == 12 hr mode */ 40 # define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */ 41 #define DS1305_WDAY 0x03 42 #define DS1305_MDAY 0x04 43 #define DS1305_MON 0x05 44 #define DS1305_YEAR 0x06 45 46 47 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN). 48 * DS1305_ALM_DISABLE disables a match field (some combos are bad). 49 * 50 * NOTE that since we don't use WDAY, we limit ourselves to alarms 51 * only one day into the future (vs potentially up to a week). 52 * 53 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we 54 * don't currently support them. We'd either need to do it only when 55 * no alarm is pending (not the standard model), or to use the second 56 * alarm (implying that this is a DS1305 not DS1306, *and* that either 57 * it's wired up a second IRQ we know, or that INTCN is set) 58 */ 59 #define DS1305_ALM_LEN 4 /* bytes for ALM regs */ 60 #define DS1305_ALM_DISABLE 0x80 61 62 #define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */ 63 #define DS1305_ALM1(r) (0x0b + (r)) 64 65 66 /* three control registers */ 67 #define DS1305_CONTROL_LEN 3 /* bytes of control regs */ 68 69 #define DS1305_CONTROL 0x0f /* register addresses */ 70 # define DS1305_nEOSC 0x80 /* low enables oscillator */ 71 # define DS1305_WP 0x40 /* write protect */ 72 # define DS1305_INTCN 0x04 /* clear == only int0 used */ 73 # define DS1306_1HZ 0x04 /* enable 1Hz output */ 74 # define DS1305_AEI1 0x02 /* enable ALM1 IRQ */ 75 # define DS1305_AEI0 0x01 /* enable ALM0 IRQ */ 76 #define DS1305_STATUS 0x10 77 /* status has just AEIx bits, mirrored as IRQFx */ 78 #define DS1305_TRICKLE 0x11 79 /* trickle bits are defined in <linux/spi/ds1305.h> */ 80 81 /* a bunch of NVRAM */ 82 #define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */ 83 84 #define DS1305_NVRAM 0x20 /* register addresses */ 85 86 87 struct ds1305 { 88 struct spi_device *spi; 89 struct rtc_device *rtc; 90 91 struct work_struct work; 92 93 unsigned long flags; 94 #define FLAG_EXITING 0 95 96 bool hr12; 97 u8 ctrl[DS1305_CONTROL_LEN]; 98 }; 99 100 101 /*----------------------------------------------------------------------*/ 102 103 /* 104 * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux 105 * software (like a bootloader) which may require it. 106 */ 107 108 static unsigned bcd2hour(u8 bcd) 109 { 110 if (bcd & DS1305_HR_12) { 111 unsigned hour = 0; 112 113 bcd &= ~DS1305_HR_12; 114 if (bcd & DS1305_HR_PM) { 115 hour = 12; 116 bcd &= ~DS1305_HR_PM; 117 } 118 hour += bcd2bin(bcd); 119 return hour - 1; 120 } 121 return bcd2bin(bcd); 122 } 123 124 static u8 hour2bcd(bool hr12, int hour) 125 { 126 if (hr12) { 127 hour++; 128 if (hour <= 12) 129 return DS1305_HR_12 | bin2bcd(hour); 130 hour -= 12; 131 return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour); 132 } 133 return bin2bcd(hour); 134 } 135 136 /*----------------------------------------------------------------------*/ 137 138 /* 139 * Interface to RTC framework 140 */ 141 142 #ifdef CONFIG_RTC_INTF_DEV 143 144 /* 145 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) 146 */ 147 static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg) 148 { 149 struct ds1305 *ds1305 = dev_get_drvdata(dev); 150 u8 buf[2]; 151 int status = -ENOIOCTLCMD; 152 153 buf[0] = DS1305_WRITE | DS1305_CONTROL; 154 buf[1] = ds1305->ctrl[0]; 155 156 switch (cmd) { 157 case RTC_AIE_OFF: 158 status = 0; 159 if (!