1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 40 #include <asm-generic/rtc.h> 41 42 43 struct cmos_rtc { 44 struct rtc_device *rtc; 45 struct device *dev; 46 int irq; 47 struct resource *iomem; 48 49 void (*wake_on)(struct device *); 50 void (*wake_off)(struct device *); 51 52 u8 enabled_wake; 53 u8 suspend_ctrl; 54 55 /* newer hardware extends the original register set */ 56 u8 day_alrm; 57 u8 mon_alrm; 58 u8 century; 59 }; 60 61 /* both platform and pnp busses use negative numbers for invalid irqs */ 62 #define is_valid_irq(n) ((n) >= 0) 63 64 static const char driver_name[] = "rtc_cmos"; 65 66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 69 */ 70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 71 72 static inline int is_intr(u8 rtc_intr) 73 { 74 if (!(rtc_intr & RTC_IRQF)) 75 return 0; 76 return rtc_intr & RTC_IRQMASK; 77 } 78 79 /*----------------------------------------------------------------*/ 80 81 static int cmos_read_time(struct device *dev, struct rtc_time *t) 82 { 83 /* REVISIT: if the clock has a "century" register, use 84 * that instead of the heuristic in get_rtc_time(). 85 * That'll make Y3K compatility (year > 2070) easy! 86 */ 87 get_rtc_time(t); 88 return 0; 89 } 90 91 static int cmos_set_time(struct device *dev, struct rtc_time *t) 92 { 93 /* REVISIT: set the "century" register if available 94 * 95 * NOTE: this ignores the issue whereby updating the seconds 96 * takes effect exactly 500ms after we write the register. 97 * (Also queueing and other delays before we get this far.) 98 */ 99 return set_rtc_time(t); 100 } 101 102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 103 { 104 struct cmos_rtc *cmos = dev_get_drvdata(dev); 105 unsigned char rtc_control; 106 107 if (!is_valid_irq(cmos->irq)) 108 return -EIO; 109 110 /* Basic alarms only support hour, minute, and seconds fields. 111 * Some also support day and month, for alarms up to a year in 112 * the future. 113 */ 114 t->time.tm_mday = -1; 115 t->time.tm_mon = -1; 116 117 spin_lock_irq(&rtc_lock); 118 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 119 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 120 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 121 122 if (cmos->day_alrm) { 123 /* ignore upper bits on readback per ACPI spec */ 124 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 125 if (!t->time.tm_mday) 126 t->time.tm_mday = -1; 127 128 if (cmos->mon_alrm) { 129 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 130 if (!t->time.tm_mon) 131 t->time.tm_mon = -1; 132 } 133 } 134 135 rtc_control = CMOS_READ(RTC_CONTROL); 136 spin_unlock_irq(&rtc_lock); 137 138 /* REVISIT this assumes PC style usage: always BCD */ 139 140 if (((unsigned)t->time.tm_sec) < 0x60) 141 t->time.tm_sec = BCD2BIN(t->time.tm_sec); 142 else 143 t->time.tm_sec = -1; 144 if (((unsigned)t->time.tm_min) < 0x60) 145 t->time.tm_min = BCD2BIN(t->time.tm_min); 146 else 147 t->time.tm_min = -1; 148 if (((unsigned)t->time.tm_hour) < 0x24) 149 t->time.tm_hour = BCD2BIN(t->time.tm_hour); 150 else 151 t->time.tm_hour = -1; 152 153 if (cmos->day_alrm) { 154 if (((unsigned)t->time.tm_mday) <= 0x31) 155 t->time.tm_mday = BCD2BIN(t->time.tm_mday); 156 else 157 t->time.tm_mday = -1; 158 if (cmos->mon_alrm) { 159 if (((unsigned)t->time.tm_mon) <= 0x12) 160 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1; 161 else 162 t->time.tm_mon = -1; 163 } 164 } 165 t->time.tm_year = -1; 166 167 t->enabled = !!