1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 #include <linux/dmi.h> 45 46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47 #include <asm-generic/rtc.h> 48 49 struct cmos_rtc { 50 struct rtc_device *rtc; 51 struct device *dev; 52 int irq; 53 struct resource *iomem; 54 55 void (*wake_on)(struct device *); 56 void (*wake_off)(struct device *); 57 58 u8 enabled_wake; 59 u8 suspend_ctrl; 60 61 /* newer hardware extends the original register set */ 62 u8 day_alrm; 63 u8 mon_alrm; 64 u8 century; 65 }; 66 67 /* both platform and pnp busses use negative numbers for invalid irqs */ 68 #define is_valid_irq(n) ((n) > 0) 69 70 static const char driver_name[] = "rtc_cmos"; 71 72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 75 */ 76 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 77 78 static inline int is_intr(u8 rtc_intr) 79 { 80 if (!(rtc_intr & RTC_IRQF)) 81 return 0; 82 return rtc_intr & RTC_IRQMASK; 83 } 84 85 /*----------------------------------------------------------------*/ 86 87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 89 * used in a broken "legacy replacement" mode. The breakage includes 90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 91 * other (better) use. 92 * 93 * When that broken mode is in use, platform glue provides a partial 94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 95 * want to use HPET for anything except those IRQs though... 96 */ 97 #ifdef CONFIG_HPET_EMULATE_RTC 98 #include <asm/hpet.h> 99 #else 100 101 static inline int is_hpet_enabled(void) 102 { 103 return 0; 104 } 105 106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 107 { 108 return 0; 109 } 110 111 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 112 { 113 return 0; 114 } 115 116 static inline int 117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 118 { 119 return 0; 120 } 121 122 static inline int hpet_set_periodic_freq(unsigned long freq) 123 { 124 return 0; 125 } 126 127 static inline int hpet_rtc_dropped_irq(void) 128 { 129 return 0; 130 } 131 132 static inline int hpet_rtc_timer_init(void) 133 { 134 return 0; 135 } 136 137 extern irq_handler_t hpet_rtc_interrupt; 138 139 static inline int hpet_register_irq_handler(irq_handler_t handler) 140 { 141 return 0; 142 } 143 144 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 145 { 146 return 0; 147 } 148 149 #endif 150 151 /*----------------------------------------------------------------*/ 152 153 #ifdef RTC_PORT 154 155 /* Most newer x86 systems have two register banks, the first used 156 * for RTC and NVRAM and the second only for NVRAM. Caller must 157 * own rtc_lock ... and we won't worry about access during NMI. 158 */ 159 #define can_bank2 true 160 161 static inline unsigned char cmos_read_bank2(unsigned char addr) 162 { 163 outb(addr, RTC_PORT(2)); 164 return inb(RTC_PORT(3)); 165 } 166 167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 168 { 169 outb(addr, RTC_PORT(2)); 170 outb(val, RTC_PORT(3)); 171 } 172 173 #else 174 175 #define can_bank2 false 176 177 static inline unsigned char cmos_read_bank2(unsigned char addr) 178 { 179 return 0; 180 } 181 182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 183 { 184 } 185 186 #endif 187 188 /*----------------------------------------------------------------*/ 189 190 static int cmos_read_time(struct device *dev, struct rtc_time *t) 191 { 192 /* REVISIT: if the clock has a "century" register, use 193 * that instead of the heuristic in get_rtc_time(). 194 * That'll make Y3K compatility (year > 2070) easy! 195 */ 196 get_rtc_time(t); 197 return 0; 198 } 199 200 static int cmos_set_time(struct device *dev, struct rtc_time *t) 201 { 202 /* REVISIT: set the "century" register if available 203 * 204 * NOTE: this ignores the issue whereby updating the seconds 205 * takes effect exactly 500ms after we write the register. 206 * (Also queueing and other delays before we get this far.) 207 */ 208 return set_rtc_time(t); 209 } 210 211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 212 { 213 struct cmos_rtc *cmos = dev_get_drvdata(dev); 214 unsigned char rtc_control; 215 216 if (!is_valid_irq(cmos->irq)) 217 return -EIO; 218 219 /* Basic alarms only support hour, minute, and seconds fields. 