(buf[1] & DS1305_AEI0)) 160 goto done; 161 buf[1] &= ~DS1305_AEI0; 162 break; 163 164 case RTC_AIE_ON: 165 status = 0; 166 if (ds1305->ctrl[0] & DS1305_AEI0) 167 goto done; 168 buf[1] |= DS1305_AEI0; 169 break; 170 } 171 if (status == 0) { 172 status = spi_write_then_read(ds1305->spi, buf, sizeof buf, 173 NULL, 0); 174 if (status >= 0) 175 ds1305->ctrl[0] = buf[1]; 176 } 177 178 done: 179 return status; 180 } 181 182 #else 183 #define ds1305_ioctl NULL 184 #endif 185 186 /* 187 * Get/set of date and time is pretty normal. 188 */ 189 190 static int ds1305_get_time(struct device *dev, struct rtc_time *time) 191 { 192 struct ds1305 *ds1305 = dev_get_drvdata(dev); 193 u8 addr = DS1305_SEC; 194 u8 buf[DS1305_RTC_LEN]; 195 int status; 196 197 /* Use write-then-read to get all the date/time registers 198 * since dma from stack is nonportable 199 */ 200 status = spi_write_then_read(ds1305->spi, &addr, sizeof addr, 201 buf, sizeof buf); 202 if (status < 0) 203 return status; 204 205 dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", 206 "read", buf[0], buf[1], buf[2], buf[3], 207 buf[4], buf[5], buf[6]); 208 209 /* Decode the registers */ 210 time->tm_sec = bcd2bin(buf[DS1305_SEC]); 211 time->tm_min = bcd2bin(buf[DS1305_MIN]); 212 time->tm_hour = bcd2hour(buf[DS1305_HOUR]); 213 time->tm_wday = buf[DS1305_WDAY] - 1; 214 time->tm_mday = bcd2bin(buf[DS1305_MDAY]); 215 time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1; 216 time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100; 217 218 dev_vdbg(dev, "%s secs=%d, mins=%d, " 219 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n", 220 "read", time->tm_sec, time->tm_min, 221 time->tm_hour, time->tm_mday, 222 time->tm_mon, time->tm_year, time->tm_wday); 223 224 /* Time may not be set */ 225 return rtc_valid_tm(time); 226 } 227 228 static int ds1305_set_time(struct device *dev, struct rtc_time *time) 229 { 230 struct ds1305 *ds1305 = dev_get_drvdata(dev); 231 u8 buf[1 + DS1305_RTC_LEN]; 232 u8 *bp = buf; 233 234 dev_vdbg(dev, "%s secs=%d, mins=%d, " 235 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n", 236 "write", time->tm_sec, time->tm_min, 237 time->tm_hour, time->tm_mday, 238 time->tm_mon, time->tm_year, time->tm_wday); 239 240 /* Write registers starting at the first time/date address. */ 241 *bp++ = DS1305_WRITE | DS1305_SEC; 242 243 *bp++ = bin2bcd(time->tm_sec); 244 *bp++ = bin2bcd(time->tm_min); 245 *bp++ = hour2bcd(ds1305->hr12, time->tm_hour); 246 *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1; 247 *bp++ = bin2bcd(time->tm_mday); 248 *bp++ = bin2bcd(time->tm_mon + 1); 249 *bp++ = bin2bcd(time->tm_year - 100); 250 251 dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", 252 "write", buf[1], buf[2], buf[3], 253 buf[4], buf[5], buf[6], buf[7]); 254 255 /* use write-then-read since dma from stack is nonportable */ 256 return spi_write_then_read(ds1305->spi, buf, sizeof buf, 257 NULL, 0); 258 } 259 260 /* 261 * Get/set of alarm is a bit funky: 262 * 263 * - First there's the inherent raciness of getting the (partitioned) 264 * status of an alarm that could trigger while we're reading parts 265 * of that status. 