xref: /linux/drivers/rtc/rtc-cpcap.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Motorola CPCAP PMIC RTC driver
3  *
4  * Based on cpcap-regulator.c from Motorola Linux kernel tree
5  * Copyright (C) 2009 Motorola, Inc.
6  *
7  * Rewritten for mainline kernel
8  *  - use DT
9  *  - use regmap
10  *  - use standard interrupt framework
11  *  - use managed device resources
12  *  - remove custom "secure clock daemon" helpers
13  *
14  * Copyright (C) 2017 Sebastian Reichel <sre@kernel.org>
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License version 2 as
18  * published by the Free Software Foundation.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  */
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/init.h>
29 #include <linux/device.h>
30 #include <linux/platform_device.h>
31 #include <linux/rtc.h>
32 #include <linux/err.h>
33 #include <linux/regmap.h>
34 #include <linux/mfd/motorola-cpcap.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 
38 #define SECS_PER_DAY 86400
39 #define DAY_MASK  0x7FFF
40 #define TOD1_MASK 0x00FF
41 #define TOD2_MASK 0x01FF
42 
43 struct cpcap_time {
44 	int day;
45 	int tod1;
46 	int tod2;
47 };
48 
49 struct cpcap_rtc {
50 	struct regmap *regmap;
51 	struct rtc_device *rtc_dev;
52 	u16 vendor;
53 	int alarm_irq;
54 	bool alarm_enabled;
55 	int update_irq;
56 	bool update_enabled;
57 };
58 
59 static void cpcap2rtc_time(struct rtc_time *rtc, struct cpcap_time *cpcap)
60 {
61 	unsigned long int tod;
62 	unsigned long int time;
63 
64 	tod = (cpcap->tod1 & TOD1_MASK) | ((cpcap->tod2 & TOD2_MASK) << 8);
65 	time = tod + ((cpcap->day & DAY_MASK) * SECS_PER_DAY);
66 
67 	rtc_time_to_tm(time, rtc);
68 }
69 
70 static void rtc2cpcap_time(struct cpcap_time *cpcap, struct rtc_time *rtc)
71 {
72 	unsigned long time;
73 
74 	rtc_tm_to_time(rtc, &time);
75 
76 	cpcap->day = time / SECS_PER_DAY;
77 	time %= SECS_PER_DAY;
78 	cpcap->tod2 = (time >> 8) & TOD2_MASK;
79 	cpcap->tod1 = time & TOD1_MASK;
80 }
81 
82 static int cpcap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
83 {
84 	struct cpcap_rtc *rtc = dev_get_drvdata(dev);
85 
86 	if (rtc->alarm_enabled == enabled)
87 		return 0;
88 
89 	if (enabled)
90 		enable_irq(rtc->alarm_irq);
91 	else
92 		disable_irq(rtc->alarm_irq);
93 
94 	rtc->alarm_enabled = !!enabled;
95 
96 	return 0;
97 }
98 
99 static int cpcap_rtc_read_time(struct device *dev, struct rtc_time *tm)
100 {
101 	struct cpcap_rtc *rtc;
102 	struct cpcap_time cpcap_tm;
103 	int temp_tod2;
104 	int ret;
105 
106 	rtc = dev_get_drvdata(dev);
107 
108 	ret = regmap_read(rtc->regmap, CPCAP_REG_TOD2, &temp_tod2);
109 	ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
110 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD1, &cpcap_tm.tod1);
111 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD2, &cpcap_tm.tod2);
112 
113 	if (temp_tod2 > cpcap_tm.tod2)
114 		ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
115 
116 	if (ret) {
117 		dev_err(dev, "Failed to read time\n");
118 		return -EIO;
119 	}
120 
121 	cpcap2rtc_time(tm, &cpcap_tm);
122 
123 	return 0;
124 }
125 
126 static int cpcap_rtc_set_time(struct device *dev, struct rtc_time *tm)
127 {
128 	struct cpcap_rtc *rtc;
129 	struct cpcap_time cpcap_tm;
130 	int ret = 0;
131 
132 	rtc = dev_get_drvdata(dev);
133 
134 	rtc2cpcap_time(&cpcap_tm, tm);
135 
136 	if (rtc->alarm_enabled)
137 		disable_irq(rtc->alarm_irq);
138 	if (rtc->update_enabled)
139 		disable_irq(rtc->update_irq);
140 
141 	if (rtc->vendor == CPCAP_VENDOR_ST) {
142 		/* The TOD1 and TOD2 registers MUST be written in this order
143 		 * for the change to properly set.
