1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 46 #include <linux/mc146818rtc.h> 47 48 struct cmos_rtc { 49 struct rtc_device *rtc; 50 struct device *dev; 51 int irq; 52 struct resource *iomem; 53 time64_t alarm_expires; 54 55 void (*wake_on)(struct device *); 56 void (*wake_off)(struct device *); 57 58 u8 enabled_wake; 59 u8 suspend_ctrl; 60 61 /* newer hardware extends the original register set */ 62 u8 day_alrm; 63 u8 mon_alrm; 64 u8 century; 65 66 struct rtc_wkalrm saved_wkalrm; 67 }; 68 69 /* both platform and pnp busses use negative numbers for invalid irqs */ 70 #define is_valid_irq(n) ((n) > 0) 71 72 static const char driver_name[] = "rtc_cmos"; 73 74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 77 */ 78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 79 80 static inline int is_intr(u8 rtc_intr) 81 { 82 if (!(rtc_intr & RTC_IRQF)) 83 return 0; 84 return rtc_intr & RTC_IRQMASK; 85 } 86 87 /*----------------------------------------------------------------*/ 88 89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 91 * used in a broken "legacy replacement" mode. The breakage includes 92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 93 * other (better) use. 94 * 95 * When that broken mode is in use, platform glue provides a partial 96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 97 * want to use HPET for anything except those IRQs though... 98 */ 99 #ifdef CONFIG_HPET_EMULATE_RTC 100 #include <asm/hpet.h> 101 #else 102 103 static inline int is_hpet_enabled(void) 104 { 105 return 0; 106 } 107 108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 114 { 115 return 0; 116 } 117 118 static inline int 119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 120 { 121 return 0; 122 } 123 124 static inline int hpet_set_periodic_freq(unsigned long freq) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_dropped_irq(void) 130 { 131 return 0; 132 } 133 134 static inline int hpet_rtc_timer_init(void) 135 { 136 return 0; 137 } 138 139 extern irq_handler_t hpet_rtc_interrupt; 140 141 static inline int hpet_register_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 147 { 148 return 0; 149 } 150 151 #endif 152 153 /*----------------------------------------------------------------*/ 154 155 #ifdef RTC_PORT 156 157 /* Most newer x86 systems have two register banks, the first used 158 * for RTC and NVRAM and the second only for NVRAM. Caller must 159 * own rtc_lock ... and we won't worry about access during NMI. 160 */ 161 #define can_bank2 true 162 163 static inline unsigned char cmos_read_bank2(unsigned char addr) 164 { 165 outb(addr, RTC_PORT(2)); 166 return inb(RTC_PORT(3)); 167 } 168 169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 170 { 171 outb(addr, RTC_PORT(2)); 172 outb(val, RTC_PORT(3)); 173 } 174 175 #else 176 177 #define can_bank2 false 178 179 static inline unsigned char cmos_read_bank2(unsigned char addr) 180 { 181 return 0; 182 } 183 184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 185 { 186 } 187 188 #endif 189 190 /*----------------------------------------------------------------*/ 191 192 static int cmos_read_time(struct device *dev, struct rtc_time *t) 193 { 194 /* 195 * If pm_trace abused the RTC for storage, set the timespec to 0, 196 * which tells the caller that this RTC value is unusable. 197 */ 198 if (!pm_trace_rtc_valid()) 199 return -EIO; 200 201 /* REVISIT: if the clock has a "century" register, use 202 * that instead of the heuristic in mc146818_get_time(). 203 * That'll make Y3K compatility (year > 2070) easy! 204 */ 205 mc146818_get_time(t); 206 return 0; 207 } 208 209 static int cmos_set_time(struct device *dev, struct rtc_time *t) 210 { 211 /* REVISIT: set the "century" register if available 212 * 213 * NOTE: this ignores the issue whereby updating the seconds 214 * takes effect exactly 500ms after we write the register. 215 * (Also queueing and other delays before we get this far.) 216 */ 217 return mc146818_set_time(t); 218 } 219 220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 221 { 222 struct cmos_rtc *cmos = dev_get_drvdata(dev); 223 unsigned char rtc_control; 224 225 if (!is_valid_irq(cmos->irq)) 226 return -EIO; 227 228 /* Basic alarms only support hour, minute, and seconds fields. 229 * Some also support day and month, for alarms up to a year in 230 * the future. 