266 * 267 * - Second there's its limited range (we could increase it a bit by 268 * relying on WDAY), which means it will easily roll over. 269 * 270 * - Third there's the choice of two alarms and alarm signals. 271 * Here we use ALM0 and expect that nINT0 (open drain) is used; 272 * that's the only real option for DS1306 runtime alarms, and is 273 * natural on DS1305. 274 * 275 * - Fourth, there's also ALM1, and a second interrupt signal: 276 * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0; 277 * + On DS1306 ALM1 only uses INT1 (an active high pulse) 278 * and it won't work when VCC1 is active. 279 * 280 * So to be most general, we should probably set both alarms to the 281 * same value, letting ALM1 be the wakeup event source on DS1306 282 * and handling several wiring options on DS1305. 283 * 284 * - Fifth, we support the polled mode (as well as possible; why not?) 285 * even when no interrupt line is wired to an IRQ. 286 */ 287 288 /* 289 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) 290 */ 291 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm) 292 { 293 struct ds1305 *ds1305 = dev_get_drvdata(dev); 294 struct spi_device *spi = ds1305->spi; 295 u8 addr; 296 int status; 297 u8 buf[DS1305_ALM_LEN]; 298 299 /* Refresh control register cache BEFORE reading ALM0 registers, 300 * since reading alarm registers acks any pending IRQ. That 301 * makes returning "pending" status a bit of a lie, but that bit 302 * of EFI status is at best fragile anyway (given IRQ handlers). 303 */ 304 addr = DS1305_CONTROL; 305 status = spi_write_then_read(spi, &addr, sizeof addr, 306 ds1305->ctrl, sizeof ds1305->ctrl); 307 if (status < 0) 308 return status; 309 310 alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0); 311 alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0); 312 313 /* get and check ALM0 registers */ 314 addr = DS1305_ALM0(DS1305_SEC); 315 status = spi_write_then_read(spi, &addr, sizeof addr, 316 buf, sizeof buf); 317 if (status < 0) 318 return status; 319 320 dev_vdbg(dev, "%s: %02x %02x %02x %02x\n", 321 "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN], 322 buf[DS1305_HOUR], buf[DS1305_WDAY]); 323 324 if ((DS1305_ALM_DISABLE & buf[DS1305_SEC]) 325 || (DS1305_ALM_DISABLE & buf[DS1305_MIN]) 326 || (DS1305_ALM_DISABLE & buf[DS1305_HOUR])) 327 return -EIO; 328 329 /* Stuff these values into alm->time and let RTC framework code 330 * fill in the rest ... and also handle rollover to tomorrow when 331 * that's needed. 332 */ 333 alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]); 334 alm->time.tm_min = bcd2bin(buf[DS1305_MIN]); 335 alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]); 336 alm->time.tm_mday = -1; 337 alm->time.tm_mon = -1; 338 alm->time.tm_year = -1; 339 /* next three fields are unused by Linux */ 340 alm->time.tm_wday = -1; 341 alm->time.tm_mday = -1; 342 alm->time.tm_isdst = -1; 343 344 return 0; 345 } 346 347 /* 348 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl) 349 */ 350 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 351 { 352 struct ds1305 *ds1305 = dev_get_drvdata(dev); 353 struct spi_device *spi = ds1305->spi; 354 unsigned long now, later; 355 struct rtc_time tm; 356 int status; 357 u8 buf[1 + DS1305_ALM_LEN]; 358 359 /* convert desired alarm to time_t */ 360 status = rtc_tm_to_time(&alm->time, &later); 361 if (status < 0) 362 return