1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 4 * 5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 6 * Copyright (C) 2006 David Brownell (convert to new framework) 7 */ 8 9 /* 10 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 11 * That defined the register interface now provided by all PCs, some 12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 13 * integrate an MC146818 clone in their southbridge, and boards use 14 * that instead of discrete clones like the DS12887 or M48T86. There 15 * are also clones that connect using the LPC bus. 16 * 17 * That register API is also used directly by various other drivers 18 * (notably for integrated NVRAM), infrastructure (x86 has code to 19 * bypass the RTC framework, directly reading the RTC during boot 20 * and updating minutes/seconds for systems using NTP synch) and 21 * utilities (like userspace 'hwclock', if no /dev node exists). 22 * 23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 24 * interrupts disabled, holding the global rtc_lock, to exclude those 25 * other drivers and utilities on correctly configured systems. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/spinlock.h> 35 #include <linux/platform_device.h> 36 #include <linux/log2.h> 37 #include <linux/pm.h> 38 #include <linux/of.h> 39 #include <linux/of_platform.h> 40 #ifdef CONFIG_X86 41 #include <asm/i8259.h> 42 #include <asm/processor.h> 43 #include <linux/dmi.h> 44 #endif 45 46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 47 #include <linux/mc146818rtc.h> 48 49 #ifdef CONFIG_ACPI 50 /* 51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event 52 * 53 * If cleared, ACPI SCI is only used to wake up the system from suspend 54 * 55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup 56 */ 57 58 static bool use_acpi_alarm; 59 module_param(use_acpi_alarm, bool, 0444); 60 61 static inline int cmos_use_acpi_alarm(void) 62 { 63 return use_acpi_alarm; 64 } 65 #else /* !CONFIG_ACPI */ 66 67 static inline int cmos_use_acpi_alarm(void) 68 { 69 return 0; 70 } 71 #endif 72 73 struct cmos_rtc { 74 struct rtc_device *rtc; 75 struct device *dev; 76 int irq; 77 struct resource *iomem; 78 time64_t alarm_expires; 79 80 void (*wake_on)(struct device *); 81 void (*wake_off)(struct device *); 82 83 u8 enabled_wake; 84 u8 suspend_ctrl; 85 86 /* newer hardware extends the original register set */ 87 u8 day_alrm; 88 u8 mon_alrm; 89 u8 century; 90 91 struct rtc_wkalrm saved_wkalrm; 92 }; 93 94 /* both platform and pnp busses use negative numbers for invalid irqs */ 95 #define is_valid_irq(n) ((n) > 0) 96 97 static const char driver_name[] = "rtc_cmos"; 98 99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 102 */ 103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 104 105 static inline int is_intr(u8 rtc_intr) 106 { 107 if (!(rtc_intr & RTC_IRQF)) 108 return 0; 109 return rtc_intr & RTC_IRQMASK; 110 } 111 112 /*----------------------------------------------------------------*/ 113 114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 116 * used in a broken "legacy replacement" mode. The breakage includes 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 118 * other (better) use. 119 * 120 * When that broken mode is in use, platform glue provides a partial 121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 122 * want to use HPET for anything except those IRQs though... 123 */ 124 #ifdef CONFIG_HPET_EMULATE_RTC 125 #include <asm/hpet.h> 126 #else 127 128 static inline int is_hpet_enabled(void) 129 { 130 return 0; 131 } 132 133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 134 { 135 return 0; 136 } 137 138 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 139 { 140 return 0; 141 } 142 143 static inline int 144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 145 { 146 return 0; 147 } 148 149 static inline int hpet_set_periodic_freq(unsigned long freq) 150 { 151 return 0; 152 } 153 154 static inline int hpet_rtc_dropped_irq(void) 155 { 156 return 0; 157 } 158 159 static inline int hpet_rtc_timer_init(void) 160 { 161 return 0; 162 } 163 164 extern irq_handler_t hpet_rtc_interrupt; 165 166 static inline int hpet_register_irq_handler(irq_handler_t handler) 167 { 168 return 0; 169 } 170 171 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 172 { 173 return 0; 174 } 175 176 #endif 177 178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ 179 static inline int use_hpet_alarm(void) 180 { 181 return is_hpet_enabled() && !cmos_use_acpi_alarm(); 182 } 183 184 /*----------------------------------------------------------------*/ 185 186 #ifdef RTC_PORT 187 188 /* Most newer x86 systems have two register banks, the first used 189 * for RTC and NVRAM and the second only for NVRAM. Caller must 190 * own rtc_lock ... and we won't worry about access during NMI. 191 */ 192 #define can_bank2 true 193 194 static inline unsigned char cmos_read_bank2(unsigned char addr) 195 { 196 outb(addr, RTC_PORT(2)); 197 return inb(RTC_PORT(3)); 198 } 199 200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 201 { 202 outb(addr, RTC_PORT(2)); 203 outb(val, RTC_PORT(3)); 204 } 205 206 #else 207 208 #define can_bank2 false 209 210 static inline unsigned char cmos_read_bank2(unsigned char addr) 211 { 212 return 0; 213 } 214 215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 216 { 217 } 218 219 #endif 220 221 /*----------------------------------------------------------------*/ 222 223 static int cmos_read_time(struct device *dev, struct rtc_time *t) 224 { 225 int ret; 226 227 /* 228 * If pm_trace abused the RTC for storage, set the timespec to 0, 229 * which tells the caller that this RTC value is unusable. 