231 */ 232 233 spin_lock_irq(&rtc_lock); 234 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 235 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 236 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 237 238 if (cmos->day_alrm) { 239 /* ignore upper bits on readback per ACPI spec */ 240 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 241 if (!t->time.tm_mday) 242 t->time.tm_mday = -1; 243 244 if (cmos->mon_alrm) { 245 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 246 if (!t->time.tm_mon) 247 t->time.tm_mon = -1; 248 } 249 } 250 251 rtc_control = CMOS_READ(RTC_CONTROL); 252 spin_unlock_irq(&rtc_lock); 253 254 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 255 if (((unsigned)t->time.tm_sec) < 0x60) 256 t->time.tm_sec = bcd2bin(t->time.tm_sec); 257 else 258 t->time.tm_sec = -1; 259 if (((unsigned)t->time.tm_min) < 0x60) 260 t->time.tm_min = bcd2bin(t->time.tm_min); 261 else 262 t->time.tm_min = -1; 263 if (((unsigned)t->time.tm_hour) < 0x24) 264 t->time.tm_hour = bcd2bin(t->time.tm_hour); 265 else 266 t->time.tm_hour = -1; 267 268 if (cmos->day_alrm) { 269 if (((unsigned)t->time.tm_mday) <= 0x31) 270 t->time.tm_mday = bcd2bin(t->time.tm_mday); 271 else 272 t->time.tm_mday = -1; 273 274 if (cmos->mon_alrm) { 275 if (((unsigned)t->time.tm_mon) <= 0x12) 276 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 277 else 278 t->time.tm_mon = -1; 279 } 280 } 281 } 282 283 t->enabled = !!(rtc_control & RTC_AIE); 284 t->pending = 0; 285 286 return 0; 287 } 288 289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 290 { 291 unsigned char rtc_intr; 292 293 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 294 * allegedly some older rtcs need that to handle irqs properly 295 */ 296 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 297 298 if (is_hpet_enabled()) 299 return; 300 301 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 302 if (is_intr(rtc_intr)) 303 rtc_update_irq(cmos->rtc, 1, rtc_intr); 304 } 305 306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 307 { 308 unsigned char rtc_control; 309 310 /* flush any pending IRQ status, notably for update irqs, 311 * before we enable new IRQs 312 */ 313 rtc_control = CMOS_READ(RTC_CONTROL); 314 cmos_checkintr(cmos, rtc_control); 315 316 rtc_control |= mask; 317 CMOS_WRITE(rtc_control, RTC_CONTROL); 318 hpet_set_rtc_irq_bit(mask); 319 320 cmos_checkintr(cmos, rtc_control); 321 } 322 323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 324 { 325 unsigned char rtc_control; 326 327 rtc_control = CMOS_READ(RTC_CONTROL); 328 rtc_control &= ~mask; 329 CMOS_WRITE(rtc_control, RTC_CONTROL); 330 hpet_mask_rtc_irq_bit(mask); 331 332 cmos_checkintr(cmos, rtc_control); 333 } 334 335 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 336 { 337 struct cmos_rtc *cmos = dev_get_drvdata(dev); 338 struct rtc_time now; 339 340 cmos_read_time(dev, &now); 341 342 if (!cmos->day_alrm) { 343 time64_t t_max_date; 344 time64_t t_alrm; 345 346 t_max_date = rtc_tm_to_time64(&now); 347 t_max_date += 24 * 60 * 60 - 1; 348 t_alrm = rtc_tm_to_time64(&t->time); 349 if (t_alrm > t_max_date) { 350 dev_err(dev, 351 "Alarms can be up to one day in the future\n"); 352 return -EINVAL; 353 } 354 } else if (!cmos->mon_alrm) { 355 struct rtc_time max_date = now; 356 time64_t t_max_date; 357 time64_t t_alrm; 358 int max_mday; 359 360 if (max_date.tm_mon == 11) { 361 max_date.tm_mon = 0; 362 max_date.tm_year += 1; 363 } else { 364 max_date.tm_mon += 1; 365 } 366 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 367 if (max_date.tm_mday > max_mday) 368 max_date.tm_mday = max_mday; 369 370 t_max_date = rtc_tm_to_time64(&max_date); 371 t_max_date -= 1; 372 t_alrm = rtc_tm_to_time64(&t->time); 373 if (t_alrm > t_max_date) { 374 dev_err(dev, 375 "Alarms can be up to one month in the future\n"); 376 return -EINVAL; 377 } 378 } else { 379 struct rtc_time max_date = now; 380 time64_t t_max_date; 381 time64_t t_alrm; 382 int max_mday; 383 384 max_date.tm_year += 1; 385 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 386 if (max_date.tm_mday > max_mday) 387 max_date.tm_mday = max_mday; 388 389 t_max_date = rtc_tm_to_time64(&max_date); 390 t_max_date -= 1; 391 t_alrm = rtc_tm_to_time64(&t->time); 392 if (t_alrm > t_max_date) { 393 dev_err(dev, 394 "Alarms can be up to one year in the future\n"); 395 return -EINVAL; 396 } 397 } 398 399 return 0; 400 } 401 402 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 403 { 404 struct cmos_rtc *cmos = dev_get_drvdata(dev); 405 unsigned char mon, mday, hrs, min, sec, rtc_control; 406 int ret; 407 408 if (!is_valid_irq(cmos->irq)) 409 return -EIO; 410 411 ret = cmos_validate_alarm(dev, t); 412 if (ret < 0) 413 return ret; 414 415 mon = t->time.tm_mon + 1; 416 mday = t->time.tm_mday; 417 hrs = t->time.tm_hour; 418 min = t->time.tm_min; 419 sec = t->time.tm_sec; 420 421 rtc_control = CMOS_READ(RTC_CONTROL); 422 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 423 /* Writing 0xff means "don't care" or "match all". */ 424 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 425 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 426 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 427 min = (min < 60) ? bin2bcd(min) : 0xff; 428 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 429 } 430 431 spin_lock_irq(&rtc_lock); 432 433 /* next rtc irq must not be from previous alarm setting */ 434 cmos_irq_disable(cmos, RTC_AIE); 435 436 /* update alarm */ 437 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 438 CMOS_WRITE(min, RTC_MINUTES_ALARM); 439 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 440 441 /* the system may support an "enhanced" alarm */ 442 if (cmos->day_alrm) { 443 CMOS_WRITE(mday, cmos->day_alrm); 444 if (cmos->mon_alrm) 445 CMOS_WRITE(mon, cmos->mon_alrm); 446 } 447 448 /* FIXME the HPET alarm glue currently ignores day_alrm 449 * and mon_alrm ... 450 */ 451 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 452 453 if (t->enabled) 454 cmos_irq_enable(cmos, RTC_AIE); 455 456 spin_unlock_irq(&rtc_lock); 457 458 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 459 460 return 0; 461 } 462 463 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 464 { 465 struct cmos_rtc *cmos = dev_get_drvdata(dev); 466 unsigned long flags; 467 468 if (!is_valid_irq(cmos->irq)) 469 return -EINVAL; 470 471 spin_lock_irqsave(&rtc_lock, flags); 472 473 if (enabled) 474 cmos_irq_enable(cmos, RTC_AIE); 475 else 476 cmos_irq_disable(cmos, RTC_AIE); 477 478 spin_unlock_irqrestore(&rtc_lock, flags); 479 return 0; 480 } 481 482 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 483 484 static int cmos_procfs(struct device *dev, struct seq_file *seq) 485 { 486 struct cmos_rtc *cmos = dev_get_drvdata(dev); 487 unsigned char rtc_control, valid; 488 489 spin_lock_irq(&rtc_lock); 490 rtc_control = CMOS_READ(RTC_CONTROL); 491 valid = CMOS_READ(RTC_VALID); 492 spin_unlock_irq(&rtc_lock); 493 494 /* NOTE: at least ICH6 reports battery status using a different 495 * (non-RTC) bit; and SQWE is ignored on many current systems. 496 */ 497 seq_printf(seq, 498 "periodic_IRQ\t: %s\n" 499 "update_IRQ\t: %s\n" 500 "HPET_emulated\t: %s\n" 501 // "square_wave\t: %s\n" 502 "BCD\t\t: %s\n" 503 "DST_enable\t: %s\n" 504 "periodic_freq\t: %d\n" 505 "batt_status\t: %s\n", 506 (rtc_control & RTC_PIE) ? "yes" : "no", 507 (rtc_control & RTC_UIE) ? "yes" : "no", 508 is_hpet_enabled() ? "yes" : "no", 509 // (rtc_control & RTC_SQWE) ? "yes" : "no", 510 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 511 (rtc_control & RTC_DST_EN) ? "yes" : "no", 512 cmos->rtc->irq_freq, 513 (valid & RTC_VRT) ? "okay" : "dead"); 514 515 return 0; 516 } 517 518 #else 519 #define cmos_procfs NULL 520 #endif 521 522 static const struct rtc_class_ops cmos_rtc_ops = { 523 .read_time = cmos_read_time, 524 .set_time = cmos_set_time, 525 .read_alarm = cmos_read_alarm, 526 .set_alarm = cmos_set_alarm, 527 .proc = cmos_procfs, 528 .alarm_irq_enable = cmos_alarm_irq_enable, 529 }; 530 531 /*----------------------------------------------------------------*/ 532 533 /* 534 * All these chips have at least 64 bytes of address space, shared by 535 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 536 * by boot firmware. Modern chips have 128 or 256 bytes. 537 */ 538 539 #define NVRAM_OFFSET (RTC_REG_D + 1) 540 541 static ssize_t 542 cmos_nvram_read(struct file *filp, struct kobject *kobj, 543 struct bin_attribute *attr, 544 char *buf, loff_t off, size_t count) 545 { 546 int retval; 547 548 off += NVRAM_OFFSET; 549 spin_lock_irq(&rtc_lock); 550 for (retval = 0; count; count--, off++, retval++) { 551 if (off < 128) 552 *buf++ = CMOS_READ(off); 553 else if (can_bank2) 554 *buf++ = cmos_read_bank2(off); 555 else 556 break; 557 } 558 spin_unlock_irq(&rtc_lock); 559 560 return retval; 561 } 562 563 static ssize_t 564 cmos_nvram_write(struct file *filp, struct kobject *kobj, 565 struct bin_attribute *attr, 566 char *buf, loff_t off, size_t count) 567 { 568 struct cmos_rtc *cmos; 569 int retval; 570 571 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 572 573 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 574 * checksum on part of the NVRAM data. That's currently ignored 575 * here. If userspace is smart enough to know what fields of 576 * NVRAM to update, updating checksums is also part of its job. 577 */ 578 off += NVRAM_OFFSET; 579 spin_lock_irq(&rtc_lock); 580 for (retval = 0; count; count--, off++, retval++) { 581 /* don't trash RTC registers */ 582 if (off == cmos->day_alrm 583 || off == cmos->mon_alrm 584 || off == cmos->century) 585 buf++; 586 else if (off < 128) 587 CMOS_WRITE(*buf++, off); 588 else if (can_bank2) 589 cmos_write_bank2(*buf++, off); 590 else 591 break; 592 } 593 spin_unlock_irq(&rtc_lock); 594 595 return retval; 596 } 597 598 static struct bin_attribute nvram = { 599 .attr = { 600 .name = "nvram", 601 .mode = S_IRUGO | S_IWUSR, 602 }, 603 604 .read = cmos_nvram_read, 605 .write = cmos_nvram_write, 606 /* size gets set up later */ 607 }; 608 609 /*----------------------------------------------------------------*/ 610 611 static struct cmos_rtc cmos_rtc; 612 613 static irqreturn_t cmos_interrupt(int irq, void *p) 614 { 615 u8 irqstat; 616 u8 rtc_control; 617 618 spin_lock(&rtc_lock); 619 620 /* When the HPET interrupt handler calls us, the interrupt 621 * status is passed as arg1 instead of the irq number. But 622 * always clear irq status, even when HPET is in the way. 623 * 624 * Note that HPET and RTC are almost certainly out of phase, 625 * giving different IRQ status ... 626 */ 627 irqstat = CMOS_READ(RTC_INTR_FLAGS); 628 rtc_control = CMOS_READ(RTC_CONTROL); 629 if (is_hpet_enabled()) 630 irqstat = (unsigned long)irq & 0xF0; 631 632 /* If we were suspended, RTC_CONTROL may not be accurate since the 633 * bios may have cleared it. 634 */ 635 if (!cmos_rtc.suspend_ctrl) 636 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 637 else 638 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 639 640 /* All Linux RTC alarms should be treated as if they were oneshot. 641 * Similar code may be needed in system wakeup paths, in case the 642 * alarm woke the system. 643 */ 644 if (irqstat & RTC_AIE) { 645 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 646 rtc_control &= ~RTC_AIE; 647 CMOS_WRITE(rtc_control, RTC_CONTROL); 648 hpet_mask_rtc_irq_bit(RTC_AIE); 649 CMOS_READ(RTC_INTR_FLAGS); 650 } 651 spin_unlock(&rtc_lock); 652 653 if (is_intr(irqstat)) { 654 rtc_update_irq(p, 1, irqstat); 655 return IRQ_HANDLED; 656 } else 657 return IRQ_NONE; 658 } 659 660 #ifdef CONFIG_PNP 661 #define INITSECTION 662 663 #else 664 #define INITSECTION __init 665 #endif 666 667 static int INITSECTION 668 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 669 { 670 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 671 int retval = 0; 672 unsigned char rtc_control; 673 unsigned address_space; 674 u32 flags = 0; 675 676 /* there can be only one ... */ 677 if (cmos_rtc.dev) 678 return -EBUSY; 679 680 if (!ports) 681 return -ENODEV; 682 683 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 684 * 685 * REVISIT non-x86 systems may instead use memory space resources 686 * (needing ioremap etc), not i/o space resources like this ... 687 */ 688 if (RTC_IOMAPPED) 689 ports = request_region(ports->start, resource_size(ports), 690 driver_name); 691 else 692 ports = request_mem_region(ports->start, resource_size(ports), 693 driver_name); 694 if (!ports) { 695 dev_dbg(dev, "i/o registers already in use\n"); 696 return -EBUSY; 697 } 698 699 cmos_rtc.irq = rtc_irq; 700 cmos_rtc.iomem = ports; 701 702 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 703 * driver did, but don't reject unknown configs. Old hardware 704 * won't address 128 bytes. Newer chips have multiple banks, 705 * though they may not be listed in one I/O resource. 706 */ 707 #if defined(CONFIG_ATARI) 708 address_space = 64; 709 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 710 || defined(__sparc__) || defined(__mips__) \ 711 || defined(__powerpc__) || defined(CONFIG_MN10300) 712 address_space = 128; 713 #else 714 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 715 address_space = 128; 716 #endif 717 if (can_bank2 && ports->end > (ports->start + 1)) 718 address_space = 256; 719 720 /* For ACPI systems extension info comes from the FADT. On others, 721 * board specific setup provides it as appropriate. Systems where 722 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 723 * some almost-clones) can provide hooks to make that behave. 724 * 725 * Note that ACPI doesn't preclude putting these registers into 726 * "extended" areas of the chip, including some that we won't yet 727 * expect CMOS_READ and friends to handle. 