status; 363 364 /* Read current time as time_t */ 365 status = ds1305_get_time(dev, &tm); 366 if (status < 0) 367 return status; 368 status = rtc_tm_to_time(&tm, &now); 369 if (status < 0) 370 return status; 371 372 /* make sure alarm fires within the next 24 hours */ 373 if (later <= now) 374 return -EINVAL; 375 if ((later - now) > 24 * 60 * 60) 376 return -EDOM; 377 378 /* disable alarm if needed */ 379 if (ds1305->ctrl[0] & DS1305_AEI0) { 380 ds1305->ctrl[0] &= ~DS1305_AEI0; 381 382 buf[0] = DS1305_WRITE | DS1305_CONTROL; 383 buf[1] = ds1305->ctrl[0]; 384 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0); 385 if (status < 0) 386 return status; 387 } 388 389 /* write alarm */ 390 buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC); 391 buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec); 392 buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min); 393 buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour); 394 buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE; 395 396 dev_dbg(dev, "%s: %02x %02x %02x %02x\n", 397 "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN], 398 buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]); 399 400 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); 401 if (status < 0) 402 return status; 403 404 /* enable alarm if requested */ 405 if (alm->enabled) { 406 ds1305->ctrl[0] |= DS1305_AEI0; 407 408 buf[0] = DS1305_WRITE | DS1305_CONTROL; 409 buf[1] = ds1305->ctrl[0]; 410 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0); 411 } 412 413 return status; 414 } 415 416 #ifdef CONFIG_PROC_FS 417 418 static int ds1305_proc(struct device *dev, struct seq_file *seq) 419 { 420 struct ds1305 *ds1305 = dev_get_drvdata(dev); 421 char *diodes = "no"; 422 char *resistors = ""; 423 424 /* ctrl[2] is treated as read-only; no locking needed */ 425 if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) { 426 switch (ds1305->ctrl[2] & 0x0c) { 427 case DS1305_TRICKLE_DS2: 428 diodes = "2 diodes, "; 429 break; 430 case DS1305_TRICKLE_DS1: 431 diodes = "1 diode, "; 432 break; 433 default: 434 goto done; 435 } 436 switch (ds1305->ctrl[2] & 0x03) { 437 case DS1305_TRICKLE_2K: 438 resistors = "2k Ohm"; 439 break; 440 case DS1305_TRICKLE_4K: 441 resistors = "4k Ohm"; 442 break; 443 case DS1305_TRICKLE_8K: 444 resistors = "8k Ohm"; 445 break; 446 default: 447 diodes = "no"; 448 break; 449 } 450 } 451 452 done: 453 return seq_printf(seq, 454 "trickle_charge\t: %s%s\n", 455 diodes, resistors); 456 } 457 458 #else 459 #define ds1305_proc NULL 460 #endif 461 462 static const struct rtc_class_ops ds1305_ops = { 463 .ioctl = ds1305_ioctl, 464 .read_time = ds1305_get_time, 465 .set_time = ds1305_set_time, 466 .read_alarm = ds1305_get_alarm, 467 .set_alarm = ds1305_set_alarm, 468 .proc = ds1305_proc, 469 }; 470 471 static void ds1305_work(struct work_struct *work) 472 { 473 struct ds1305 *ds1305 = container_of(work, struct ds1305, work); 474 struct mutex *lock = &ds1305->rtc->ops_lock; 475 struct spi_device *spi = ds1305->spi; 476 u8 buf[3]; 477 int status; 478 479 /* lock to protect ds1305->ctrl */ 480 mutex_lock(lock); 481 482 /* Disable the IRQ, and clear its status ... for now, we "know" 483 * that if more than one alarm is active, they're in sync. 484 * Note that reading ALM data registers also clears IRQ status. 