(rtc_control & RTC_AIE); 168 t->pending = 0; 169 170 return 0; 171 } 172 173 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 174 { 175 struct cmos_rtc *cmos = dev_get_drvdata(dev); 176 unsigned char mon, mday, hrs, min, sec; 177 unsigned char rtc_control, rtc_intr; 178 179 if (!is_valid_irq(cmos->irq)) 180 return -EIO; 181 182 /* REVISIT this assumes PC style usage: always BCD */ 183 184 /* Writing 0xff means "don't care" or "match all". */ 185 186 mon = t->time.tm_mon; 187 mon = (mon < 12) ? BIN2BCD(mon) : 0xff; 188 mon++; 189 190 mday = t->time.tm_mday; 191 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff; 192 193 hrs = t->time.tm_hour; 194 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff; 195 196 min = t->time.tm_min; 197 min = (min < 60) ? BIN2BCD(min) : 0xff; 198 199 sec = t->time.tm_sec; 200 sec = (sec < 60) ? BIN2BCD(sec) : 0xff; 201 202 spin_lock_irq(&rtc_lock); 203 204 /* next rtc irq must not be from previous alarm setting */ 205 rtc_control = CMOS_READ(RTC_CONTROL); 206 rtc_control &= ~RTC_AIE; 207 CMOS_WRITE(rtc_control, RTC_CONTROL); 208 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 209 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 210 if (is_intr(rtc_intr)) 211 rtc_update_irq(cmos->rtc, 1, rtc_intr); 212 213 /* update alarm */ 214 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 215 CMOS_WRITE(min, RTC_MINUTES_ALARM); 216 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 217 218 /* the system may support an "enhanced" alarm */ 219 if (cmos->day_alrm) { 220 CMOS_WRITE(mday, cmos->day_alrm); 221 if (cmos->mon_alrm) 222 CMOS_WRITE(mon, cmos->mon_alrm); 223 } 224 225 if (t->enabled) { 226 rtc_control |= RTC_AIE; 227 CMOS_WRITE(rtc_control, RTC_CONTROL); 228 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 229 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 230 if (is_intr(rtc_intr)) 231 rtc_update_irq(cmos->rtc, 1, rtc_intr); 232 } 233 234 spin_unlock_irq(&rtc_lock); 235 236 return 0; 237 } 238 239 static int cmos_irq_set_freq(struct device *dev, int freq) 240 { 241 struct cmos_rtc *cmos = dev_get_drvdata(dev); 242 int f; 243 unsigned long flags; 244 245 if (!is_valid_irq(cmos->irq)) 246 return -ENXIO; 247 248 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */ 249 f = ffs(freq); 250 if (f-- > 16) 251 return -EINVAL; 252 f = 16 - f; 253 254 spin_lock_irqsave(&rtc_lock, flags); 255 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT); 256 spin_unlock_irqrestore(&rtc_lock, flags); 257 258 return 0; 259 } 260 261 static int cmos_irq_set_state(struct device *dev, int enabled) 262 { 263 struct cmos_rtc *cmos = dev_get_drvdata(dev); 264 unsigned char rtc_control, rtc_intr; 265 unsigned long flags; 266 267 if (!is_valid_irq(cmos->irq)) 268 return -ENXIO; 269 270 spin_lock_irqsave(&rtc_lock, flags); 271 rtc_control = CMOS_READ(RTC_CONTROL); 272 273 if (enabled) 274 rtc_control |= RTC_PIE; 275 else 276 rtc_control &= ~RTC_PIE; 277 278 CMOS_WRITE(rtc_control, RTC_CONTROL); 279 280 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 281 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 282 if (is_intr(rtc_intr)) 283 rtc_update_irq(cmos->rtc, 1, rtc_intr); 284 285 spin_unlock_irqrestore(&rtc_lock, flags); 286 return 0; 287 } 288 289 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE) 290 291 static int 292 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) 293 { 294 struct cmos_rtc *cmos = dev_get_drvdata(dev); 295 unsigned