144 		 */
145 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
146 					  TOD1_MASK, cpcap_tm.tod1);
147 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
148 					  TOD2_MASK, cpcap_tm.tod2);
149 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
150 					  DAY_MASK, cpcap_tm.day);
151 	} else {
152 		/* Clearing the upper lower 8 bits of the TOD guarantees that
153 		 * the upper half of TOD (TOD2) will not increment for 0xFF RTC
154 		 * ticks (255 seconds).  During this time we can safely write
155 		 * to DAY, TOD2, then TOD1 (in that order) and expect RTC to be
156 		 * synchronized to the exact time requested upon the final write
157 		 * to TOD1.
158 		 */
159 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
160 					  TOD1_MASK, 0);
161 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
162 					  DAY_MASK, cpcap_tm.day);
163 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
164 					  TOD2_MASK, cpcap_tm.tod2);
165 		ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
166 					  TOD1_MASK, cpcap_tm.tod1);
167 	}
168 
169 	if (rtc->update_enabled)
170 		enable_irq(rtc->update_irq);
171 	if (rtc->alarm_enabled)
172 		enable_irq(rtc->alarm_irq);
173 
174 	return ret;
175 }
176 
177 static int cpcap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
178 {
179 	struct cpcap_rtc *rtc;
180 	struct cpcap_time cpcap_tm;
181 	int ret;
182 
183 	rtc = dev_get_drvdata(dev);
184 
185 	alrm->enabled = rtc->alarm_enabled;
186 
187 	ret = regmap_read(rtc->regmap, CPCAP_REG_DAYA, &cpcap_tm.day);
188 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA2, &cpcap_tm.tod2);
189 	ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA1, &cpcap_tm.tod1);
190 
191 	if (ret) {
192 		dev_err(dev, "Failed to read time\n");
193 		return -EIO;
194 	}
195 
196 	cpcap2rtc_time(&alrm->time, &cpcap_tm);
197 	return rtc_valid_tm(&alrm->time);
198 }
199 
200 static int cpcap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
201 {
202 	struct cpcap_rtc *rtc;
203 	struct cpcap_time cpcap_tm;
204 	int ret;
205 
206 	rtc = dev_get_drvdata(dev);
207 
208 	rtc2cpcap_time(&cpcap_tm, &alrm->time);
209 
210 	if (rtc->alarm_enabled)
211 		disable_irq(rtc->alarm_irq);
212 
213 	ret = regmap_update_bits(rtc->regmap, CPCAP_REG_DAYA, DAY_MASK,
214 				 cpcap_tm.day);
215 	ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA2, TOD2_MASK,
216 				  cpcap_tm.tod2);
217 	ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA1, TOD1_MASK,
218 				  cpcap_tm.tod1);
219 
220 	if (!ret) {
221 		enable_irq(rtc->alarm_irq);
222 		rtc->alarm_enabled = true;
223 	}
224 
225 	return ret;
226 }
227 
228 static const struct rtc_class_ops cpcap_rtc_ops = {
229 	.read_time		= cpcap_rtc_read_time,
230 	.set_time		= cpcap_rtc_set_time,
231 	.read_alarm		= cpcap_rtc_read_alarm,
232 	.set_alarm		= cpcap_rtc_set_alarm,
233 	.alarm_irq_enable	= cpcap_rtc_alarm_irq_enable,
234 };