230 */ 231 if (!pm_trace_rtc_valid()) 232 return -EIO; 233 234 ret = mc146818_get_time(t, 1000); 235 if (ret < 0) { 236 dev_err_ratelimited(dev, "unable to read current time\n"); 237 return ret; 238 } 239 240 return 0; 241 } 242 243 static int cmos_set_time(struct device *dev, struct rtc_time *t) 244 { 245 /* NOTE: this ignores the issue whereby updating the seconds 246 * takes effect exactly 500ms after we write the register. 247 * (Also queueing and other delays before we get this far.) 248 */ 249 return mc146818_set_time(t); 250 } 251 252 struct cmos_read_alarm_callback_param { 253 struct cmos_rtc *cmos; 254 struct rtc_time *time; 255 unsigned char rtc_control; 256 }; 257 258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds, 259 void *param_in) 260 { 261 struct cmos_read_alarm_callback_param *p = 262 (struct cmos_read_alarm_callback_param *)param_in; 263 struct rtc_time *time = p->time; 264 265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM); 267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM); 268 269 if (p->cmos->day_alrm) { 270 /* ignore upper bits on readback per ACPI spec */ 271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f; 272 if (!time->tm_mday) 273 time->tm_mday = -1; 274 275 if (p->cmos->mon_alrm) { 276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm); 277 if (!time->tm_mon) 278 time->tm_mon = -1; 279 } 280 } 281 282 p->rtc_control = CMOS_READ(RTC_CONTROL); 283 } 284 285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 286 { 287 struct cmos_rtc *cmos = dev_get_drvdata(dev); 288 struct cmos_read_alarm_callback_param p = { 289 .cmos = cmos, 290 .time = &t->time, 291 }; 292 293 /* This not only a rtc_op, but also called directly */ 294 if (!is_valid_irq(cmos->irq)) 295 return -ETIMEDOUT; 296 297 /* Basic alarms only support hour, minute, and seconds fields. 298 * Some also support day and month, for alarms up to a year in 299 * the future. 300 */ 301 302 /* Some Intel chipsets disconnect the alarm registers when the clock 303 * update is in progress - during this time reads return bogus values 304 * and writes may fail silently. See for example "7th Generation Intel® 305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section 306 * 27.7.1 307 * 308 * Use the mc146818_avoid_UIP() function to avoid this. 309 */ 310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p)) 311 return -EIO; 312 313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 314 if (((unsigned)t->time.tm_sec) < 0x60) 315 t->time.tm_sec = bcd2bin(t->time.tm_sec); 316 else 317 t->time.tm_sec = -1; 318 if (((unsigned)t->time.tm_min) < 0x60) 319 t->time.tm_min = bcd2bin(t->time.tm_min); 320 else 321 t->time.tm_min = -1; 322 if (((unsigned)t->time.tm_hour) < 0x24) 323 t->time.tm_hour = bcd2bin(t->time.tm_hour); 324 else 325 t->time.tm_hour = -1; 326 327 if (cmos->day_alrm) { 328 if (((unsigned)t->time.tm_mday) <= 0x31) 329 t->time.tm_mday = bcd2bin(t->time.tm_mday); 330 else 331 t->time.tm_mday = -1; 332 333 if (cmos->mon_alrm) { 334 if (((unsigned)t->time.tm_mon) <= 0x12) 335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 336 else 337 t->time.tm_mon = -1; 338 } 339 } 340 } 341 342 t->enabled = !!(p.rtc_control & RTC_AIE); 343 t->pending = 0; 344 345 return 0; 346 } 347 348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 349 { 350 unsigned char rtc_intr; 351 352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 353 * allegedly some older rtcs need that to handle irqs properly 354 */ 355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 356 357 if (use_hpet_alarm()) 358 return; 359 360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 361 if (is_intr(rtc_intr)) 362 rtc_update_irq(cmos->rtc, 1, rtc_intr); 363 } 364 365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 366 { 367 unsigned char rtc_control; 368 369 /* flush any pending IRQ status, notably for update irqs, 370 * before we enable new IRQs 371 */ 372 rtc_control = CMOS_READ(RTC_CONTROL); 373 cmos_checkintr(cmos, rtc_control); 374 375 rtc_control |= mask; 376 CMOS_WRITE(rtc_control, RTC_CONTROL); 377 if (use_hpet_alarm()) 378 hpet_set_rtc_irq_bit(mask); 379 380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 381 if (cmos->wake_on) 382 cmos->wake_on(cmos->dev); 383 } 384 385 cmos_checkintr(cmos, rtc_control); 386 } 387 388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 389 { 390 unsigned char rtc_control; 391 392 rtc_control = CMOS_READ(RTC_CONTROL); 393 rtc_control &= ~mask; 394 CMOS_WRITE(rtc_control, RTC_CONTROL); 395 if (use_hpet_alarm()) 396 hpet_mask_rtc_irq_bit(mask); 397 398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { 399 if (cmos->wake_off) 400 cmos->wake_off(cmos->dev); 401 } 402 403 cmos_checkintr(cmos, rtc_control); 404 } 405 406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) 407 { 408 struct cmos_rtc *cmos = dev_get_drvdata(dev); 409 struct rtc_time now; 410 411 cmos_read_time(dev, &now); 412 413 if (!cmos->day_alrm) { 414 time64_t t_max_date; 415 time64_t t_alrm; 416 417 t_max_date = rtc_tm_to_time64(&now); 418 t_max_date += 24 * 60 * 60 - 1; 419 t_alrm = rtc_tm_to_time64(&t->time); 420 if (t_alrm > t_max_date) { 421 dev_err(dev, 422 "Alarms can be up to one day in the future\n"); 423 return -EINVAL; 424 } 425 } else if (!cmos->mon_alrm) { 426 struct rtc_time max_date = now; 427 time64_t t_max_date; 428 time64_t t_alrm; 429 int max_mday; 430 431 if (max_date.tm_mon == 11) { 432 max_date.tm_mon = 0; 433 max_date.tm_year += 1; 434 } else { 435 max_date.tm_mon += 1; 436 } 437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 438 if (max_date.tm_mday > max_mday) 439 max_date.tm_mday = max_mday; 440 441 t_max_date = rtc_tm_to_time64(&max_date); 442 t_max_date -= 1; 443 t_alrm = rtc_tm_to_time64(&t->time); 444 if (t_alrm > t_max_date) { 445 dev_err(dev, 446 "Alarms can be up to one month in the future\n"); 447 return -EINVAL; 448 } 449 } else { 450 struct rtc_time max_date = now; 451 time64_t t_max_date; 452 time64_t t_alrm; 453 int max_mday; 454 455 max_date.tm_year += 1; 456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); 457 if (max_date.tm_mday > max_mday) 458 max_date.tm_mday = max_mday; 459 460 t_max_date = rtc_tm_to_time64(&max_date); 461 t_max_date -= 1; 462 t_alrm = rtc_tm_to_time64(&t->time); 463 if (t_alrm > t_max_date) { 464 dev_err(dev, 465 "Alarms can be up to one year in the future\n"); 466 return -EINVAL; 467 } 468 } 469 470 return 0; 471 } 472 473 struct cmos_set_alarm_callback_param { 474 struct cmos_rtc *cmos; 475 unsigned char mon, mday, hrs, min, sec; 476 struct rtc_wkalrm *t; 477 }; 478 479 /* Note: this function may be executed by mc146818_avoid_UIP() more then 480 * once 481 */ 482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds, 483 void *param_in) 484 { 485 struct cmos_set_alarm_callback_param *p = 486 (struct cmos_set_alarm_callback_param *)param_in; 487 488 /* next rtc irq must not be from previous alarm setting */ 489 cmos_irq_disable(p->cmos, RTC_AIE); 490 491 /* update alarm */ 492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM); 493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM); 494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM); 495 496 /* the system may support an "enhanced" alarm */ 497 if (p->cmos->day_alrm) { 498 CMOS_WRITE(p->mday, p->cmos->day_alrm); 499 if (p->cmos->mon_alrm) 500 CMOS_WRITE(p->mon, p->cmos->mon_alrm); 501 } 502 503 if (use_hpet_alarm()) { 504 /* 505 * FIXME the HPET alarm glue currently ignores day_alrm 506 * and mon_alrm ... 507 */ 508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min, 509 p->t->time.tm_sec); 510 } 511 512 if (p->t->enabled) 513 cmos_irq_enable(p->cmos, RTC_AIE); 514 } 515 516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 517 { 518 struct cmos_rtc *cmos = dev_get_drvdata(dev); 519 struct cmos_set_alarm_callback_param p = { 520 .cmos = cmos, 521 .t = t 522 }; 523 unsigned char rtc_control; 524 int ret; 525 526 /* This not only a rtc_op, but also called directly */ 527 if (!is_valid_irq(cmos->irq)) 528 return -EIO; 529 530 ret = cmos_validate_alarm(dev, t); 531 if (ret < 0) 532 return ret; 533 534 p.mon = t->time.tm_mon + 1; 535 p.mday = t->time.tm_mday; 536 p.hrs = t->time.tm_hour; 537 p.min = t->time.tm_min; 538 p.sec = t->time.tm_sec; 539 540 spin_lock_irq(&rtc_lock); 541 rtc_control = CMOS_READ(RTC_CONTROL); 542 spin_unlock_irq(&rtc_lock); 543 544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 545 /* Writing 0xff means "don't care" or "match all". */ 546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff; 547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff; 548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff; 549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff; 550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff; 551 } 552 553 /* 554 * Some Intel chipsets disconnect the alarm registers when the clock 555 * update is in progress - during this time writes fail silently. 556 * 557 * Use mc146818_avoid_UIP() to avoid this. 558 */ 559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p)) 560 return -ETIMEDOUT; 561 562 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 563 564 return 0; 565 } 566 567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 568 { 569 struct cmos_rtc *cmos = dev_get_drvdata(dev); 570 unsigned long flags; 571 572 spin_lock_irqsave(&rtc_lock, flags); 573 574 if (enabled) 575 cmos_irq_enable(cmos, RTC_AIE); 576 else 577 cmos_irq_disable(cmos, RTC_AIE); 578 579 spin_unlock_irqrestore(&rtc_lock, flags); 580 return 0; 581 } 582 583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 584 585 static int cmos_procfs(struct device *dev, struct seq_file *seq) 586 { 587 struct cmos_rtc *cmos = dev_get_drvdata(dev); 588 unsigned char rtc_control, valid; 589 590 spin_lock_irq(&rtc_lock); 591 rtc_control = CMOS_READ(RTC_CONTROL); 592 valid = CMOS_READ(RTC_VALID); 593 spin_unlock_irq(&rtc_lock); 594 595 /* NOTE: at least ICH6 reports battery status using a different 596 * (non-RTC) bit; and SQWE is ignored on many current systems. 