220 * Some also support day and month, for alarms up to a year in 221 * the future. 222 */ 223 t->time.tm_mday = -1; 224 t->time.tm_mon = -1; 225 226 spin_lock_irq(&rtc_lock); 227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 230 231 if (cmos->day_alrm) { 232 /* ignore upper bits on readback per ACPI spec */ 233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 234 if (!t->time.tm_mday) 235 t->time.tm_mday = -1; 236 237 if (cmos->mon_alrm) { 238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 239 if (!t->time.tm_mon) 240 t->time.tm_mon = -1; 241 } 242 } 243 244 rtc_control = CMOS_READ(RTC_CONTROL); 245 spin_unlock_irq(&rtc_lock); 246 247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 248 if (((unsigned)t->time.tm_sec) < 0x60) 249 t->time.tm_sec = bcd2bin(t->time.tm_sec); 250 else 251 t->time.tm_sec = -1; 252 if (((unsigned)t->time.tm_min) < 0x60) 253 t->time.tm_min = bcd2bin(t->time.tm_min); 254 else 255 t->time.tm_min = -1; 256 if (((unsigned)t->time.tm_hour) < 0x24) 257 t->time.tm_hour = bcd2bin(t->time.tm_hour); 258 else 259 t->time.tm_hour = -1; 260 261 if (cmos->day_alrm) { 262 if (((unsigned)t->time.tm_mday) <= 0x31) 263 t->time.tm_mday = bcd2bin(t->time.tm_mday); 264 else 265 t->time.tm_mday = -1; 266 267 if (cmos->mon_alrm) { 268 if (((unsigned)t->time.tm_mon) <= 0x12) 269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 270 else 271 t->time.tm_mon = -1; 272 } 273 } 274 } 275 t->time.tm_year = -1; 276 277 t->enabled = !!(rtc_control & RTC_AIE); 278 t->pending = 0; 279 280 return 0; 281 } 282 283 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 284 { 285 unsigned char rtc_intr; 286 287 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 288 * allegedly some older rtcs need that to handle irqs properly 289 */ 290 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 291 292 if (is_hpet_enabled()) 293 return; 294 295 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 296 if (is_intr(rtc_intr)) 297 rtc_update_irq(cmos->rtc, 1, rtc_intr); 298 } 299 300 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 301 { 302 unsigned char rtc_control; 303 304 /* flush any pending IRQ status, notably for update irqs, 305 * before we enable new IRQs 306 */ 307 rtc_control = CMOS_READ(RTC_CONTROL); 308 cmos_checkintr(cmos, rtc_control); 309 310 rtc_control |= mask; 311 CMOS_WRITE(rtc_control, RTC_CONTROL); 312 hpet_set_rtc_irq_bit(mask); 313 314 cmos_checkintr(cmos, rtc_control); 315 } 316 317 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 318 { 319 unsigned char rtc_control; 320 321 rtc_control = CMOS_READ(RTC_CONTROL); 322 rtc_control &= ~mask; 323 CMOS_WRITE(rtc_control, RTC_CONTROL); 324 hpet_mask_rtc_irq_bit(mask); 325 326 cmos_checkintr(cmos, rtc_control); 327 } 328 329 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 330 { 331 struct cmos_rtc *cmos = dev_get_drvdata(dev); 332 unsigned char mon, mday, hrs, min, sec, rtc_control; 333 334 if (!is_valid_irq(cmos->irq)) 335 return -EIO; 336 337 mon = t->time.tm_mon + 1; 338 mday = t->time.tm_mday; 339 hrs = t->time.tm_hour; 340 min = t->time.tm_min; 341 sec = t->time.tm_sec; 342 343 rtc_control = CMOS_READ(RTC_CONTROL); 344 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 345 /* Writing 0xff means "don't care" or "match all". */ 346 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 347 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 348 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 349 min = (min < 60) ? bin2bcd(min) : 0xff; 350 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 351 } 352 353 spin_lock_irq(&rtc_lock); 354 355 /* next rtc irq must not be from previous alarm setting */ 356 cmos_irq_disable(cmos, RTC_AIE); 357 358 /* update alarm */ 359 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 360 CMOS_WRITE(min, RTC_MINUTES_ALARM); 361 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 362 363 /* the system may support an "enhanced" alarm */ 364 if (cmos->day_alrm) { 365 CMOS_WRITE(mday, cmos->day_alrm); 366 if (cmos->mon_alrm) 367 CMOS_WRITE(mon, cmos->mon_alrm); 368 } 369 370 /* FIXME the HPET alarm glue currently ignores day_alrm 371 * and mon_alrm ... 