xref: /linux/drivers/rtc/rtc-cmos.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
41 
42 
43 struct cmos_rtc {
44 	struct rtc_device	*rtc;
45 	struct device		*dev;
46 	int			irq;
47 	struct resource		*iomem;
48 
49 	void			(*wake_on)(struct device *);
50 	void			(*wake_off)(struct device *);
51 
52 	u8			enabled_wake;
53 	u8			suspend_ctrl;
54 
55 	/* newer hardware extends the original register set */
56 	u8			day_alrm;
57 	u8			mon_alrm;
58 	u8			century;
59 };
60 
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n)		((n) >= 0)
63 
64 static const char driver_name[] = "rtc_cmos";
65 
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
68  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69  */
70 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
71 
72 static inline int is_intr(u8 rtc_intr)
73 {
74 	if (!(rtc_intr & RTC_IRQF))
75 		return 0;
76 	return rtc_intr & RTC_IRQMASK;
77 }
78 
79 /*----------------------------------------------------------------*/
80 
81 static int cmos_read_time(struct device *dev, struct rtc_time *t)
82 {
83 	/* REVISIT:  if the clock has a "century" register, use
84 	 * that instead of the heuristic in get_rtc_time().
85 	 * That'll make Y3K compatility (year > 2070) easy!
86 	 */
87 	get_rtc_time(t);
88 	return 0;
89 }
90 
91 static int cmos_set_time(struct device *dev, struct rtc_time *t)
92 {
93 	/* REVISIT:  set the "century" register if available
94 	 *
95 	 * NOTE: this ignores the issue whereby updating the seconds
96 	 * takes effect exactly 500ms after we write the register.
97 	 * (Also queueing and other delays before we get this far.)
98 	 */
99 	return set_rtc_time(t);
100 }
101 
102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
103 {
104 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
105 	unsigned char	rtc_control;
106 
107 	if (!is_valid_irq(cmos->irq))
108 		return -EIO;
109 
110 	/* Basic alarms only support hour, minute, and seconds fields.
111 	 * Some also support day and month, for alarms up to a year in
112 	 * the future.
113 	 */
114 	t->time.tm_mday = -1;
115 	t->time.tm_mon = -1;
116 
117 	spin_lock_irq(&rtc_lock);
118 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
119 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
120 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
121 
122 	if (cmos->day_alrm) {
123 		t->time.tm_mday = CMOS_READ(cmos->day_alrm);
124 		if (!t->time.tm_mday)
125 			t->time.tm_mday = -1;
126 
127 		if (cmos->mon_alrm) {
128 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
129 			if (!t->time.tm_mon)
130 				t->time.tm_mon = -1;
131 		}
132 	}
133 
134 	rtc_control = CMOS_READ(RTC_CONTROL);
135 	spin_unlock_irq(&rtc_lock);
136 
137 	/* REVISIT this assumes PC style usage:  always BCD */
138 
139 	if (((unsigned)t->time.tm_sec) < 0x60)
140 		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
141 	else
142 		t->time.tm_sec = -1;
143 	if (((unsigned)t->time.tm_min) < 0x60)
144 		t->time.tm_min = BCD2BIN(t->time.tm_min);
145 	else
146 		t->time.tm_min = -1;
147 	if (((unsigned)t->time.tm_hour) < 0x24)
148 		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
149 	else
150 		t->time.tm_hour = -1;
151 
152 	if (cmos->day_alrm) {
153 		if (((unsigned)t->time.tm_mday) <= 0x31)
154 			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
155 		else
156 			t->time.tm_mday = -1;
157 		if (cmos->mon_alrm) {
158 			if (((unsigned)t->time.tm_mon) <= 0x12)
159 				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
160 			else
161 				t->time.tm_mon = -1;
162 		}
163 	}
164 	t->time.tm_year = -1;
165 
166 	t->enabled = !!(rtc_control & RTC_AIE);
167 	t->pending = 0;
168 
169 	return 0;
170 }
171 
172 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
173 {
174 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
175 	unsigned char	mon, mday, hrs, min, sec;
176 	unsigned char	rtc_control, rtc_intr;
177 
178 	if (!is_valid_irq(cmos->irq))
179 		return -EIO;
180 
181 	/* REVISIT this assumes PC style usage:  always BCD */
182 