597 */ 598 seq_printf(seq, 599 "periodic_IRQ\t: %s\n" 600 "update_IRQ\t: %s\n" 601 "HPET_emulated\t: %s\n" 602 // "square_wave\t: %s\n" 603 "BCD\t\t: %s\n" 604 "DST_enable\t: %s\n" 605 "periodic_freq\t: %d\n" 606 "batt_status\t: %s\n", 607 (rtc_control & RTC_PIE) ? "yes" : "no", 608 (rtc_control & RTC_UIE) ? "yes" : "no", 609 use_hpet_alarm() ? "yes" : "no", 610 // (rtc_control & RTC_SQWE) ? "yes" : "no", 611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 612 (rtc_control & RTC_DST_EN) ? "yes" : "no", 613 cmos->rtc->irq_freq, 614 (valid & RTC_VRT) ? "okay" : "dead"); 615 616 return 0; 617 } 618 619 #else 620 #define cmos_procfs NULL 621 #endif 622 623 static const struct rtc_class_ops cmos_rtc_ops = { 624 .read_time = cmos_read_time, 625 .set_time = cmos_set_time, 626 .read_alarm = cmos_read_alarm, 627 .set_alarm = cmos_set_alarm, 628 .proc = cmos_procfs, 629 .alarm_irq_enable = cmos_alarm_irq_enable, 630 }; 631 632 /*----------------------------------------------------------------*/ 633 634 /* 635 * All these chips have at least 64 bytes of address space, shared by 636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 637 * by boot firmware. Modern chips have 128 or 256 bytes. 638 */ 639 640 #define NVRAM_OFFSET (RTC_REG_D + 1) 641 642 static int cmos_nvram_read(void *priv, unsigned int off, void *val, 643 size_t count) 644 { 645 unsigned char *buf = val; 646 647 off += NVRAM_OFFSET; 648 for (; count; count--, off++, buf++) { 649 guard(spinlock_irq)(&rtc_lock); 650 if (off < 128) 651 *buf = CMOS_READ(off); 652 else if (can_bank2) 653 *buf = cmos_read_bank2(off); 654 else 655 return -EIO; 656 } 657 658 return 0; 659 } 660 661 static int cmos_nvram_write(void *priv, unsigned int off, void *val, 662 size_t count) 663 { 664 struct cmos_rtc *cmos = priv; 665 unsigned char *buf = val; 666 667 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 668 * checksum on part of the NVRAM data. That's currently ignored 669 * here. If userspace is smart enough to know what fields of 670 * NVRAM to update, updating checksums is also part of its job. 671 */ 672 off += NVRAM_OFFSET; 673 for (; count; count--, off++, buf++) { 674 /* don't trash RTC registers */ 675 if (off == cmos->day_alrm 676 || off == cmos->mon_alrm 677 || off == cmos->century) 678 continue; 679 680 guard(spinlock_irq)(&rtc_lock); 681 if (off < 128) 682 CMOS_WRITE(*buf, off); 683 else if (can_bank2) 684 cmos_write_bank2(*buf, off); 685 else 686 return -EIO; 687 } 688 689 return 0; 690 } 691 692 /*----------------------------------------------------------------*/ 693 694 static struct cmos_rtc cmos_rtc; 695 696 static irqreturn_t cmos_interrupt(int irq, void *p) 697 { 698 u8 irqstat; 699 u8 rtc_control; 700 701 spin_lock(&rtc_lock); 702 703 /* When the HPET interrupt handler calls us, the interrupt 704 * status is passed as arg1 instead of the irq number. But 705 * always clear irq status, even when HPET is in the way. 706 * 707 * Note that HPET and RTC are almost certainly out of phase, 708 * giving different IRQ status ... 709 */ 710 irqstat = CMOS_READ(RTC_INTR_FLAGS); 711 rtc_control = CMOS_READ(RTC_CONTROL); 712 if (use_hpet_alarm()) 713 irqstat = (unsigned long)irq & 0xF0; 714 715 /* If we were suspended, RTC_CONTROL may not be accurate since the 716 * bios may have cleared it. 717 */ 718 if (!cmos_rtc.suspend_ctrl) 719 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 720 else 721 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 722 723 /* All Linux RTC alarms should be treated as if they were oneshot. 724 * Similar code may be needed in system wakeup paths, in case the 725 * alarm woke the system. 726 */ 727 if (irqstat & RTC_AIE) { 728 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 729 rtc_control &= ~RTC_AIE; 730 CMOS_WRITE(rtc_control, RTC_CONTROL); 731 if (use_hpet_alarm()) 732 hpet_mask_rtc_irq_bit(RTC_AIE); 733 CMOS_READ(RTC_INTR_FLAGS); 734 } 735 spin_unlock(&rtc_lock); 736 737 if (is_intr(irqstat)) { 738 rtc_update_irq(p, 1, irqstat); 739 return IRQ_HANDLED; 740 } else 741 return IRQ_NONE; 742 } 743 744 #ifdef CONFIG_ACPI 745 746 #include <linux/acpi.h> 747 748 static u32 rtc_handler(void *context) 749 { 750 struct device *dev = context; 751 struct cmos_rtc *cmos = dev_get_drvdata(dev); 752 unsigned char rtc_control = 0; 753 unsigned char rtc_intr; 754 unsigned long flags; 755 756 757 /* 758 * Always update rtc irq when ACPI is used as RTC Alarm. 759 * Or else, ACPI SCI is enabled during suspend/resume only, 760 * update rtc irq in that case. 761 */ 762 if (cmos_use_acpi_alarm()) 763 cmos_interrupt(0, (void *)cmos->rtc); 764 else { 765 /* Fix me: can we use cmos_interrupt() here as well? */ 766 spin_lock_irqsave(&rtc_lock, flags); 767 if (cmos_rtc.suspend_ctrl) 768 rtc_control = CMOS_READ(RTC_CONTROL); 769 if (rtc_control & RTC_AIE) { 770 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 771 CMOS_WRITE(rtc_control, RTC_CONTROL); 772 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 773 rtc_update_irq(cmos->rtc, 1, rtc_intr); 774 } 775 spin_unlock_irqrestore(&rtc_lock, flags); 776 } 777 778 pm_wakeup_hard_event(dev); 779 acpi_clear_event(ACPI_EVENT_RTC); 780 acpi_disable_event(ACPI_EVENT_RTC, 0); 781 return ACPI_INTERRUPT_HANDLED; 782 } 783 784 static void acpi_rtc_event_setup(struct device *dev) 785 { 786 if (acpi_disabled) 787 return; 788 789 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 790 /* 791 * After the RTC handler is installed, the Fixed_RTC event should 792 * be disabled. Only when the RTC alarm is set will it be enabled. 