372 */ 373 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 374 375 if (t->enabled) 376 cmos_irq_enable(cmos, RTC_AIE); 377 378 spin_unlock_irq(&rtc_lock); 379 380 return 0; 381 } 382 383 /* 384 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes. 385 */ 386 static bool alarm_disable_quirk; 387 388 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id) 389 { 390 alarm_disable_quirk = true; 391 pr_info("BIOS has alarm-disable quirk - RTC alarms disabled\n"); 392 return 0; 393 } 394 395 static const struct dmi_system_id rtc_quirks[] __initconst = { 396 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */ 397 { 398 .callback = set_alarm_disable_quirk, 399 .ident = "IBM Truman", 400 .matches = { 401 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 402 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"), 403 }, 404 }, 405 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */ 406 { 407 .callback = set_alarm_disable_quirk, 408 .ident = "Gigabyte GA-990XA-UD3", 409 .matches = { 410 DMI_MATCH(DMI_SYS_VENDOR, 411 "Gigabyte Technology Co., Ltd."), 412 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"), 413 }, 414 }, 415 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */ 416 { 417 .callback = set_alarm_disable_quirk, 418 .ident = "Toshiba Satellite L300", 419 .matches = { 420 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 421 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"), 422 }, 423 }, 424 {} 425 }; 426 427 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 428 { 429 struct cmos_rtc *cmos = dev_get_drvdata(dev); 430 unsigned long flags; 431 432 if (!is_valid_irq(cmos->irq)) 433 return -EINVAL; 434 435 if (alarm_disable_quirk) 436 return 0; 437 438 spin_lock_irqsave(&rtc_lock, flags); 439 440 if (enabled) 441 cmos_irq_enable(cmos, RTC_AIE); 442 else 443 cmos_irq_disable(cmos, RTC_AIE); 444 445 spin_unlock_irqrestore(&rtc_lock, flags); 446 return 0; 447 } 448 449 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 450 451 static int cmos_procfs(struct device *dev, struct seq_file *seq) 452 { 453 struct cmos_rtc *cmos = dev_get_drvdata(dev); 454 unsigned char rtc_control, valid; 455 456 spin_lock_irq(&rtc_lock); 457 rtc_control = CMOS_READ(RTC_CONTROL); 458 valid = CMOS_READ(RTC_VALID); 459 spin_unlock_irq(&rtc_lock); 460 461 /* NOTE: at least ICH6 reports battery status using a different 462 * (non-RTC) bit; and SQWE is ignored on many current systems. 463 */ 464 seq_printf(seq, 465 "periodic_IRQ\t: %s\n" 466 "update_IRQ\t: %s\n" 467 "HPET_emulated\t: %s\n" 468 // "square_wave\t: %s\n" 469 "BCD\t\t: %s\n" 470 "DST_enable\t: %s\n" 471 "periodic_freq\t: %d\n" 472 "batt_status\t: %s\n", 473 (rtc_control & RTC_PIE) ? "yes" : "no", 474 (rtc_control & RTC_UIE) ? "yes" : "no", 475 is_hpet_enabled() ? "yes" : "no", 476 // (rtc_control & RTC_SQWE) ? "yes" : "no", 477 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 478 (rtc_control & RTC_DST_EN) ? "yes" : "no", 479 cmos->rtc->irq_freq, 480 (valid & RTC_VRT) ? "okay" : "dead"); 481 482 return 0; 483 } 484 485 #else 486 #define cmos_procfs NULL 487 #endif 488 489 static const struct rtc_class_ops cmos_rtc_ops = { 490 .read_time = cmos_read_time, 491 .set_time = cmos_set_time, 492 .read_alarm = cmos_read_alarm, 493 .set_alarm = cmos_set_alarm, 494 .proc = cmos_procfs, 495 .alarm_irq_enable = cmos_alarm_irq_enable, 496 }; 497 498 /*----------------------------------------------------------------*/ 499 500 /* 501 * All these chips have at least 64 bytes of address space, shared by 502 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 503 * by boot firmware. Modern chips have 128 or 256 bytes. 