235 
236 static irqreturn_t cpcap_rtc_alarm_irq(int irq, void *data)
237 {
238 	struct cpcap_rtc *rtc = data;
239 
240 	rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
241 	return IRQ_HANDLED;
242 }
243 
244 static irqreturn_t cpcap_rtc_update_irq(int irq, void *data)
245 {
246 	struct cpcap_rtc *rtc = data;
247 
248 	rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
249 	return IRQ_HANDLED;
250 }
251 
252 static int cpcap_rtc_probe(struct platform_device *pdev)
253 {
254 	struct device *dev = &pdev->dev;
255 	struct cpcap_rtc *rtc;
256 	int err;
257 
258 	rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
259 	if (!rtc)
260 		return -ENOMEM;
261 
262 	rtc->regmap = dev_get_regmap(dev->parent, NULL);
263 	if (!rtc->regmap)
264 		return -ENODEV;
265 
266 	platform_set_drvdata(pdev, rtc);
267 	rtc->rtc_dev = devm_rtc_device_register(dev, "cpcap_rtc",
268 						&cpcap_rtc_ops, THIS_MODULE);
269 
270 	if (IS_ERR(rtc->rtc_dev))
271 		return PTR_ERR(rtc->rtc_dev);
272 
273 	err = cpcap_get_vendor(dev, rtc->regmap, &rtc->vendor);
274 	if (err)
275 		return err;
276 
277 	rtc->alarm_irq = platform_get_irq(pdev, 0);
278 	err = devm_request_threaded_irq(dev, rtc->alarm_irq, NULL,
279 					cpcap_rtc_alarm_irq, IRQF_TRIGGER_NONE,
280 					"rtc_alarm", rtc);
281 	if (err) {
282 		dev_err(dev, "Could not request alarm irq: %d\n", err);
283 		return err;
284 	}
285 	disable_irq(rtc->alarm_irq);
286 
287 	/* Stock Android uses the 1 Hz interrupt for "secure clock daemon",
288 	 * which is not supported by the mainline kernel. The mainline kernel
289 	 * does not use the irq at the moment, but we explicitly request and
290 	 * disable it, so that its masked and does not wake up the processor
291 	 * every second.
292 	 */
293 	rtc->update_irq = platform_get_irq(pdev, 1);
294 	err = devm_request_threaded_irq(dev, rtc->update_irq, NULL,
295 					cpcap_rtc_update_irq, IRQF_TRIGGER_NONE,
296 					"rtc_1hz", rtc);
297 	if (err) {
298 		dev_err(dev, "Could not request update irq: %d\n", err);
299 		return err;
300 	}
301 	disable_irq(rtc->update_irq);
302 
303 	err = device_init_wakeup(dev, 1);
304 	if (err) {
305 		dev_err(dev, "wakeup initialization failed (%d)\n", err);
306 		/* ignore error and continue without wakeup support */
307 	}
308 
309 	return 0;
310 }
311 
312 static const struct of_device_id cpcap_rtc_of_match[] = {
313 	{ .compatible = "motorola,cpcap-rtc", },
314 	{},
315 };
316 MODULE_DEVICE_TABLE(of, cpcap_rtc_of_match);
317 
318 static struct platform_driver cpcap_rtc_driver = {
319 	.probe		= cpcap_rtc_probe,
320 	.driver		= {
321 		.name	= "cpcap-rtc",
322 		.of_match_table = cpcap_rtc_of_match,
323 	},
324 };
325 
326 module_platform_driver(cpcap_rtc_driver);
327 
328 MODULE_ALIAS("platform:cpcap-rtc");
329 MODULE_DESCRIPTION("CPCAP RTC driver");
330 MODULE_AUTHOR("Sebastian Reichel <sre@kernel.org>");
331 MODULE_LICENSE("GPL");
332