793 */ 794 acpi_clear_event(ACPI_EVENT_RTC); 795 acpi_disable_event(ACPI_EVENT_RTC, 0); 796 } 797 798 static void acpi_rtc_event_cleanup(void) 799 { 800 if (acpi_disabled) 801 return; 802 803 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler); 804 } 805 806 static void rtc_wake_on(struct device *dev) 807 { 808 acpi_clear_event(ACPI_EVENT_RTC); 809 acpi_enable_event(ACPI_EVENT_RTC, 0); 810 } 811 812 static void rtc_wake_off(struct device *dev) 813 { 814 acpi_disable_event(ACPI_EVENT_RTC, 0); 815 } 816 817 #ifdef CONFIG_X86 818 static void use_acpi_alarm_quirks(void) 819 { 820 switch (boot_cpu_data.x86_vendor) { 821 case X86_VENDOR_INTEL: 822 if (dmi_get_bios_year() < 2015) 823 return; 824 break; 825 case X86_VENDOR_AMD: 826 case X86_VENDOR_HYGON: 827 if (dmi_get_bios_year() < 2021) 828 return; 829 break; 830 default: 831 return; 832 } 833 if (!is_hpet_enabled()) 834 return; 835 836 use_acpi_alarm = true; 837 } 838 #else 839 static inline void use_acpi_alarm_quirks(void) { } 840 #endif 841 842 static void acpi_cmos_wake_setup(struct device *dev) 843 { 844 if (acpi_disabled) 845 return; 846 847 use_acpi_alarm_quirks(); 848 849 cmos_rtc.wake_on = rtc_wake_on; 850 cmos_rtc.wake_off = rtc_wake_off; 851 852 /* ACPI tables bug workaround. */ 853 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 854 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 855 acpi_gbl_FADT.month_alarm); 856 acpi_gbl_FADT.month_alarm = 0; 857 } 858 859 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm; 860 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm; 861 cmos_rtc.century = acpi_gbl_FADT.century; 862 863 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 864 dev_info(dev, "RTC can wake from S4\n"); 865 866 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 867 device_init_wakeup(dev, 1); 868 } 869 870 static void cmos_check_acpi_rtc_status(struct device *dev, 871 unsigned char *rtc_control) 872 { 873 struct cmos_rtc *cmos = dev_get_drvdata(dev); 874 acpi_event_status rtc_status; 875 acpi_status status; 876 877 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 878 return; 879 880 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 881 if (ACPI_FAILURE(status)) { 882 dev_err(dev, "Could not get RTC status\n"); 883 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 884 unsigned char mask; 885 *rtc_control &= ~RTC_AIE; 886 CMOS_WRITE(*rtc_control, RTC_CONTROL); 887 mask = CMOS_READ(RTC_INTR_FLAGS); 888 rtc_update_irq(cmos->rtc, 1, mask); 889 } 890 } 891 892 #else /* !CONFIG_ACPI */ 893 894 static inline void acpi_rtc_event_setup(struct device *dev) 895 { 896 } 897 898 static inline void acpi_rtc_event_cleanup(void) 899 { 900 } 901 902 static inline void acpi_cmos_wake_setup(struct device *dev) 903 { 904 } 905 906 static inline void cmos_check_acpi_rtc_status(struct device *dev, 907 unsigned char *rtc_control) 908 { 909 } 910 #endif /* CONFIG_ACPI */ 911 912 #ifdef CONFIG_PNP 913 #define INITSECTION 914 915 #else 916 #define INITSECTION __init 917 #endif 918 919 #define SECS_PER_DAY (24 * 60 * 60) 920 #define SECS_PER_MONTH (28 * SECS_PER_DAY) 921 #define SECS_PER_YEAR (365 * SECS_PER_DAY) 922 923 static int INITSECTION 924 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 925 { 926 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 927 int retval = 0; 928 unsigned char rtc_control; 929 unsigned address_space; 930 u32 flags = 0; 931 struct nvmem_config nvmem_cfg = { 932 .name = "cmos_nvram", 933 .word_size = 1, 934 .stride = 1, 935 .reg_read = cmos_nvram_read, 936 .reg_write = cmos_nvram_write, 937 .priv = &cmos_rtc, 938 }; 939 940 /* there can be only one ... */ 941 if (cmos_rtc.dev) 942 return -EBUSY; 943 944 if (!ports) 945 return -ENODEV; 946 947 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 948 * 949 * REVISIT non-x86 systems may instead use memory space resources 950 * (needing ioremap etc), not i/o space resources like this ... 951 */ 952 if (RTC_IOMAPPED) 953 ports = request_region(ports->start, resource_size(ports), 954 driver_name); 955 else 956 ports = request_mem_region(ports->start, resource_size(ports), 957 driver_name); 958 if (!ports) { 959 dev_dbg(dev, "i/o registers already in use\n"); 960 return -EBUSY; 961 } 962 963 cmos_rtc.irq = rtc_irq; 964 cmos_rtc.iomem = ports; 965 966 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 967 * driver did, but don't reject unknown configs. Old hardware 968 * won't address 128 bytes. Newer chips have multiple banks, 969 * though they may not be listed in one I/O resource. 970 */ 971 #if defined(CONFIG_ATARI) 972 address_space = 64; 973 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 974 || defined(__sparc__) || defined(__mips__) \ 975 || defined(__powerpc__) 976 address_space = 128; 977 #else 978 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 979 address_space = 128; 980 #endif 981 if (can_bank2 && ports->end > (ports->start + 1)) 982 address_space = 256; 983 984 /* For ACPI systems extension info comes from the FADT. On others, 985 * board specific setup provides it as appropriate. Systems where 986 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 987 * some almost-clones) can provide hooks to make that behave. 988 * 989 * Note that ACPI doesn't preclude putting these registers into 990 * "extended" areas of the chip, including some that we won't yet 991 * expect CMOS_READ and friends to handle. 