504 */ 505 506 #define NVRAM_OFFSET (RTC_REG_D + 1) 507 508 static ssize_t 509 cmos_nvram_read(struct file *filp, struct kobject *kobj, 510 struct bin_attribute *attr, 511 char *buf, loff_t off, size_t count) 512 { 513 int retval; 514 515 if (unlikely(off >= attr->size)) 516 return 0; 517 if (unlikely(off < 0)) 518 return -EINVAL; 519 if ((off + count) > attr->size) 520 count = attr->size - off; 521 522 off += NVRAM_OFFSET; 523 spin_lock_irq(&rtc_lock); 524 for (retval = 0; count; count--, off++, retval++) { 525 if (off < 128) 526 *buf++ = CMOS_READ(off); 527 else if (can_bank2) 528 *buf++ = cmos_read_bank2(off); 529 else 530 break; 531 } 532 spin_unlock_irq(&rtc_lock); 533 534 return retval; 535 } 536 537 static ssize_t 538 cmos_nvram_write(struct file *filp, struct kobject *kobj, 539 struct bin_attribute *attr, 540 char *buf, loff_t off, size_t count) 541 { 542 struct cmos_rtc *cmos; 543 int retval; 544 545 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 546 if (unlikely(off >= attr->size)) 547 return -EFBIG; 548 if (unlikely(off < 0)) 549 return -EINVAL; 550 if ((off + count) > attr->size) 551 count = attr->size - off; 552 553 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 554 * checksum on part of the NVRAM data. That's currently ignored 555 * here. If userspace is smart enough to know what fields of 556 * NVRAM to update, updating checksums is also part of its job. 557 */ 558 off += NVRAM_OFFSET; 559 spin_lock_irq(&rtc_lock); 560 for (retval = 0; count; count--, off++, retval++) { 561 /* don't trash RTC registers */ 562 if (off == cmos->day_alrm 563 || off == cmos->mon_alrm 564 || off == cmos->century) 565 buf++; 566 else if (off < 128) 567 CMOS_WRITE(*buf++, off); 568 else if (can_bank2) 569 cmos_write_bank2(*buf++, off); 570 else 571 break; 572 } 573 spin_unlock_irq(&rtc_lock); 574 575 return retval; 576 } 577 578 static struct bin_attribute nvram = { 579 .attr = { 580 .name = "nvram", 581 .mode = S_IRUGO | S_IWUSR, 582 }, 583 584 .read = cmos_nvram_read, 585 .write = cmos_nvram_write, 586 /* size gets set up later */ 587 }; 588 589 /*----------------------------------------------------------------*/ 590 591 static struct cmos_rtc cmos_rtc; 592 593 static irqreturn_t cmos_interrupt(int irq, void *p) 594 { 595 u8 irqstat; 596 u8 rtc_control; 597 598 spin_lock(&rtc_lock); 599 600 /* When the HPET interrupt handler calls us, the interrupt 601 * status is passed as arg1 instead of the irq number. But 602 * always clear irq status, even when HPET is in the way. 603 * 604 * Note that HPET and RTC are almost certainly out of phase, 605 * giving different IRQ status ... 606 */ 607 irqstat = CMOS_READ(RTC_INTR_FLAGS); 608 rtc_control = CMOS_READ(RTC_CONTROL); 609 if (is_hpet_enabled()) 610 irqstat = (unsigned long)irq & 0xF0; 611 612 /* If we were suspended, RTC_CONTROL may not be accurate since the 613 * bios may have cleared it. 614 */ 615 if (!cmos_rtc.suspend_ctrl) 616 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 617 else 618 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 619 620 /* All Linux RTC alarms should be treated as if they were oneshot. 621 * Similar code may be needed in system wakeup paths, in case the 622 * alarm woke the system. 623 */ 624 if (irqstat & RTC_AIE) { 625 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 626 rtc_control &= ~RTC_AIE; 627 CMOS_WRITE(rtc_control, RTC_CONTROL); 628 hpet_mask_rtc_irq_bit(RTC_AIE); 629 CMOS_READ(RTC_INTR_FLAGS); 630 } 631 spin_unlock(&rtc_lock); 632 633 if (is_intr(irqstat)) { 634 rtc_update_irq(p, 1, irqstat); 635 return IRQ_HANDLED; 636 } else 637 return IRQ_NONE; 638 } 639 640 #ifdef CONFIG_PNP 641 #define INITSECTION 642 643 #else 644 #define INITSECTION __init 645 #endif 646 647 static int INITSECTION 648 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 649 { 650 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 651 int retval = 0; 652 unsigned char rtc_control; 653 unsigned address_space; 654 u32 flags = 0; 655 656 /* there can be only one ... */ 657 if (cmos_rtc.dev) 658 return -EBUSY; 659 660 if (!ports) 661 return -ENODEV; 662 663 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 664 * 665 * REVISIT non-x86 systems may instead use memory space resources 666 * (needing ioremap etc), not i/o space resources like this ... 