485 */ 486 ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0); 487 ds1305->ctrl[1] = 0; 488 489 buf[0] = DS1305_WRITE | DS1305_CONTROL; 490 buf[1] = ds1305->ctrl[0]; 491 buf[2] = 0; 492 493 status = spi_write_then_read(spi, buf, sizeof buf, 494 NULL, 0); 495 if (status < 0) 496 dev_dbg(&spi->dev, "clear irq --> %d\n", status); 497 498 mutex_unlock(lock); 499 500 if (!test_bit(FLAG_EXITING, &ds1305->flags)) 501 enable_irq(spi->irq); 502 503 rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF); 504 } 505 506 /* 507 * This "real" IRQ handler hands off to a workqueue mostly to allow 508 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async 509 * I/O requests in IRQ context (to clear the IRQ status). 510 */ 511 static irqreturn_t ds1305_irq(int irq, void *p) 512 { 513 struct ds1305 *ds1305 = p; 514 515 disable_irq(irq); 516 schedule_work(&ds1305->work); 517 return IRQ_HANDLED; 518 } 519 520 /*----------------------------------------------------------------------*/ 521 522 /* 523 * Interface for NVRAM 524 */ 525 526 static void msg_init(struct spi_message *m, struct spi_transfer *x, 527 u8 *addr, size_t count, char *tx, char *rx) 528 { 529 spi_message_init(m); 530 memset(x, 0, 2 * sizeof(*x)); 531 532 x->tx_buf = addr; 533 x->len = 1; 534 spi_message_add_tail(x, m); 535 536 x++; 537 538 x->tx_buf = tx; 539 x->rx_buf = rx; 540 x->len = count; 541 spi_message_add_tail(x, m); 542 } 543 544 static ssize_t 545 ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr, 546 char *buf, loff_t off, size_t count) 547 { 548 struct spi_device *spi; 549 u8 addr; 550 struct spi_message m; 551 struct spi_transfer x[2]; 552 int status; 553 554 spi = container_of(kobj, struct spi_device, dev.kobj); 555 556 if (unlikely(off >= DS1305_NVRAM_LEN)) 557 return 0; 558 if (count >= DS1305_NVRAM_LEN) 559 count = DS1305_NVRAM_LEN; 560 if ((off + count) > DS1305_NVRAM_LEN) 561 count = DS1305_NVRAM_LEN - off; 562 if (unlikely(!count)) 563 return count; 564 565 addr = DS1305_NVRAM + off; 566 msg_init(&m, x, &addr, count, NULL, buf); 567 568 status = spi_sync(spi, &m); 569 if (status < 0) 570 dev_err(&spi->dev, "nvram %s error %d\n", "read", status); 571 return (status < 0) ? status : count; 572 } 573 574 static ssize_t 575 ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr, 576 char *buf, loff_t off, size_t count) 577 { 578 struct spi_device *spi; 579 u8 addr; 580 struct spi_message m; 581 struct spi_transfer x[2]; 582 int status; 583 584 spi = container_of(kobj, struct spi_device, dev.kobj); 585 586 if (unlikely(off >= DS1305_NVRAM_LEN)) 587 return -EFBIG; 588 if (count >= DS1305_NVRAM_LEN) 589 count = DS1305_NVRAM_LEN; 590 if ((off + count) > DS1305_NVRAM_LEN) 591 count = DS1305_NVRAM_LEN - off; 592 if (unlikely(!count)) 593 return count; 594 595 addr = (DS1305_WRITE | DS1305_NVRAM) + off; 596 msg_init(&m, x, &addr, count, buf, NULL); 597 598 status = spi_sync(spi, &m); 599 if (status < 0) 600 dev_err(&spi->dev, "nvram %s error %d\n", "write", status); 601 return (status < 0) ? status : count; 602 } 603 604 static struct bin_attribute nvram = { 605 .attr.name = "nvram", 606 .attr.mode = S_IRUGO | S_IWUSR, 607 .read = ds1305_nvram_read, 608 .write = ds1305_nvram_write, 609 .size = DS1305_NVRAM_LEN, 610 }; 611 612 /*----------------------------------------------------------------------*/ 613 614 /* 615 * Interface to SPI stack 616 */ 617 618 static int __devinit ds1305_probe(struct spi_device *spi) 619 { 620 struct ds1305 *ds1305; 621 int status; 622 u8 addr, value; 623 struct ds1305_platform_data *pdata = spi->dev.platform_data; 624 bool write_ctrl = false; 625 626 /* Sanity check board setup data. This may be hooked up 627 * in 3wire mode, but we don't care. Note that unless 628 * there's an inverter in place, this needs SPI_CS_HIGH! 629 */ 630 if ((spi->bits_per_word && spi->bits_per_word != 8) 631 || (spi->max_speed_hz > 2000000) 632 || !(spi->mode & SPI_CPHA)) 633 return -EINVAL; 634 635 /* set up driver data */ 636 ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL); 637 if (!ds1305) 638 return -ENOMEM; 639 ds1305->spi = spi; 640 spi_set_drvdata(spi, ds1305); 641 642 /* read and cache control registers */ 643 addr = DS1305_CONTROL; 644 status = spi_write_then_read(spi, &addr, sizeof addr, 645 ds1305->ctrl, sizeof ds1305->ctrl); 646 if (status < 0) { 647 dev_dbg(&spi->dev, "can't %s, %d\n", 648 "read", status); 649 goto fail0; 650 } 651 652 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n", 653 "read", ds1305->ctrl[0], 654 ds1305->ctrl[1], ds1305->ctrl[2]); 655 656 /* Sanity check register values ... partially compensating for the 657 * fact that SPI has no device handshake. A pullup on MISO would 658 * make these tests fail; but not all systems will have one. If 659 * some register is neither 0x00 nor 0xff, a chip is likely there. 660 */ 661 if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) { 662 dev_dbg(&spi->dev, "RTC chip is not present\n"); 663 status = -ENODEV; 664 goto fail0; 665 } 666 if (ds1305->ctrl[2] == 0) 667 dev_dbg(&spi->dev, "chip may not be present\n"); 668 669 /* enable writes if needed ... if we were paranoid it would 670 * make sense to enable them only when absolutely necessary. 671 */ 672 if (ds1305->ctrl[0] & DS1305_WP) { 673 u8 buf[2]; 674 675 ds1305->ctrl[0] &= ~DS1305_WP; 676 677 buf[0] = DS1305_WRITE | DS1305_CONTROL; 678 buf[1] = ds1305->ctrl[0]; 679 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); 680 681 dev_dbg(&spi->dev, "clear WP --> %d\n", status); 682 if (status < 0) 683 goto fail0; 684 } 685 686 /* on DS1305, maybe start oscillator; like most low power 687 * oscillators, it may take a second to stabilize 688 */ 689 if (ds1305->ctrl[0] & DS1305_nEOSC) { 690 ds1305->ctrl[0] &= ~DS1305_nEOSC; 691 write_ctrl = true; 692 dev_warn(&spi->dev, "SET TIME!\n"); 693 } 694 695 /* ack any pending IRQs */ 696 if (ds1305->ctrl[1]) { 697 ds1305->ctrl[1] = 0; 698 write_ctrl = true; 699 } 700 701 /* this may need one-time (re)init */ 702 if (pdata) { 703 /* maybe enable trickle charge */ 704 if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) { 705 ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC 706 | pdata->trickle; 707 write_ctrl = true; 708 } 709 710 /* on DS1306, configure 1 Hz signal */ 711 if (pdata->is_ds1306) { 712 if (pdata->en_1hz) { 713 if (!