992 */ 993 if (info) { 994 if (info->flags) 995 flags = info->flags; 996 if (info->address_space) 997 address_space = info->address_space; 998 999 cmos_rtc.day_alrm = info->rtc_day_alarm; 1000 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 1001 cmos_rtc.century = info->rtc_century; 1002 1003 if (info->wake_on && info->wake_off) { 1004 cmos_rtc.wake_on = info->wake_on; 1005 cmos_rtc.wake_off = info->wake_off; 1006 } 1007 } else { 1008 acpi_cmos_wake_setup(dev); 1009 } 1010 1011 if (cmos_rtc.day_alrm >= 128) 1012 cmos_rtc.day_alrm = 0; 1013 1014 if (cmos_rtc.mon_alrm >= 128) 1015 cmos_rtc.mon_alrm = 0; 1016 1017 if (cmos_rtc.century >= 128) 1018 cmos_rtc.century = 0; 1019 1020 cmos_rtc.dev = dev; 1021 dev_set_drvdata(dev, &cmos_rtc); 1022 1023 cmos_rtc.rtc = devm_rtc_allocate_device(dev); 1024 if (IS_ERR(cmos_rtc.rtc)) { 1025 retval = PTR_ERR(cmos_rtc.rtc); 1026 goto cleanup0; 1027 } 1028 1029 if (cmos_rtc.mon_alrm) 1030 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1; 1031 else if (cmos_rtc.day_alrm) 1032 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1; 1033 else 1034 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1; 1035 1036 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 1037 1038 if (!mc146818_does_rtc_work()) { 1039 dev_warn(dev, "broken or not accessible\n"); 1040 retval = -ENXIO; 1041 goto cleanup1; 1042 } 1043 1044 spin_lock_irq(&rtc_lock); 1045 1046 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 1047 /* force periodic irq to CMOS reset default of 1024Hz; 1048 * 1049 * REVISIT it's been reported that at least one x86_64 ALI 1050 * mobo doesn't use 32KHz here ... for portability we might 1051 * need to do something about other clock frequencies. 1052 */ 1053 cmos_rtc.rtc->irq_freq = 1024; 1054 if (use_hpet_alarm()) 1055 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 1056 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 1057 } 1058 1059 /* disable irqs */ 1060 if (is_valid_irq(rtc_irq)) 1061 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 1062 1063 rtc_control = CMOS_READ(RTC_CONTROL); 1064 1065 spin_unlock_irq(&rtc_lock); 1066 1067 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 1068 dev_warn(dev, "only 24-hr supported\n"); 1069 retval = -ENXIO; 1070 goto cleanup1; 1071 } 1072 1073 if (use_hpet_alarm()) 1074 hpet_rtc_timer_init(); 1075 1076 if (is_valid_irq(rtc_irq)) { 1077 irq_handler_t rtc_cmos_int_handler; 1078 1079 if (use_hpet_alarm()) { 1080 rtc_cmos_int_handler = hpet_rtc_interrupt; 1081 retval = hpet_register_irq_handler(cmos_interrupt); 1082 if (retval) { 1083 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 1084 dev_warn(dev, "hpet_register_irq_handler " 1085 " failed in rtc_init()."); 1086 goto cleanup1; 1087 } 1088 } else 1089 rtc_cmos_int_handler = cmos_interrupt; 1090 1091 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 1092 0, dev_name(&cmos_rtc.rtc->dev), 1093 cmos_rtc.rtc); 1094 if (retval < 0) { 1095 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 1096 goto cleanup1; 1097 } 1098 } else { 1099 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features); 1100 } 1101 1102 cmos_rtc.rtc->ops = &cmos_rtc_ops; 1103 1104 retval = devm_rtc_register_device(cmos_rtc.rtc); 1105 if (retval) 1106 goto cleanup2; 1107 1108 /* Set the sync offset for the periodic 11min update correct */ 1109 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2; 1110 1111 /* export at least the first block of NVRAM */ 1112 nvmem_cfg.size = address_space - NVRAM_OFFSET; 1113 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg); 1114 1115 /* 1116 * Everything has gone well so far, so by default register a handler for 1117 * the ACPI RTC fixed event. 1118 */ 1119 if (!info) 1120 acpi_rtc_event_setup(dev); 1121 1122 dev_info(dev, "%s%s, %d bytes nvram%s\n", 1123 !is_valid_irq(rtc_irq) ? "no alarms" : 1124 cmos_rtc.mon_alrm ? "alarms up to one year" : 1125 cmos_rtc.day_alrm ? "alarms up to one month" : 1126 "alarms up to one day", 1127 cmos_rtc.century ? ", y3k" : "", 1128 nvmem_cfg.size, 1129 use_hpet_alarm() ? ", hpet irqs" : ""); 1130 1131 return 0; 1132 1133 cleanup2: 1134 if (is_valid_irq(rtc_irq)) 1135 free_irq(rtc_irq, cmos_rtc.rtc); 1136 cleanup1: 1137 cmos_rtc.dev = NULL; 1138 cleanup0: 1139 if (RTC_IOMAPPED) 1140 release_region(ports->start, resource_size(ports)); 1141 else 1142 release_mem_region(ports->start, resource_size(ports)); 1143 return retval; 1144 } 1145 1146 static void cmos_do_shutdown(int rtc_irq) 1147 { 1148 spin_lock_irq(&rtc_lock); 1149 if (is_valid_irq(rtc_irq)) 1150 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 1151 spin_unlock_irq(&rtc_lock); 1152 } 1153 1154 static void cmos_do_remove(struct device *dev) 1155 { 1156 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1157 struct resource *ports; 1158 1159 cmos_do_shutdown(cmos->irq); 1160 1161 if (is_valid_irq(cmos->irq)) { 1162 free_irq(cmos->irq, cmos->rtc); 1163 if (use_hpet_alarm()) 1164 hpet_unregister_irq_handler(cmos_interrupt); 1165 } 1166 1167 if (!dev_get_platdata(dev)) 1168 acpi_rtc_event_cleanup(); 1169 1170 cmos->rtc = NULL; 1171 1172 ports = cmos->iomem; 1173 if (RTC_IOMAPPED) 1174 release_region(ports->start, resource_size(ports)); 1175 else 1176 release_mem_region(ports->start, resource_size(ports)); 1177 cmos->iomem = NULL; 1178 1179 cmos->dev = NULL; 1180 } 1181 1182 static int cmos_aie_poweroff(struct device *dev) 1183 { 1184 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1185 struct rtc_time now; 1186 time64_t t_now; 1187 int retval = 0; 1188 unsigned char rtc_control; 1189 1190 if (!cmos->alarm_expires) 1191 return -EINVAL; 1192 1193 spin_lock_irq(&rtc_lock); 1194 rtc_control = CMOS_READ(RTC_CONTROL); 1195 spin_unlock_irq(&rtc_lock); 1196 1197 /* We only care about the situation where AIE is disabled. */ 1198 if (rtc_control & RTC_AIE) 1199 return -EBUSY; 1200 1201 cmos_read_time(dev, &now); 1202 t_now = rtc_tm_to_time64(&now); 1203 1204 /* 1205 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 1206 * automatically right after shutdown on some buggy boxes. 