667 */ 668 if (RTC_IOMAPPED) 669 ports = request_region(ports->start, resource_size(ports), 670 driver_name); 671 else 672 ports = request_mem_region(ports->start, resource_size(ports), 673 driver_name); 674 if (!ports) { 675 dev_dbg(dev, "i/o registers already in use\n"); 676 return -EBUSY; 677 } 678 679 cmos_rtc.irq = rtc_irq; 680 cmos_rtc.iomem = ports; 681 682 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 683 * driver did, but don't reject unknown configs. Old hardware 684 * won't address 128 bytes. Newer chips have multiple banks, 685 * though they may not be listed in one I/O resource. 686 */ 687 #if defined(CONFIG_ATARI) 688 address_space = 64; 689 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 690 || defined(__sparc__) || defined(__mips__) \ 691 || defined(__powerpc__) 692 address_space = 128; 693 #else 694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 695 address_space = 128; 696 #endif 697 if (can_bank2 && ports->end > (ports->start + 1)) 698 address_space = 256; 699 700 /* For ACPI systems extension info comes from the FADT. On others, 701 * board specific setup provides it as appropriate. Systems where 702 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 703 * some almost-clones) can provide hooks to make that behave. 704 * 705 * Note that ACPI doesn't preclude putting these registers into 706 * "extended" areas of the chip, including some that we won't yet 707 * expect CMOS_READ and friends to handle. 708 */ 709 if (info) { 710 if (info->flags) 711 flags = info->flags; 712 if (info->address_space) 713 address_space = info->address_space; 714 715 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 716 cmos_rtc.day_alrm = info->rtc_day_alarm; 717 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 718 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 719 if (info->rtc_century && info->rtc_century < 128) 720 cmos_rtc.century = info->rtc_century; 721 722 if (info->wake_on && info->wake_off) { 723 cmos_rtc.wake_on = info->wake_on; 724 cmos_rtc.wake_off = info->wake_off; 725 } 726 } 727 728 cmos_rtc.dev = dev; 729 dev_set_drvdata(dev, &cmos_rtc); 730 731 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 732 &cmos_rtc_ops, THIS_MODULE); 733 if (IS_ERR(cmos_rtc.rtc)) { 734 retval = PTR_ERR(cmos_rtc.rtc); 735 goto cleanup0; 736 } 737 738 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 739 740 spin_lock_irq(&rtc_lock); 741 742 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 743 /* force periodic irq to CMOS reset default of 1024Hz; 744 * 745 * REVISIT it's been reported that at least one x86_64 ALI 746 * mobo doesn't use 32KHz here ... for portability we might 747 * need to do something about other clock frequencies. 748 */ 749 cmos_rtc.rtc->irq_freq = 1024; 750 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 751 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 752 } 753 754 /* disable irqs */ 755 if (is_valid_irq(rtc_irq)) 756 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 757 758 rtc_control = CMOS_READ(RTC_CONTROL); 759 760 spin_unlock_irq(&rtc_lock); 761 762 /* FIXME: 763 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 764 */ 765 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 766 dev_warn(dev, "only 24-hr supported\n"); 767 retval = -ENXIO; 768 goto cleanup1; 769 } 770 771 if (is_valid_irq(rtc_irq)) { 772 irq_handler_t rtc_cmos_int_handler; 773 774 if (is_hpet_enabled()) { 775 rtc_cmos_int_handler = hpet_rtc_interrupt; 776 retval = hpet_register_irq_handler(cmos_interrupt); 777 if (retval) { 778 dev_warn(dev, "hpet_register_irq_handler " 779 " failed in rtc_init()."); 780 goto cleanup1; 781 } 782 } else 783 rtc_cmos_int_handler = cmos_interrupt; 784 785 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 786 0, dev_name(&cmos_rtc.rtc->dev), 787 cmos_rtc.rtc); 788 if (retval < 0) { 789 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 790 goto cleanup1; 791 } 792 } 793 hpet_rtc_timer_init(); 794 795 /* export at least the first block of NVRAM */ 796 nvram.size = address_space - NVRAM_OFFSET; 797 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 798 if (retval < 0) { 799 dev_dbg(dev, "can't create nvram file? %d\n", retval); 800 goto cleanup2; 801 } 802 803 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 804 !is_valid_irq(rtc_irq) ? "no