728 */ 729 if (info) { 730 if (info->flags) 731 flags = info->flags; 732 if (info->address_space) 733 address_space = info->address_space; 734 735 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 736 cmos_rtc.day_alrm = info->rtc_day_alarm; 737 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 738 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 739 if (info->rtc_century && info->rtc_century < 128) 740 cmos_rtc.century = info->rtc_century; 741 742 if (info->wake_on && info->wake_off) { 743 cmos_rtc.wake_on = info->wake_on; 744 cmos_rtc.wake_off = info->wake_off; 745 } 746 } 747 748 cmos_rtc.dev = dev; 749 dev_set_drvdata(dev, &cmos_rtc); 750 751 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 752 &cmos_rtc_ops, THIS_MODULE); 753 if (IS_ERR(cmos_rtc.rtc)) { 754 retval = PTR_ERR(cmos_rtc.rtc); 755 goto cleanup0; 756 } 757 758 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 759 760 spin_lock_irq(&rtc_lock); 761 762 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 763 /* force periodic irq to CMOS reset default of 1024Hz; 764 * 765 * REVISIT it's been reported that at least one x86_64 ALI 766 * mobo doesn't use 32KHz here ... for portability we might 767 * need to do something about other clock frequencies. 768 */ 769 cmos_rtc.rtc->irq_freq = 1024; 770 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 771 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 772 } 773 774 /* disable irqs */ 775 if (is_valid_irq(rtc_irq)) 776 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 777 778 rtc_control = CMOS_READ(RTC_CONTROL); 779 780 spin_unlock_irq(&rtc_lock); 781 782 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 783 dev_warn(dev, "only 24-hr supported\n"); 784 retval = -ENXIO; 785 goto cleanup1; 786 } 787 788 hpet_rtc_timer_init(); 789 790 if (is_valid_irq(rtc_irq)) { 791 irq_handler_t rtc_cmos_int_handler; 792 793 if (is_hpet_enabled()) { 794 rtc_cmos_int_handler = hpet_rtc_interrupt; 795 retval = hpet_register_irq_handler(cmos_interrupt); 796 if (retval) { 797 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 798 dev_warn(dev, "hpet_register_irq_handler " 799 " failed in rtc_init()."); 800 goto cleanup1; 801 } 802 } else 803 rtc_cmos_int_handler = cmos_interrupt; 804 805 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 806 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), 807 cmos_rtc.rtc); 808 if (retval < 0) { 809 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 810 goto cleanup1; 811 } 812 } 813 814 /* export at least the first block of NVRAM */ 815 nvram.size = address_space - NVRAM_OFFSET; 816 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 817 if (retval < 0) { 818 dev_dbg(dev, "can't create nvram file? %d\n", retval); 819 goto cleanup2; 820 } 821 822 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 823 !is_valid_irq(rtc_irq) ? "no alarms" : 824 cmos_rtc.mon_alrm ? "alarms up to one year" : 825 cmos_rtc.day_alrm ? "alarms up to one month" : 826 "alarms up to one day", 827 cmos_rtc.century ? ", y3k" : "", 828 nvram.size, 829 is_hpet_enabled() ? ", hpet irqs" : ""); 830 831 return 0; 832 833 cleanup2: 834 if (is_valid_irq(rtc_irq)) 835 free_irq(rtc_irq, cmos_rtc.rtc); 836 cleanup1: 837 cmos_rtc.dev = NULL; 838 rtc_device_unregister(cmos_rtc.rtc); 839 cleanup0: 840 if (RTC_IOMAPPED) 841 release_region(ports->start, resource_size(ports)); 842 else 843 release_mem_region(ports->start, resource_size(ports)); 844 return retval; 845 } 846 847 static void cmos_do_shutdown(int rtc_irq) 848 { 849 spin_lock_irq(&rtc_lock); 850 if (is_valid_irq(rtc_irq)) 851 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 852 spin_unlock_irq(&rtc_lock); 853 } 854 855 static void cmos_do_remove(struct device *dev) 856 { 857 struct cmos_rtc *cmos = dev_get_drvdata(dev); 858 struct resource *ports; 859 860 cmos_do_shutdown(cmos->irq); 861 862 sysfs_remove_bin_file(&dev->kobj, &nvram); 863 864 if (is_valid_irq(cmos->irq)) { 865 free_irq(cmos->irq, cmos->rtc); 866 hpet_unregister_irq_handler(cmos_interrupt); 867 } 868 869 rtc_device_unregister(cmos->rtc); 870 cmos->rtc = NULL; 871 872 ports = cmos->iomem; 873 if (RTC_IOMAPPED) 874 release_region(ports->start, resource_size(ports)); 875 else 876 release_mem_region(ports->start, resource_size(ports)); 877 cmos->iomem = NULL; 878 879 cmos->dev = NULL; 880 } 881 882 static int cmos_aie_poweroff(struct device *dev) 883 { 884 struct cmos_rtc *cmos = dev_get_drvdata(dev); 885 struct rtc_time now; 886 time64_t t_now; 887 int retval = 0; 888 unsigned char rtc_control; 889 890 if (!cmos->alarm_expires) 891 return -EINVAL; 892 893 spin_lock_irq(&rtc_lock); 894 rtc_control = CMOS_READ(RTC_CONTROL); 895 spin_unlock_irq(&rtc_lock); 896 897 /* We only care about the situation where AIE is disabled. */ 898 if (rtc_control & RTC_AIE) 899 return -EBUSY; 900 901 cmos_read_time(dev, &now); 902 t_now = rtc_tm_to_time64(&now); 903 904 /* 905 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 906 * automatically right after shutdown on some buggy boxes. 