183 	/* Writing 0xff means "don't care" or "match all".  */
184 
185 	mon = t->time.tm_mon;
186 	mon = (mon < 12) ? BIN2BCD(mon) : 0xff;
187 	mon++;
188 
189 	mday = t->time.tm_mday;
190 	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
191 
192 	hrs = t->time.tm_hour;
193 	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
194 
195 	min = t->time.tm_min;
196 	min = (min < 60) ? BIN2BCD(min) : 0xff;
197 
198 	sec = t->time.tm_sec;
199 	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
200 
201 	spin_lock_irq(&rtc_lock);
202 
203 	/* next rtc irq must not be from previous alarm setting */
204 	rtc_control = CMOS_READ(RTC_CONTROL);
205 	rtc_control &= ~RTC_AIE;
206 	CMOS_WRITE(rtc_control, RTC_CONTROL);
207 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
208 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
209 	if (is_intr(rtc_intr))
210 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
211 
212 	/* update alarm */
213 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
214 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
215 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
216 
217 	/* the system may support an "enhanced" alarm */
218 	if (cmos->day_alrm) {
219 		CMOS_WRITE(mday, cmos->day_alrm);
220 		if (cmos->mon_alrm)
221 			CMOS_WRITE(mon, cmos->mon_alrm);
222 	}
223 
224 	if (t->enabled) {
225 		rtc_control |= RTC_AIE;
226 		CMOS_WRITE(rtc_control, RTC_CONTROL);
227 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
228 		rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
229 		if (is_intr(rtc_intr))
230 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
231 	}
232 
233 	spin_unlock_irq(&rtc_lock);
234 
235 	return 0;
236 }
237 
238 static int cmos_set_freq(struct device *dev, int freq)
239 {
240 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
241 	int		f;
242 	unsigned long	flags;
243 
244 	if (!is_valid_irq(cmos->irq))
245 		return -ENXIO;
246 
247 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
248 	f = ffs(freq);
249 	if (f != 0) {
250 		if (f-- > 16 || freq != (1 << f))
251 			return -EINVAL;
252 		f = 16 - f;
253 	}
254 
255 	spin_lock_irqsave(&rtc_lock, flags);
256 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
257 	spin_unlock_irqrestore(&rtc_lock, flags);
258 
259 	return 0;
260 }
261 
262 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
263 
264 static int
265 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
266 {
267 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
268 	unsigned char	rtc_control, rtc_intr;
269 	unsigned long	flags;
270 
271 	switch (cmd) {
272 	case RTC_AIE_OFF:
273 	case RTC_AIE_ON:
274 	case RTC_UIE_OFF:
275 	case RTC_UIE_ON:
276 	case RTC_PIE_OFF:
277 	case RTC_PIE_ON:
278 		if (!is_valid_irq(cmos->irq))
279 			return -EINVAL;
280 		break;
281 	default:
282 		return -ENOIOCTLCMD;
283 	}
284 
285 	spin_lock_irqsave(&rtc_lock, flags);
286 	rtc_control = CMOS_READ(RTC_CONTROL);
287 	switch (cmd) {
288 	case RTC_AIE_OFF:	/* alarm off */
289 		rtc_control &= ~RTC_AIE;
290 		break;
291 	case RTC_AIE_ON:	/* alarm on */
292 		rtc_control |= RTC_AIE;
293 		break;
294 	case RTC_UIE_OFF:	/* update off */
295 		rtc_control &= ~RTC_UIE;
296 		break;
297 	case RTC_UIE_ON:	/* update on */
298 		rtc_control |= RTC_UIE;
299 		break;
300 	case RTC_PIE_OFF:	/* periodic off */
301 		rtc_control &= ~RTC_PIE;
302 		break;
303 	case RTC_PIE_ON:	/* periodic on */
304 		rtc_control |= RTC_PIE;
305 		break;
306 	}
307 	CMOS_WRITE(rtc_control, RTC_CONTROL);
308 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
309 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
310 	if (is_intr(rtc_intr))
311 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
312 	spin_unlock_irqrestore(&rtc_lock, flags);
313 	return 0;
314 }
315 
316 #else
317 #define	cmos_rtc_ioctl	NULL
318 #endif
319 
320 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
321 
322 static int cmos_procfs(struct device *dev, struct seq_file *seq)
323 {
324 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
325 	unsigned char	rtc_control, valid;