1207 * This automatic rebooting issue won't happen when the alarm 1208 * time is larger than now+1 seconds. 1209 * 1210 * If the alarm time is equal to now+1 seconds, the issue can be 1211 * prevented by cancelling the alarm. 1212 */ 1213 if (cmos->alarm_expires == t_now + 1) { 1214 struct rtc_wkalrm alarm; 1215 1216 /* Cancel the AIE timer by configuring the past time. */ 1217 rtc_time64_to_tm(t_now - 1, &alarm.time); 1218 alarm.enabled = 0; 1219 retval = cmos_set_alarm(dev, &alarm); 1220 } else if (cmos->alarm_expires > t_now + 1) { 1221 retval = -EBUSY; 1222 } 1223 1224 return retval; 1225 } 1226 1227 static int cmos_suspend(struct device *dev) 1228 { 1229 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1230 unsigned char tmp; 1231 1232 /* only the alarm might be a wakeup event source */ 1233 spin_lock_irq(&rtc_lock); 1234 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 1235 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 1236 unsigned char mask; 1237 1238 if (device_may_wakeup(dev)) 1239 mask = RTC_IRQMASK & ~RTC_AIE; 1240 else 1241 mask = RTC_IRQMASK; 1242 tmp &= ~mask; 1243 CMOS_WRITE(tmp, RTC_CONTROL); 1244 if (use_hpet_alarm()) 1245 hpet_mask_rtc_irq_bit(mask); 1246 cmos_checkintr(cmos, tmp); 1247 } 1248 spin_unlock_irq(&rtc_lock); 1249 1250 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { 1251 cmos->enabled_wake = 1; 1252 if (cmos->wake_on) 1253 cmos->wake_on(dev); 1254 else 1255 enable_irq_wake(cmos->irq); 1256 } 1257 1258 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm)); 1259 cmos_read_alarm(dev, &cmos->saved_wkalrm); 1260 1261 dev_dbg(dev, "suspend%s, ctrl %02x\n", 1262 (tmp & RTC_AIE) ? ", alarm may wake" : "", 1263 tmp); 1264 1265 return 0; 1266 } 1267 1268 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 1269 * after a detour through G3 "mechanical off", although the ACPI spec 1270 * says wakeup should only work from G1/S4 "hibernate". To most users, 1271 * distinctions between S4 and S5 are pointless. So when the hardware 1272 * allows, don't draw that distinction. 1273 */ 1274 static inline int cmos_poweroff(struct device *dev) 1275 { 1276 if (!IS_ENABLED(CONFIG_PM)) 1277 return -ENOSYS; 1278 1279 return cmos_suspend(dev); 1280 } 1281 1282 static void cmos_check_wkalrm(struct device *dev) 1283 { 1284 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1285 struct rtc_wkalrm current_alarm; 1286 time64_t t_now; 1287 time64_t t_current_expires; 1288 time64_t t_saved_expires; 1289 struct rtc_time now; 1290 1291 /* Check if we have RTC Alarm armed */ 1292 if (!(cmos->suspend_ctrl & RTC_AIE)) 1293 return; 1294 1295 cmos_read_time(dev, &now); 1296 t_now = rtc_tm_to_time64(&now); 1297 1298 /* 1299 * ACPI RTC wake event is cleared after resume from STR, 1300 * ACK the rtc irq here 1301 */ 1302 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { 1303 local_irq_disable(); 1304 cmos_interrupt(0, (void *)cmos->rtc); 1305 local_irq_enable(); 1306 return; 1307 } 1308 1309 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm)); 1310 cmos_read_alarm(dev, ¤t_alarm); 1311 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 1312 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 1313 if (t_current_expires != t_saved_expires || 1314 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 1315 cmos_set_alarm(dev, &cmos->saved_wkalrm); 1316 } 1317 } 1318 1319 static int __maybe_unused cmos_resume(struct device *dev) 1320 { 1321 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1322 unsigned char tmp; 1323 1324 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { 1325 if (cmos->wake_off) 1326 cmos->wake_off(dev); 1327 else 1328 disable_irq_wake(cmos->irq); 1329 cmos->enabled_wake = 0; 1330 } 1331 1332 /* The BIOS might have changed the alarm, restore it */ 1333 cmos_check_wkalrm(dev); 1334 1335 spin_lock_irq(&rtc_lock); 1336 tmp = cmos->suspend_ctrl; 1337 cmos->suspend_ctrl = 0; 1338 /* re-enable any irqs previously active */ 1339 if (tmp & RTC_IRQMASK) { 1340 unsigned char mask; 1341 1342 if (device_may_wakeup(dev) && use_hpet_alarm()) 1343 hpet_rtc_timer_init(); 1344 1345 do { 1346 CMOS_WRITE(tmp, RTC_CONTROL); 1347 if (use_hpet_alarm()) 1348 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 1349 1350 mask = CMOS_READ(RTC_INTR_FLAGS); 1351 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 1352 if (!use_hpet_alarm() || !is_intr(mask)) 1353 break; 1354 1355 /* force one-shot behavior if HPET blocked 1356 * the wake alarm's irq 1357 */ 1358 rtc_update_irq(cmos->rtc, 1, mask); 1359 tmp &= ~RTC_AIE; 1360 hpet_mask_rtc_irq_bit(RTC_AIE); 1361 } while (mask & RTC_AIE); 1362 1363 if (tmp & RTC_AIE) 1364 cmos_check_acpi_rtc_status(dev, &tmp); 1365 } 1366 spin_unlock_irq(&rtc_lock); 1367 1368 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 1369 1370 return 0; 1371 } 1372 1373 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 1374 1375 /*----------------------------------------------------------------*/ 1376 1377 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 1378 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 1379 * probably list them in similar PNPBIOS tables; so PNP is more common. 