char rtc_control, rtc_intr; 296 unsigned long flags; 297 298 switch (cmd) { 299 case RTC_AIE_OFF: 300 case RTC_AIE_ON: 301 case RTC_UIE_OFF: 302 case RTC_UIE_ON: 303 case RTC_PIE_OFF: 304 case RTC_PIE_ON: 305 if (!is_valid_irq(cmos->irq)) 306 return -EINVAL; 307 break; 308 default: 309 return -ENOIOCTLCMD; 310 } 311 312 spin_lock_irqsave(&rtc_lock, flags); 313 rtc_control = CMOS_READ(RTC_CONTROL); 314 switch (cmd) { 315 case RTC_AIE_OFF: /* alarm off */ 316 rtc_control &= ~RTC_AIE; 317 break; 318 case RTC_AIE_ON: /* alarm on */ 319 rtc_control |= RTC_AIE; 320 break; 321 case RTC_UIE_OFF: /* update off */ 322 rtc_control &= ~RTC_UIE; 323 break; 324 case RTC_UIE_ON: /* update on */ 325 rtc_control |= RTC_UIE; 326 break; 327 case RTC_PIE_OFF: /* periodic off */ 328 rtc_control &= ~RTC_PIE; 329 break; 330 case RTC_PIE_ON: /* periodic on */ 331 rtc_control |= RTC_PIE; 332 break; 333 } 334 CMOS_WRITE(rtc_control, RTC_CONTROL); 335 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 336 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 337 if (is_intr(rtc_intr)) 338 rtc_update_irq(cmos->rtc, 1, rtc_intr); 339 spin_unlock_irqrestore(&rtc_lock, flags); 340 return 0; 341 } 342 343 #else 344 #define cmos_rtc_ioctl NULL 345 #endif 346 347 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 348 349 static int cmos_procfs(struct device *dev, struct seq_file *seq) 350 { 351 struct cmos_rtc *cmos = dev_get_drvdata(dev); 352 unsigned char rtc_control, valid; 353 354 spin_lock_irq(&rtc_lock); 355 rtc_control = CMOS_READ(RTC_CONTROL); 356 valid = CMOS_READ(RTC_VALID); 357 spin_unlock_irq(&rtc_lock); 358 359 /* NOTE: at least ICH6 reports battery status using a different 360 * (non-RTC) bit; and SQWE is ignored on many current systems. 361 */ 362 return seq_printf(seq, 363 "periodic_IRQ\t: %s\n" 364 "update_IRQ\t: %s\n" 365 // "square_wave\t: %s\n" 366 // "BCD\t\t: %s\n" 367 "DST_enable\t: %s\n" 368 "periodic_freq\t: %d\n" 369 "batt_status\t: %s\n", 370 (rtc_control & RTC_PIE) ? "yes" : "no", 371 (rtc_control & RTC_UIE) ? "yes" : "no", 372 // (rtc_control & RTC_SQWE) ? "yes" : "no", 373 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 374 (rtc_control & RTC_DST_EN) ? "yes" : "no", 375 cmos->rtc->irq_freq, 376 (valid & RTC_VRT) ? "okay" : "dead"); 377 } 378 379 #else 380 #define cmos_procfs NULL 381 #endif 382 383 static const struct rtc_class_ops cmos_rtc_ops = { 384 .ioctl = cmos_rtc_ioctl, 385 .read_time = cmos_read_time, 386 .set_time = cmos_set_time, 387 .read_alarm = cmos_read_alarm, 388 .set_alarm = cmos_set_alarm, 389 .proc = cmos_procfs, 390 .irq_set_freq = cmos_irq_set_freq, 391 .irq_set_state = cmos_irq_set_state, 392 }; 393 394 /*----------------------------------------------------------------*/ 395 396 static struct cmos_rtc cmos_rtc; 397 398 static irqreturn_t cmos_interrupt(int irq, void *p) 399 { 400 u8 irqstat; 401 402 spin_lock(&rtc_lock); 403 irqstat = CMOS_READ(RTC_INTR_FLAGS); 404 irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF; 405 spin_unlock(&rtc_lock); 406 407 if (is_intr(irqstat)) { 408 rtc_update_irq(p, 1, irqstat); 409 return IRQ_HANDLED; 410 } else 411 return IRQ_NONE; 412 } 413 414 #ifdef CONFIG_PNP 415 #define is_pnp() 1 416 #define INITSECTION 417 418 #else 419 #define is_pnp() 0 420 #define INITSECTION __init 421 #endif 422 423 static int INITSECTION 424 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 425 { 426 struct cmos_rtc_board_info *info = dev->platform_data; 427 int retval = 0; 428 unsigned char rtc_control; 429 430 /* there can be only one ... */ 431 if (cmos_rtc.dev) 432 return -EBUSY; 433 434 if (!ports) 435 return -ENODEV; 436 437 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 438 * 439 * REVISIT non-x86 systems may instead use memory space resources 440 * (needing ioremap etc), not i/o space resources like this ... 