alarms" : 805 cmos_rtc.mon_alrm ? "alarms up to one year" : 806 cmos_rtc.day_alrm ? "alarms up to one month" : 807 "alarms up to one day", 808 cmos_rtc.century ? ", y3k" : "", 809 nvram.size, 810 is_hpet_enabled() ? ", hpet irqs" : ""); 811 812 return 0; 813 814 cleanup2: 815 if (is_valid_irq(rtc_irq)) 816 free_irq(rtc_irq, cmos_rtc.rtc); 817 cleanup1: 818 cmos_rtc.dev = NULL; 819 rtc_device_unregister(cmos_rtc.rtc); 820 cleanup0: 821 if (RTC_IOMAPPED) 822 release_region(ports->start, resource_size(ports)); 823 else 824 release_mem_region(ports->start, resource_size(ports)); 825 return retval; 826 } 827 828 static void cmos_do_shutdown(int rtc_irq) 829 { 830 spin_lock_irq(&rtc_lock); 831 if (is_valid_irq(rtc_irq)) 832 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 833 spin_unlock_irq(&rtc_lock); 834 } 835 836 static void __exit cmos_do_remove(struct device *dev) 837 { 838 struct cmos_rtc *cmos = dev_get_drvdata(dev); 839 struct resource *ports; 840 841 cmos_do_shutdown(cmos->irq); 842 843 sysfs_remove_bin_file(&dev->kobj, &nvram); 844 845 if (is_valid_irq(cmos->irq)) { 846 free_irq(cmos->irq, cmos->rtc); 847 hpet_unregister_irq_handler(cmos_interrupt); 848 } 849 850 rtc_device_unregister(cmos->rtc); 851 cmos->rtc = NULL; 852 853 ports = cmos->iomem; 854 if (RTC_IOMAPPED) 855 release_region(ports->start, resource_size(ports)); 856 else 857 release_mem_region(ports->start, resource_size(ports)); 858 cmos->iomem = NULL; 859 860 cmos->dev = NULL; 861 } 862 863 #ifdef CONFIG_PM 864 865 static int cmos_suspend(struct device *dev) 866 { 867 struct cmos_rtc *cmos = dev_get_drvdata(dev); 868 unsigned char tmp; 869 870 /* only the alarm might be a wakeup event source */ 871 spin_lock_irq(&rtc_lock); 872 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 873 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 874 unsigned char mask; 875 876 if (device_may_wakeup(dev)) 877 mask = RTC_IRQMASK & ~RTC_AIE; 878 else 879 mask = RTC_IRQMASK; 880 tmp &= ~mask; 881 CMOS_WRITE(tmp, RTC_CONTROL); 882 hpet_mask_rtc_irq_bit(mask); 883 884 cmos_checkintr(cmos, tmp); 885 } 886 spin_unlock_irq(&rtc_lock); 887 888 if (tmp & RTC_AIE) { 889 cmos->enabled_wake = 1; 890 if (cmos->wake_on) 891 cmos->wake_on(dev); 892 else 893 enable_irq_wake(cmos->irq); 894 } 895 896 dev_dbg(dev, "suspend%s, ctrl %02x\n", 897 (tmp & RTC_AIE) ? ", alarm may wake" : "", 898 tmp); 899 900 return 0; 901 } 902 903 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 904 * after a detour through G3 "mechanical off", although the ACPI spec 905 * says wakeup should only work from G1/S4 "hibernate". To most users, 906 * distinctions between S4 and S5 are pointless. So when the hardware 907 * allows, don't draw that distinction. 908 */ 909 static inline int cmos_poweroff(struct device *dev) 910 { 911 return cmos_suspend(dev); 912 } 913 914 #ifdef CONFIG_PM_SLEEP 915 916 static int cmos_resume(struct device *dev) 917 { 918 struct cmos_rtc *cmos = dev_get_drvdata(dev); 919 unsigned char tmp; 920 921 if (cmos->enabled_wake) { 922 if (cmos->wake_off) 923 cmos->wake_off(dev); 924 else 925 disable_irq_wake(cmos->irq); 926 cmos->enabled_wake = 0; 927 } 928 929 spin_lock_irq(&rtc_lock); 930 tmp = cmos->suspend_ctrl; 931 cmos->suspend_ctrl = 0; 932 /* re-enable any irqs previously active */ 933 if (tmp & RTC_IRQMASK) { 934 unsigned char mask; 935 936 if (device_may_wakeup(dev)) 937 hpet_rtc_timer_init(); 938 939 do { 940 CMOS_WRITE(tmp, RTC_CONTROL); 941 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 942 943 mask = CMOS_READ(RTC_INTR_FLAGS); 944 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 945 if (!is_hpet_enabled() || !is_intr(mask)) 946 break; 947 948 /* force one-shot behavior if HPET blocked 949 * the wake alarm's irq 950 */ 951 rtc_update_irq(cmos->rtc, 1, mask); 952 tmp &= ~RTC_AIE; 953 hpet_mask_rtc_irq_bit(RTC_AIE); 954 } while (mask & RTC_AIE); 955 } 956 spin_unlock_irq(&rtc_lock); 957 958 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 959 960 return 0; 961 } 962 963 #endif 964 #else 965 966 static inline int cmos_poweroff(struct device *dev) 967 { 968 return -ENOSYS; 969 } 970 971 #endif 972 973 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 974 975 /*----------------------------------------------------------------*/ 976 977 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 978 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 979 * probably list them in similar PNPBIOS tables; so PNP is more common. 