326 
327 	spin_lock_irq(&rtc_lock);
328 	rtc_control = CMOS_READ(RTC_CONTROL);
329 	valid = CMOS_READ(RTC_VALID);
330 	spin_unlock_irq(&rtc_lock);
331 
332 	/* NOTE:  at least ICH6 reports battery status using a different
333 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
334 	 */
335 	return seq_printf(seq,
336 			"periodic_IRQ\t: %s\n"
337 			"update_IRQ\t: %s\n"
338 			// "square_wave\t: %s\n"
339 			// "BCD\t\t: %s\n"
340 			"DST_enable\t: %s\n"
341 			"periodic_freq\t: %d\n"
342 			"batt_status\t: %s\n",
343 			(rtc_control & RTC_PIE) ? "yes" : "no",
344 			(rtc_control & RTC_UIE) ? "yes" : "no",
345 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
346 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
347 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
348 			cmos->rtc->irq_freq,
349 			(valid & RTC_VRT) ? "okay" : "dead");
350 }
351 
352 #else
353 #define	cmos_procfs	NULL
354 #endif
355 
356 static const struct rtc_class_ops cmos_rtc_ops = {
357 	.ioctl		= cmos_rtc_ioctl,
358 	.read_time	= cmos_read_time,
359 	.set_time	= cmos_set_time,
360 	.read_alarm	= cmos_read_alarm,
361 	.set_alarm	= cmos_set_alarm,
362 	.proc		= cmos_procfs,
363 	.irq_set_freq	= cmos_set_freq,
364 };
365 
366 /*----------------------------------------------------------------*/
367 
368 static struct cmos_rtc	cmos_rtc;
369 
370 static irqreturn_t cmos_interrupt(int irq, void *p)
371 {
372 	u8		irqstat;
373 
374 	spin_lock(&rtc_lock);
375 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
376 	irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF;
377 	spin_unlock(&rtc_lock);
378 
379 	if (is_intr(irqstat)) {
380 		rtc_update_irq(p, 1, irqstat);
381 		return IRQ_HANDLED;
382 	} else
383 		return IRQ_NONE;
384 }
385 
386 #ifdef	CONFIG_PNP
387 #define	is_pnp()	1
388 #define	INITSECTION
389 
390 #else
391 #define	is_pnp()	0
392 #define	INITSECTION	__init
393 #endif
394 
395 static int INITSECTION
396 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
397 {
398 	struct cmos_rtc_board_info	*info = dev->platform_data;
399 	int				retval = 0;
400 	unsigned char			rtc_control;
401 
402 	/* there can be only one ... */
403 	if (cmos_rtc.dev)
404 		return -EBUSY;
405 
406 	if (!ports)
407 		return -ENODEV;
408 
409 	cmos_rtc.irq = rtc_irq;
410 	cmos_rtc.iomem = ports;
411 
412 	/* For ACPI systems extension info comes from the FADT.  On others,
413 	 * board specific setup provides it as appropriate.  Systems where
414 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
415 	 * some almost-clones) can provide hooks to make that behave.
416 	 */
417 	if (info) {
418 		cmos_rtc.day_alrm = info->rtc_day_alarm;
419 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
420 		cmos_rtc.century = info->rtc_century;
421 
422 		if (info->wake_on && info->wake_off) {
423 			cmos_rtc.wake_on = info->wake_on;
424 			cmos_rtc.wake_off = info->wake_off;
425 		}
426 	}
427 
428 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
429 				&cmos_rtc_ops, THIS_MODULE);
430 	if (IS_ERR(cmos_rtc.rtc))
431 		return PTR_ERR(cmos_rtc.rtc);
432 
433 	cmos_rtc.dev = dev;
434 	dev_set_drvdata(dev, &cmos_rtc);
435 
436 	/* platform and pnp busses handle resources incompatibly.
437 	 *
438 	 * REVISIT for non-x86 systems we may need to handle io memory
439 	 * resources: ioremap them, and request_mem_region().
440 	 */
441 	if (is_pnp()) {
442 		retval = request_resource(&ioport_resource, ports);
443 		if (retval < 0) {
444 			dev_dbg(dev, "i/o registers already in use\n");
445 			goto cleanup0;
446 		}
447 	}
448 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
449 
450 	spin_lock_irq(&rtc_lock);
451 
452 	/* force periodic irq to CMOS reset default of 1024Hz;
453 	 *
454 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
455 	 * doesn't use 32KHz here ... for portability we might need to
456 	 * do something about other clock frequencies.
457 	 */
458 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
459 	cmos_rtc.rtc->irq_freq = 1024;
460 
461 	/* disable irqs.