907 * This automatic rebooting issue won't happen when the alarm 908 * time is larger than now+1 seconds. 909 * 910 * If the alarm time is equal to now+1 seconds, the issue can be 911 * prevented by cancelling the alarm. 912 */ 913 if (cmos->alarm_expires == t_now + 1) { 914 struct rtc_wkalrm alarm; 915 916 /* Cancel the AIE timer by configuring the past time. */ 917 rtc_time64_to_tm(t_now - 1, &alarm.time); 918 alarm.enabled = 0; 919 retval = cmos_set_alarm(dev, &alarm); 920 } else if (cmos->alarm_expires > t_now + 1) { 921 retval = -EBUSY; 922 } 923 924 return retval; 925 } 926 927 static int cmos_suspend(struct device *dev) 928 { 929 struct cmos_rtc *cmos = dev_get_drvdata(dev); 930 unsigned char tmp; 931 932 /* only the alarm might be a wakeup event source */ 933 spin_lock_irq(&rtc_lock); 934 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 935 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 936 unsigned char mask; 937 938 if (device_may_wakeup(dev)) 939 mask = RTC_IRQMASK & ~RTC_AIE; 940 else 941 mask = RTC_IRQMASK; 942 tmp &= ~mask; 943 CMOS_WRITE(tmp, RTC_CONTROL); 944 hpet_mask_rtc_irq_bit(mask); 945 946 cmos_checkintr(cmos, tmp); 947 } 948 spin_unlock_irq(&rtc_lock); 949 950 if (tmp & RTC_AIE) { 951 cmos->enabled_wake = 1; 952 if (cmos->wake_on) 953 cmos->wake_on(dev); 954 else 955 enable_irq_wake(cmos->irq); 956 } 957 958 cmos_read_alarm(dev, &cmos->saved_wkalrm); 959 960 dev_dbg(dev, "suspend%s, ctrl %02x\n", 961 (tmp & RTC_AIE) ? ", alarm may wake" : "", 962 tmp); 963 964 return 0; 965 } 966 967 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 968 * after a detour through G3 "mechanical off", although the ACPI spec 969 * says wakeup should only work from G1/S4 "hibernate". To most users, 970 * distinctions between S4 and S5 are pointless. So when the hardware 971 * allows, don't draw that distinction. 972 */ 973 static inline int cmos_poweroff(struct device *dev) 974 { 975 if (!IS_ENABLED(CONFIG_PM)) 976 return -ENOSYS; 977 978 return cmos_suspend(dev); 979 } 980 981 static void cmos_check_wkalrm(struct device *dev) 982 { 983 struct cmos_rtc *cmos = dev_get_drvdata(dev); 984 struct rtc_wkalrm current_alarm; 985 time64_t t_current_expires; 986 time64_t t_saved_expires; 987 988 cmos_read_alarm(dev, ¤t_alarm); 989 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 990 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 991 if (t_current_expires != t_saved_expires || 992 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 993 cmos_set_alarm(dev, &cmos->saved_wkalrm); 994 } 995 } 996 997 static void cmos_check_acpi_rtc_status(struct device *dev, 998 unsigned char *rtc_control); 999 1000 static int __maybe_unused cmos_resume(struct device *dev) 1001 { 1002 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1003 unsigned char tmp; 1004 1005 if (cmos->enabled_wake) { 1006 if (cmos->wake_off) 1007 cmos->wake_off(dev); 1008 else 1009 disable_irq_wake(cmos->irq); 1010 cmos->enabled_wake = 0; 1011 } 1012 1013 /* The BIOS might have changed the alarm, restore it */ 1014 cmos_check_wkalrm(dev); 1015 1016 spin_lock_irq(&rtc_lock); 1017 tmp = cmos->suspend_ctrl; 1018 cmos->suspend_ctrl = 0; 1019 /* re-enable any irqs previously active */ 1020 if (tmp & RTC_IRQMASK) { 1021 unsigned char mask; 1022 1023 if (device_may_wakeup(dev)) 1024 hpet_rtc_timer_init(); 1025 1026 do { 1027 CMOS_WRITE(tmp, RTC_CONTROL); 1028 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1029 1030 mask = CMOS_READ(RTC_INTR_FLAGS); 1031 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1032 if (!is_hpet_enabled() || !is_intr(mask)) 1033 break; 1034 1035 /* force one-shot behavior if HPET blocked 1036 * the wake alarm's irq 1037 */ 1038 rtc_update_irq(cmos->rtc, 1, mask); 1039 tmp &= ~RTC_AIE; 1040 hpet_mask_rtc_irq_bit(RTC_AIE); 1041 } while (mask & RTC_AIE); 1042 1043 if (tmp & RTC_AIE) 1044 cmos_check_acpi_rtc_status(dev, &tmp); 1045 } 1046 spin_unlock_irq(&rtc_lock); 1047 1048 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1049 1050 return 0; 1051 } 1052 1053 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1054 1055 /*----------------------------------------------------------------*/ 1056 1057 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1059 * probably list them in similar PNPBIOS tables; so PNP is more common. 1060 * 1061 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1062 * predate even PNPBIOS should set up platform_bus devices. 