(ds1305->ctrl[0] & DS1306_1HZ)) { 714 ds1305->ctrl[0] |= DS1306_1HZ; 715 write_ctrl = true; 716 } 717 } else { 718 if (ds1305->ctrl[0] & DS1306_1HZ) { 719 ds1305->ctrl[0] &= ~DS1306_1HZ; 720 write_ctrl = true; 721 } 722 } 723 } 724 } 725 726 if (write_ctrl) { 727 u8 buf[4]; 728 729 buf[0] = DS1305_WRITE | DS1305_CONTROL; 730 buf[1] = ds1305->ctrl[0]; 731 buf[2] = ds1305->ctrl[1]; 732 buf[3] = ds1305->ctrl[2]; 733 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0); 734 if (status < 0) { 735 dev_dbg(&spi->dev, "can't %s, %d\n", 736 "write", status); 737 goto fail0; 738 } 739 740 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n", 741 "write", ds1305->ctrl[0], 742 ds1305->ctrl[1], ds1305->ctrl[2]); 743 } 744 745 /* see if non-Linux software set up AM/PM mode */ 746 addr = DS1305_HOUR; 747 status = spi_write_then_read(spi, &addr, sizeof addr, 748 &value, sizeof value); 749 if (status < 0) { 750 dev_dbg(&spi->dev, "read HOUR --> %d\n", status); 751 goto fail0; 752 } 753 754 ds1305->hr12 = (DS1305_HR_12 & value) != 0; 755 if (ds1305->hr12) 756 dev_dbg(&spi->dev, "AM/PM\n"); 757 758 /* register RTC ... from here on, ds1305->ctrl needs locking */ 759 ds1305->rtc = rtc_device_register("ds1305", &spi->dev, 760 &ds1305_ops, THIS_MODULE); 761 if (IS_ERR(ds1305->rtc)) { 762 status = PTR_ERR(ds1305->rtc); 763 dev_dbg(&spi->dev, "register rtc --> %d\n", status); 764 goto fail0; 765 } 766 767 /* Maybe set up alarm IRQ; be ready to handle it triggering right 768 * away. NOTE that we don't share this. The signal is active low, 769 * and we can't ack it before a SPI message delay. We temporarily 770 * disable the IRQ until it's acked, which lets us work with more 771 * IRQ trigger modes (not all IRQ controllers can do falling edge). 772 */ 773 if (spi->irq) { 774 INIT_WORK(&ds1305->work, ds1305_work); 775 status = request_irq(spi->irq, ds1305_irq, 776 0, dev_name(&ds1305->rtc->dev), ds1305); 777 if (status < 0) { 778 dev_dbg(&spi->dev, "request_irq %d --> %d\n", 779 spi->irq, status); 780 goto fail1; 781 } 782 783 device_set_wakeup_capable(&spi->dev, 1); 784 } 785 786 /* export NVRAM */ 787 status = sysfs_create_bin_file(&spi->dev.kobj, &nvram); 788 if (status < 0) { 789 dev_dbg(&spi->dev, "register nvram --> %d\n", status); 790 goto fail2; 791 } 792 793 return 0; 794 795 fail2: 796 free_irq(spi->irq, ds1305); 797 fail1: 798 rtc_device_unregister(ds1305->rtc); 799 fail0: 800 kfree(ds1305); 801 return status; 802 } 803 804 static int __devexit ds1305_remove(struct spi_device *spi) 805 { 806 struct ds1305 *ds1305 = spi_get_drvdata(spi); 807 808 sysfs_remove_bin_file(&spi->dev.kobj, &nvram); 809 810 /* carefully shut down irq and workqueue, if present */ 811 if (spi->irq) { 812 set_bit(FLAG_EXITING, &ds1305->flags); 813 free_irq(spi->irq, ds1305); 814 flush_scheduled_work(); 815 } 816 817 rtc_device_unregister(ds1305->rtc); 818 spi_set_drvdata(spi, NULL); 819 kfree(ds1305); 820 return 0; 821 } 822 823 static struct spi_driver ds1305_driver = { 824 .driver.name = "rtc-ds1305", 825 .driver.owner = THIS_MODULE, 826 .probe = ds1305_probe, 827 .remove = __devexit_p(ds1305_remove), 828 /* REVISIT add suspend/resume */ 829 }; 830 831 static int __init ds1305_init(void) 832 { 833 return spi_register_driver(&ds1305_driver); 834 } 835 module_init(ds1305_init); 836 837 static void __exit ds1305_exit(void) 838 { 839 spi_unregister_driver(&ds1305_driver); 840 } 841 module_exit(ds1305_exit); 842 843 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips"); 844 MODULE_LICENSE("GPL"); 845 MODULE_ALIAS("spi:rtc-ds1305"); 846