462 	 *
463 	 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
464 	 * allegedly some older rtcs need that to handle irqs properly
465 	 */
466 	rtc_control = CMOS_READ(RTC_CONTROL);
467 	rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
468 	CMOS_WRITE(rtc_control, RTC_CONTROL);
469 	CMOS_READ(RTC_INTR_FLAGS);
470 
471 	spin_unlock_irq(&rtc_lock);
472 
473 	/* FIXME teach the alarm code how to handle binary mode;
474 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
475 	 */
476 	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
477 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
478 		retval = -ENXIO;
479 		goto cleanup1;
480 	}
481 
482 	if (is_valid_irq(rtc_irq))
483 		retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED,
484 				cmos_rtc.rtc->dev.bus_id,
485 				cmos_rtc.rtc);
486 	if (retval < 0) {
487 		dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
488 		goto cleanup1;
489 	}
490 
491 	/* REVISIT optionally make 50 or 114 bytes NVRAM available,
492 	 * like rtc-ds1553, rtc-ds1742 ... this will often include
493 	 * registers for century, and day/month alarm.
494 	 */
495 
496 	pr_info("%s: alarms up to one %s%s\n",
497 			cmos_rtc.rtc->dev.bus_id,
498 			is_valid_irq(rtc_irq)
499 				?  (cmos_rtc.mon_alrm
500 					? "year"
501 					: (cmos_rtc.day_alrm
502 						? "month" : "day"))
503 				: "no",
504 			cmos_rtc.century ? ", y3k" : ""
505 			);
506 
507 	return 0;
508 
509 cleanup1:
510 	rename_region(ports, NULL);
511 cleanup0:
512 	rtc_device_unregister(cmos_rtc.rtc);
513 	return retval;
514 }
515 
516 static void cmos_do_shutdown(void)
517 {
518 	unsigned char	rtc_control;
519 
520 	spin_lock_irq(&rtc_lock);
521 	rtc_control = CMOS_READ(RTC_CONTROL);
522 	rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
523 	CMOS_WRITE(rtc_control, RTC_CONTROL);
524 	CMOS_READ(RTC_INTR_FLAGS);
525 	spin_unlock_irq(&rtc_lock);
526 }
527 
528 static void __exit cmos_do_remove(struct device *dev)
529 {
530 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
531 
532 	cmos_do_shutdown();
533 
534 	if (is_pnp())
535 		release_resource(cmos->iomem);
536 	rename_region(cmos->iomem, NULL);
537 
538 	if (is_valid_irq(cmos->irq))
539 		free_irq(cmos->irq, cmos_rtc.rtc);
540 
541 	rtc_device_unregister(cmos_rtc.rtc);
542 
543 	cmos_rtc.dev = NULL;
544 	dev_set_drvdata(dev, NULL);
545 }
546 
547 #ifdef	CONFIG_PM
548 
549 static int cmos_suspend(struct device *dev, pm_message_t mesg)
550 {
551 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
552 	int		do_wake = device_may_wakeup(dev);
553 	unsigned char	tmp;
554 
555 	/* only the alarm might be a wakeup event source */
556 	spin_lock_irq(&rtc_lock);
557 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
558 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
559 		unsigned char	irqstat;
560 
561 		if (do_wake)
562 			tmp &= ~(RTC_PIE|RTC_UIE);
563 		else
564 			tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
565 		CMOS_WRITE(tmp, RTC_CONTROL);
566 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
567 		irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
568 		if (is_intr(irqstat))
569 			rtc_update_irq(cmos->rtc, 1, irqstat);
570 	}
571 	spin_unlock_irq(&rtc_lock);
572 
573 	if (tmp & RTC_AIE) {
574 		cmos->enabled_wake = 1;
575 		if (cmos->wake_on)
576 			cmos->wake_on(dev);
577 		else
578 			enable_irq_wake(cmos->irq);
579 	}
580 
581 	pr_debug("%s: suspend%s, ctrl %02x\n",
582 			cmos_rtc.rtc->dev.bus_id,
583 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
584 			tmp);
585 
586 	return 0;
587 }
588 
589 static int cmos_resume(struct device *dev)
590 {
591 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
592 	unsigned char	tmp = cmos->suspend_ctrl;
593 
594 	/* re-enable any irqs previously active */
595 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
596 
597 		if (cmos->enabled_wake) {
598 			if (cmos->wake_off)
599 				cmos->wake_off(dev);
600 			else
601 				disable_irq_wake(cmos->irq);
602 			cmos->enabled_wake = 0;
603 		}
604 
605 		spin_lock_irq(&rtc_lock);
606 		CMOS_WRITE(tmp, RTC_CONTROL);
607 		tmp = CMOS_READ(RTC_INTR_FLAGS);
608 		tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
609 		if (is_intr(tmp))
610 			rtc_update_irq(cmos->rtc, 1, tmp);
611 		spin_unlock_irq(&rtc_lock);
612 	}
613 
614 	pr_debug("%s: resume, ctrl %02x\n",
615 			cmos_rtc.rtc->dev.bus_id,
616 			cmos->suspend_ctrl);
617 
618 
619 	return 0;
620 }
621 
622 #else
623 #define	cmos_suspend	NULL
624 #define	cmos_resume	NULL
625 #endif
626 
627 /*----------------------------------------------------------------*/
628 
629 /* The "CMOS" RTC normally lives on the platform_bus.  On ACPI systems,
630  * the device node will always be created as a PNPACPI device.