1063 */ 1064 1065 #ifdef CONFIG_ACPI 1066 1067 #include <linux/acpi.h> 1068 1069 static u32 rtc_handler(void *context) 1070 { 1071 struct device *dev = context; 1072 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1073 unsigned char rtc_control = 0; 1074 unsigned char rtc_intr; 1075 unsigned long flags; 1076 1077 spin_lock_irqsave(&rtc_lock, flags); 1078 if (cmos_rtc.suspend_ctrl) 1079 rtc_control = CMOS_READ(RTC_CONTROL); 1080 if (rtc_control & RTC_AIE) { 1081 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1082 CMOS_WRITE(rtc_control, RTC_CONTROL); 1083 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1084 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1085 } 1086 spin_unlock_irqrestore(&rtc_lock, flags); 1087 1088 pm_wakeup_event(dev, 0); 1089 acpi_clear_event(ACPI_EVENT_RTC); 1090 acpi_disable_event(ACPI_EVENT_RTC, 0); 1091 return ACPI_INTERRUPT_HANDLED; 1092 } 1093 1094 static inline void rtc_wake_setup(struct device *dev) 1095 { 1096 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1097 /* 1098 * After the RTC handler is installed, the Fixed_RTC event should 1099 * be disabled. Only when the RTC alarm is set will it be enabled. 1100 */ 1101 acpi_clear_event(ACPI_EVENT_RTC); 1102 acpi_disable_event(ACPI_EVENT_RTC, 0); 1103 } 1104 1105 static void rtc_wake_on(struct device *dev) 1106 { 1107 acpi_clear_event(ACPI_EVENT_RTC); 1108 acpi_enable_event(ACPI_EVENT_RTC, 0); 1109 } 1110 1111 static void rtc_wake_off(struct device *dev) 1112 { 1113 acpi_disable_event(ACPI_EVENT_RTC, 0); 1114 } 1115 1116 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1117 * its device node and pass extra config data. This helps its driver use 1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1119 * that this board's RTC is wakeup-capable (per ACPI spec). 1120 */ 1121 static struct cmos_rtc_board_info acpi_rtc_info; 1122 1123 static void cmos_wake_setup(struct device *dev) 1124 { 1125 if (acpi_disabled) 1126 return; 1127 1128 rtc_wake_setup(dev); 1129 acpi_rtc_info.wake_on = rtc_wake_on; 1130 acpi_rtc_info.wake_off = rtc_wake_off; 1131 1132 /* workaround bug in some ACPI tables */ 1133 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1134 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1135 acpi_gbl_FADT.month_alarm); 1136 acpi_gbl_FADT.month_alarm = 0; 1137 } 1138 1139 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1140 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1141 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1142 1143 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1144 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1145 dev_info(dev, "RTC can wake from S4\n"); 1146 1147 dev->platform_data = &acpi_rtc_info; 1148 1149 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1150 device_init_wakeup(dev, 1); 1151 } 1152 1153 static void cmos_check_acpi_rtc_status(struct device *dev, 1154 unsigned char *rtc_control) 1155 { 1156 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1157 acpi_event_status rtc_status; 1158 acpi_status status; 1159 1160 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1161 return; 1162 1163 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1164 if (ACPI_FAILURE(status)) { 1165 dev_err(dev, "Could not get RTC status\n"); 1166 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1167 unsigned char mask; 1168 *rtc_control &= ~RTC_AIE; 1169 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1170 mask = CMOS_READ(RTC_INTR_FLAGS); 1171 rtc_update_irq(cmos->rtc, 1, mask); 1172 } 1173 } 1174 1175 #else 1176 1177 static void cmos_wake_setup(struct device *dev) 1178 { 1179 } 1180 1181 static void cmos_check_acpi_rtc_status(struct device *dev, 1182 unsigned char *rtc_control) 1183 { 1184 } 1185 1186 #endif 1187 1188 #ifdef CONFIG_PNP 1189 1190 #include <linux/pnp.h> 1191 1192 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1193 { 1194 cmos_wake_setup(&pnp->dev); 1195 1196 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1197 /* Some machines contain a PNP entry for the RTC, but 1198 * don't define the IRQ. It should always be safe to 1199 * hardcode it in these cases 1200 */ 1201 return cmos_do_probe(&pnp->dev, 1202 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1203 else 1204 return cmos_do_probe(&pnp->dev, 1205 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1206 pnp_irq(pnp, 0)); 1207 } 1208 1209 static void cmos_pnp_remove(struct pnp_dev *pnp) 1210 { 1211 cmos_do_remove(&pnp->dev); 1212 } 1213 1214 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1215 { 1216 struct device *dev = &pnp->dev; 1217 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1218 1219 if (system_state == SYSTEM_POWER_OFF) { 1220 int retval = cmos_poweroff(dev); 1221 1222 if (cmos_aie_poweroff(dev) < 0 && !retval) 1223 return; 1224 } 1225 1226 cmos_do_shutdown(cmos->irq); 1227 } 1228 1229 static const struct pnp_device_id rtc_ids[] = { 1230 { .id = "PNP0b00", }, 1231 { .id = "PNP0b01", }, 1232 { .id = "PNP0b02", }, 1233 { }, 1234 }; 1235 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1236 1237 static struct pnp_driver cmos_pnp_driver = { 1238 .name = (char *) driver_name, 1239 .id_table = rtc_ids, 1240 .probe = cmos_pnp_probe, 1241 .remove = cmos_pnp_remove, 1242 .shutdown = cmos_pnp_shutdown, 1243 1244 /* flag ensures resume() gets called, and stops syslog spam */ 1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1246 .driver = { 1247 .pm = &cmos_pm_ops, 1248 }, 1249 }; 1250 1251 #endif /* CONFIG_PNP */ 1252 1253 #ifdef CONFIG_OF 1254 static const struct of_device_id of_cmos_match[] = { 1255 { 1256 .compatible = "motorola,mc146818", 1257 }, 1258 { }, 1259 }; 1260 MODULE_DEVICE_TABLE(of, of_cmos_match); 1261 1262 static __init void cmos_of_init(struct platform_device *pdev) 1263 { 1264 struct device_node *node = pdev->dev.of_node; 1265 struct rtc_time time; 1266 int ret; 1267 const __be32 *val; 1268 1269 if (!node) 1270 return; 1271 1272 val = of_get_property(node, "ctrl-reg", NULL); 1273 if (val) 1274 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1275 1276 val = of_get_property(node, "freq-reg", NULL); 1277 if (val) 1278 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1279 1280 cmos_read_time(&pdev->dev, &time); 1281 ret = rtc_valid_tm(&time); 1282 if (ret) { 1283 struct rtc_time def_time = { 1284 .tm_year = 1, 1285 .tm_mday = 1, 1286 }; 1287 cmos_set_time(&pdev->dev, &def_time); 1288 } 1289 } 1290 #else 1291 static inline void cmos_of_init(struct platform_device *pdev) {} 1292 #endif 1293 /*----------------------------------------------------------------*/ 1294 1295 /* Platform setup should have set up an RTC device, when PNP is 1296 * unavailable ... this could happen even on (older) PCs. 1297 */ 1298 1299 static int __init cmos_platform_probe(struct platform_device *pdev) 1300 { 1301 struct resource *resource; 1302 int irq; 1303 1304 cmos_of_init(pdev); 1305 cmos_wake_setup(&pdev->dev); 1306 1307 if (RTC_IOMAPPED) 1308 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1309 else 1310 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1311 irq = platform_get_irq(pdev, 0); 1312 if (irq < 0) 1313 irq = -1; 1314 1315 return cmos_do_probe(&pdev->dev, resource, irq); 1316 } 1317 1318 static int cmos_platform_remove(struct platform_device *pdev) 1319 { 1320 cmos_do_remove(&pdev->dev); 1321 return 0; 1322 } 1323 1324 static void cmos_platform_shutdown(struct platform_device *pdev) 1325 { 1326 struct device *dev = &pdev->dev; 1327 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1328 1329 if (system_state == SYSTEM_POWER_OFF) { 1330 int retval = cmos_poweroff(dev); 1331 1332 if (cmos_aie_poweroff(dev) < 0 && !retval) 1333 return; 1334 } 1335 1336 cmos_do_shutdown(cmos->irq); 1337 } 1338 1339 /* work with hotplug and coldplug */ 1340 MODULE_ALIAS("platform:rtc_cmos"); 1341 1342 static struct platform_driver cmos_platform_driver = { 1343 .remove = cmos_platform_remove, 1344 .shutdown = cmos_platform_shutdown, 1345 .driver = { 1346 .name = driver_name, 1347 .pm = &cmos_pm_ops, 1348 .of_match_table = of_match_ptr(of_cmos_match), 1349 } 1350 }; 1351 1352 #ifdef CONFIG_PNP 1353 static bool pnp_driver_registered; 1354 #endif 1355 static bool platform_driver_registered; 1356 1357 static int __init cmos_init(void) 1358 { 1359 int retval = 0; 1360 1361 #ifdef CONFIG_PNP 1362 retval = pnp_register_driver(&cmos_pnp_driver); 1363 if (retval == 0) 1364 pnp_driver_registered = true; 1365 #endif 1366 1367 if (!cmos_rtc.dev) { 1368 retval = platform_driver_probe(&cmos_platform_driver, 1369 cmos_platform_probe); 1370 if (retval == 0) 1371 platform_driver_registered = true; 1372 } 1373 1374 if (retval == 0) 1375 return 0; 1376 1377 #ifdef CONFIG_PNP 1378 if (pnp_driver_registered) 1379 pnp_unregister_driver(&cmos_pnp_driver); 1380 #endif 1381 return retval; 1382 } 1383 module_init(cmos_init); 1384 1385 static void __exit cmos_exit(void) 1386 { 1387 #ifdef CONFIG_PNP 1388 if (pnp_driver_registered) 1389 pnp_unregister_driver(&cmos_pnp_driver); 1390 #endif 1391 if (platform_driver_registered) 1392 platform_driver_unregister(&cmos_platform_driver); 1393 } 1394 module_exit(cmos_exit); 1395 1396 1397 MODULE_AUTHOR("David Brownell"); 1398 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1399 MODULE_LICENSE("GPL"); 1400