1380 * 1381 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 1382 * predate even PNPBIOS should set up platform_bus devices. 1383 */ 1384 1385 #ifdef CONFIG_PNP 1386 1387 #include <linux/pnp.h> 1388 1389 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1390 { 1391 int irq; 1392 1393 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { 1394 irq = 0; 1395 #ifdef CONFIG_X86 1396 /* Some machines contain a PNP entry for the RTC, but 1397 * don't define the IRQ. It should always be safe to 1398 * hardcode it on systems with a legacy PIC. 1399 */ 1400 if (nr_legacy_irqs()) 1401 irq = RTC_IRQ; 1402 #endif 1403 } else { 1404 irq = pnp_irq(pnp, 0); 1405 } 1406 1407 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); 1408 } 1409 1410 static void cmos_pnp_remove(struct pnp_dev *pnp) 1411 { 1412 cmos_do_remove(&pnp->dev); 1413 } 1414 1415 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1416 { 1417 struct device *dev = &pnp->dev; 1418 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1419 1420 if (system_state == SYSTEM_POWER_OFF) { 1421 int retval = cmos_poweroff(dev); 1422 1423 if (cmos_aie_poweroff(dev) < 0 && !retval) 1424 return; 1425 } 1426 1427 cmos_do_shutdown(cmos->irq); 1428 } 1429 1430 static const struct pnp_device_id rtc_ids[] = { 1431 { .id = "PNP0b00", }, 1432 { .id = "PNP0b01", }, 1433 { .id = "PNP0b02", }, 1434 { }, 1435 }; 1436 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1437 1438 static struct pnp_driver cmos_pnp_driver = { 1439 .name = driver_name, 1440 .id_table = rtc_ids, 1441 .probe = cmos_pnp_probe, 1442 .remove = cmos_pnp_remove, 1443 .shutdown = cmos_pnp_shutdown, 1444 1445 /* flag ensures resume() gets called, and stops syslog spam */ 1446 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1447 .driver = { 1448 .pm = &cmos_pm_ops, 1449 }, 1450 }; 1451 1452 #endif /* CONFIG_PNP */ 1453 1454 #ifdef CONFIG_OF 1455 static const struct of_device_id of_cmos_match[] = { 1456 { 1457 .compatible = "motorola,mc146818", 1458 }, 1459 { }, 1460 }; 1461 MODULE_DEVICE_TABLE(of, of_cmos_match); 1462 1463 static __init void cmos_of_init(struct platform_device *pdev) 1464 { 1465 struct device_node *node = pdev->dev.of_node; 1466 const __be32 *val; 1467 1468 if (!node) 1469 return; 1470 1471 val = of_get_property(node, "ctrl-reg", NULL); 1472 if (val) 1473 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1474 1475 val = of_get_property(node, "freq-reg", NULL); 1476 if (val) 1477 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1478 } 1479 #else 1480 static inline void cmos_of_init(struct platform_device *pdev) {} 1481 #endif 1482 /*----------------------------------------------------------------*/ 1483 1484 /* Platform setup should have set up an RTC device, when PNP is 1485 * unavailable ... this could happen even on (older) PCs. 1486 */ 1487 1488 static int __init cmos_platform_probe(struct platform_device *pdev) 1489 { 1490 struct resource *resource; 1491 int irq; 1492 1493 cmos_of_init(pdev); 1494 1495 if (RTC_IOMAPPED) 1496 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1497 else 1498 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1499 irq = platform_get_irq(pdev, 0); 1500 if (irq < 0) 1501 irq = -1; 1502 1503 return cmos_do_probe(&pdev->dev, resource, irq); 1504 } 1505 1506 static void cmos_platform_remove(struct platform_device *pdev) 1507 { 1508 cmos_do_remove(&pdev->dev); 1509 } 1510 1511 static void cmos_platform_shutdown(struct platform_device *pdev) 1512 { 1513 struct device *dev = &pdev->dev; 1514 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1515 1516 if (system_state == SYSTEM_POWER_OFF) { 1517 int retval = cmos_poweroff(dev); 1518 1519 if (cmos_aie_poweroff(dev) < 0 && !retval) 1520 return; 1521 } 1522 1523 cmos_do_shutdown(cmos->irq); 1524 } 1525 1526 /* work with hotplug and coldplug */ 1527 MODULE_ALIAS("platform:rtc_cmos"); 1528 1529 static struct platform_driver cmos_platform_driver = { 1530 .remove = cmos_platform_remove, 1531 .shutdown = cmos_platform_shutdown, 1532 .driver = { 1533 .name = driver_name, 1534 .pm = &cmos_pm_ops, 1535 .of_match_table = of_match_ptr(of_cmos_match), 1536 } 1537 }; 1538 1539 #ifdef CONFIG_PNP 1540 static bool pnp_driver_registered; 1541 #endif 1542 static bool platform_driver_registered; 1543 1544 static int __init cmos_init(void) 1545 { 1546 int retval = 0; 1547 1548 #ifdef CONFIG_PNP 1549 retval = pnp_register_driver(&cmos_pnp_driver); 1550 if (retval == 0) 1551 pnp_driver_registered = true; 1552 #endif 1553 1554 if (!cmos_rtc.dev) { 1555 retval = platform_driver_probe(&cmos_platform_driver, 1556 cmos_platform_probe); 1557 if (retval == 0) 1558 platform_driver_registered = true; 1559 } 1560 1561 if (retval == 0) 1562 return 0; 1563 1564 #ifdef CONFIG_PNP 1565 if (pnp_driver_registered) 1566 pnp_unregister_driver(&cmos_pnp_driver); 1567 #endif 1568 return retval; 1569 } 1570 module_init(cmos_init); 1571 1572 static void __exit cmos_exit(void) 1573 { 1574 #ifdef CONFIG_PNP 1575 if (pnp_driver_registered) 1576 pnp_unregister_driver(&cmos_pnp_driver); 1577 #endif 1578 if (platform_driver_registered) 1579 platform_driver_unregister(&cmos_platform_driver); 1580 } 1581 module_exit(cmos_exit); 1582 1583 1584 MODULE_AUTHOR("David Brownell"); 1585 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1586 MODULE_LICENSE("GPL"); 1587