631  */
632 
633 #ifdef	CONFIG_PNP
634 
635 #include <linux/pnp.h>
636 
637 static int __devinit
638 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
639 {
640 	/* REVISIT paranoia argues for a shutdown notifier, since PNP
641 	 * drivers can't provide shutdown() methods to disable IRQs.
642 	 * Or better yet, fix PNP to allow those methods...
643 	 */
644 	return cmos_do_probe(&pnp->dev,
645 			&pnp->res.port_resource[0],
646 			pnp->res.irq_resource[0].start);
647 }
648 
649 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
650 {
651 	cmos_do_remove(&pnp->dev);
652 }
653 
654 #ifdef	CONFIG_PM
655 
656 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
657 {
658 	return cmos_suspend(&pnp->dev, mesg);
659 }
660 
661 static int cmos_pnp_resume(struct pnp_dev *pnp)
662 {
663 	return cmos_resume(&pnp->dev);
664 }
665 
666 #else
667 #define	cmos_pnp_suspend	NULL
668 #define	cmos_pnp_resume		NULL
669 #endif
670 
671 
672 static const struct pnp_device_id rtc_ids[] = {
673 	{ .id = "PNP0b00", },
674 	{ .id = "PNP0b01", },
675 	{ .id = "PNP0b02", },
676 	{ },
677 };
678 MODULE_DEVICE_TABLE(pnp, rtc_ids);
679 
680 static struct pnp_driver cmos_pnp_driver = {
681 	.name		= (char *) driver_name,
682 	.id_table	= rtc_ids,
683 	.probe		= cmos_pnp_probe,
684 	.remove		= __exit_p(cmos_pnp_remove),
685 
686 	/* flag ensures resume() gets called, and stops syslog spam */
687 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
688 	.suspend	= cmos_pnp_suspend,
689 	.resume		= cmos_pnp_resume,
690 };
691 
692 static int __init cmos_init(void)
693 {
694 	return pnp_register_driver(&cmos_pnp_driver);
695 }
696 module_init(cmos_init);
697 
698 static void __exit cmos_exit(void)
699 {
700 	pnp_unregister_driver(&cmos_pnp_driver);
701 }
702 module_exit(cmos_exit);
703 
704 #else	/* no PNP */
705 
706 /*----------------------------------------------------------------*/
707 
708 /* Platform setup should have set up an RTC device, when PNP is
709  * unavailable ... this could happen even on (older) PCs.
710  */
711 
712 static int __init cmos_platform_probe(struct platform_device *pdev)
713 {
714 	return cmos_do_probe(&pdev->dev,
715 			platform_get_resource(pdev, IORESOURCE_IO, 0),
716 			platform_get_irq(pdev, 0));
717 }
718 
719 static int __exit cmos_platform_remove(struct platform_device *pdev)
720 {
721 	cmos_do_remove(&pdev->dev);
722 	return 0;
723 }
724 
725 static void cmos_platform_shutdown(struct platform_device *pdev)
726 {
727 	cmos_do_shutdown();
728 }
729 
730 static struct platform_driver cmos_platform_driver = {
731 	.remove		= __exit_p(cmos_platform_remove),
732 	.shutdown	= cmos_platform_shutdown,
733 	.driver = {
734 		.name		= (char *) driver_name,
735 		.suspend	= cmos_suspend,
736 		.resume		= cmos_resume,
737 	}
738 };
739 
740 static int __init cmos_init(void)
741 {
742 	return platform_driver_probe(&cmos_platform_driver,
743 			cmos_platform_probe);
744 }
745 module_init(cmos_init);
746 
747 static void __exit cmos_exit(void)
748 {
749 	platform_driver_unregister(&cmos_platform_driver);
750 }
751 module_exit(cmos_exit);
752 
753 
754 #endif	/* !PNP */
755 
756 MODULE_AUTHOR("David Brownell");
757 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
758 MODULE_LICENSE("GPL");
759