980 * 981 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 982 * predate even PNPBIOS should set up platform_bus devices. 983 */ 984 985 #ifdef CONFIG_ACPI 986 987 #include <linux/acpi.h> 988 989 static u32 rtc_handler(void *context) 990 { 991 struct device *dev = context; 992 993 pm_wakeup_event(dev, 0); 994 acpi_clear_event(ACPI_EVENT_RTC); 995 acpi_disable_event(ACPI_EVENT_RTC, 0); 996 return ACPI_INTERRUPT_HANDLED; 997 } 998 999 static inline void rtc_wake_setup(struct device *dev) 1000 { 1001 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1002 /* 1003 * After the RTC handler is installed, the Fixed_RTC event should 1004 * be disabled. Only when the RTC alarm is set will it be enabled. 1005 */ 1006 acpi_clear_event(ACPI_EVENT_RTC); 1007 acpi_disable_event(ACPI_EVENT_RTC, 0); 1008 } 1009 1010 static void rtc_wake_on(struct device *dev) 1011 { 1012 acpi_clear_event(ACPI_EVENT_RTC); 1013 acpi_enable_event(ACPI_EVENT_RTC, 0); 1014 } 1015 1016 static void rtc_wake_off(struct device *dev) 1017 { 1018 acpi_disable_event(ACPI_EVENT_RTC, 0); 1019 } 1020 1021 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1022 * its device node and pass extra config data. This helps its driver use 1023 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1024 * that this board's RTC is wakeup-capable (per ACPI spec). 1025 */ 1026 static struct cmos_rtc_board_info acpi_rtc_info; 1027 1028 static void cmos_wake_setup(struct device *dev) 1029 { 1030 if (acpi_disabled) 1031 return; 1032 1033 rtc_wake_setup(dev); 1034 acpi_rtc_info.wake_on = rtc_wake_on; 1035 acpi_rtc_info.wake_off = rtc_wake_off; 1036 1037 /* workaround bug in some ACPI tables */ 1038 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1039 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1040 acpi_gbl_FADT.month_alarm); 1041 acpi_gbl_FADT.month_alarm = 0; 1042 } 1043 1044 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1045 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1046 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1047 1048 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1049 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1050 dev_info(dev, "RTC can wake from S4\n"); 1051 1052 dev->platform_data = &acpi_rtc_info; 1053 1054 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1055 device_init_wakeup(dev, 1); 1056 } 1057 1058 #else 1059 1060 static void cmos_wake_setup(struct device *dev) 1061 { 1062 } 1063 1064 #endif 1065 1066 #ifdef CONFIG_PNP 1067 1068 #include <linux/pnp.h> 1069 1070 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1071 { 1072 cmos_wake_setup(&pnp->dev); 1073 1074 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1075 /* Some machines contain a PNP entry for the RTC, but 1076 * don't define the IRQ. It should always be safe to 1077 * hardcode it in these cases 1078 */ 1079 return cmos_do_probe(&pnp->dev, 1080 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1081 else 1082 return cmos_do_probe(&pnp->dev, 1083 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1084 pnp_irq(pnp, 0)); 1085 } 1086 1087 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1088 { 1089 cmos_do_remove(&pnp->dev); 1090 } 1091 1092 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1093 { 1094 struct device *dev = &pnp->dev; 1095 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1096 1097 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev)) 1098 return; 1099 1100 cmos_do_shutdown(cmos->irq); 1101 } 1102 1103 static const struct pnp_device_id rtc_ids[] = { 1104 { .id = "PNP0b00", }, 1105 { .id = "PNP0b01", }, 1106 { .id = "PNP0b02", }, 1107 { }, 1108 }; 1109 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1110 1111 static struct pnp_driver cmos_pnp_driver = { 1112 .name = (char *) driver_name, 1113 .id_table = rtc_ids, 1114 .probe = cmos_pnp_probe, 1115 .remove = __exit_p(cmos_pnp_remove), 1116 .shutdown = cmos_pnp_shutdown, 1117 1118 /* flag ensures resume() gets called, and stops syslog spam */ 1119 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1120 .driver = { 1121 .pm = &cmos_pm_ops, 1122 }, 1123 }; 1124 1125 #endif /* CONFIG_PNP */ 1126 1127 #ifdef CONFIG_OF 1128 static const struct of_device_id of_cmos_match[] = { 1129 { 1130 .compatible = "motorola,mc146818", 1131 }, 1132 { }, 1133 }; 1134 MODULE_DEVICE_TABLE(of, of_cmos_match); 1135 1136 static __init void cmos_of_init(struct platform_device *pdev) 1137 { 1138 struct device_node *node = pdev->dev.of_node; 1139 struct rtc_time time; 1140 int ret; 1141 const __be32 *val; 1142 1143 if (!node) 1144 return; 1145 1146 val = of_get_property(node, "ctrl-reg", NULL); 1147 if (val) 1148 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1149 1150 val = of_get_property(node, "freq-reg", NULL); 1151 if (val) 1152 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1153 1154 get_rtc_time(&time); 1155 ret = rtc_valid_tm(&time); 1156 if (ret) { 1157 struct rtc_time def_time = { 1158 .tm_year = 1, 1159 .tm_mday = 1, 1160 }; 1161 set_rtc_time(&def_time); 1162 } 1163 } 1164 #else 1165 static inline void cmos_of_init(struct platform_device *pdev) {} 1166 #endif 1167 /*----------------------------------------------------------------*/ 1168 1169 /* Platform setup should have set up an RTC device, when PNP is 1170 * unavailable ... this could happen even on (older) PCs. 1171 */ 1172 1173 static int __init cmos_platform_probe(struct platform_device *pdev) 1174 { 1175 struct resource *resource; 1176 int irq; 1177 1178 cmos_of_init(pdev); 1179 cmos_wake_setup(&pdev->dev); 1180 1181 if (RTC_IOMAPPED) 1182 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1183 else 1184 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1185 irq = platform_get_irq(pdev, 0); 1186 if (irq < 0) 1187 irq = -1; 1188 1189 return cmos_do_probe(&pdev->dev, resource, irq); 1190 } 1191 1192 static int __exit cmos_platform_remove(struct platform_device *pdev) 1193 { 1194 cmos_do_remove(&pdev->dev); 1195 return 0; 1196 } 1197 1198 static void cmos_platform_shutdown(struct platform_device *pdev) 1199 { 1200 struct device *dev = &pdev->dev; 1201 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1202 1203 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev)) 1204 return; 1205 1206 cmos_do_shutdown(cmos->irq); 1207 } 1208 1209 /* work with hotplug and coldplug */ 1210 MODULE_ALIAS("platform:rtc_cmos"); 1211 1212 static struct platform_driver cmos_platform_driver = { 1213 .remove = __exit_p(cmos_platform_remove), 1214 .shutdown = cmos_platform_shutdown, 1215 .driver = { 1216 .name = driver_name, 1217 #ifdef CONFIG_PM 1218 .pm = &cmos_pm_ops, 1219 #endif 1220 .of_match_table = of_match_ptr(of_cmos_match), 1221 } 1222 }; 1223 1224 #ifdef CONFIG_PNP 1225 static bool pnp_driver_registered; 1226 #endif 1227 static bool platform_driver_registered; 1228 1229 static int __init cmos_init(void) 1230 { 1231 int retval = 0; 1232 1233 #ifdef CONFIG_PNP 1234 retval = pnp_register_driver(&cmos_pnp_driver); 1235 if (retval == 0) 1236 pnp_driver_registered = true; 1237 #endif 1238 1239 if (!cmos_rtc.dev) { 1240 retval = platform_driver_probe(&cmos_platform_driver, 1241 cmos_platform_probe); 1242 if (retval == 0) 1243 platform_driver_registered = true; 1244 } 1245 1246 dmi_check_system(rtc_quirks); 1247 1248 if (retval == 0) 1249 return 0; 1250 1251 #ifdef CONFIG_PNP 1252 if (pnp_driver_registered) 1253 pnp_unregister_driver(&cmos_pnp_driver); 1254 #endif 1255 return retval; 1256 } 1257 module_init(cmos_init); 1258 1259 static void __exit cmos_exit(void) 1260 { 1261 #ifdef CONFIG_PNP 1262 if (pnp_driver_registered) 1263 pnp_unregister_driver(&cmos_pnp_driver); 1264 #endif 1265 if (platform_driver_registered) 1266 platform_driver_unregister(&cmos_platform_driver); 1267 } 1268 module_exit(cmos_exit); 1269 1270 1271 MODULE_AUTHOR("David Brownell"); 1272 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1273 MODULE_LICENSE("GPL"); 1274