441 */ 442 ports = request_region(ports->start, 443 ports->end + 1 - ports->start, 444 driver_name); 445 if (!ports) { 446 dev_dbg(dev, "i/o registers already in use\n"); 447 return -EBUSY; 448 } 449 450 cmos_rtc.irq = rtc_irq; 451 cmos_rtc.iomem = ports; 452 453 /* For ACPI systems extension info comes from the FADT. On others, 454 * board specific setup provides it as appropriate. Systems where 455 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 456 * some almost-clones) can provide hooks to make that behave. 457 */ 458 if (info) { 459 cmos_rtc.day_alrm = info->rtc_day_alarm; 460 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 461 cmos_rtc.century = info->rtc_century; 462 463 if (info->wake_on && info->wake_off) { 464 cmos_rtc.wake_on = info->wake_on; 465 cmos_rtc.wake_off = info->wake_off; 466 } 467 } 468 469 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 470 &cmos_rtc_ops, THIS_MODULE); 471 if (IS_ERR(cmos_rtc.rtc)) { 472 retval = PTR_ERR(cmos_rtc.rtc); 473 goto cleanup0; 474 } 475 476 cmos_rtc.dev = dev; 477 dev_set_drvdata(dev, &cmos_rtc); 478 rename_region(ports, cmos_rtc.rtc->dev.bus_id); 479 480 spin_lock_irq(&rtc_lock); 481 482 /* force periodic irq to CMOS reset default of 1024Hz; 483 * 484 * REVISIT it's been reported that at least one x86_64 ALI mobo 485 * doesn't use 32KHz here ... for portability we might need to 486 * do something about other clock frequencies. 487 */ 488 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 489 cmos_rtc.rtc->irq_freq = 1024; 490 491 /* disable irqs. 492 * 493 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 494 * allegedly some older rtcs need that to handle irqs properly 495 */ 496 rtc_control = CMOS_READ(RTC_CONTROL); 497 rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE); 498 CMOS_WRITE(rtc_control, RTC_CONTROL); 499 CMOS_READ(RTC_INTR_FLAGS); 500 501 spin_unlock_irq(&rtc_lock); 502 503 /* FIXME teach the alarm code how to handle binary mode; 504 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 505 */ 506 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) { 507 dev_dbg(dev, "only 24-hr BCD mode supported\n"); 508 retval = -ENXIO; 509 goto cleanup1; 510 } 511 512 if (is_valid_irq(rtc_irq)) 513 retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED, 514 cmos_rtc.rtc->dev.bus_id, 515 cmos_rtc.rtc); 516 if (retval < 0) { 517 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 518 goto cleanup1; 519 } 520 521 /* REVISIT optionally make 50 or 114 bytes NVRAM available, 522 * like rtc-ds1553, rtc-ds1742 ... this will often include 523 * registers for century, and day/month alarm. 524 */ 525 526 pr_info("%s: alarms up to one %s%s\n", 527 cmos_rtc.rtc->dev.bus_id, 528 is_valid_irq(rtc_irq) 529 ? (cmos_rtc.mon_alrm 530 ? "year" 531 : (cmos_rtc.day_alrm 532 ? "month" : "day")) 533 : "no", 534 cmos_rtc.century ? ", y3k" : "" 535 ); 536 537 return 0; 538 539 cleanup1: 540 cmos_rtc.dev = NULL; 541 rtc_device_unregister(cmos_rtc.rtc); 542 cleanup0: 543 release_region(ports->start, ports->end + 1 - ports->start); 544 return retval; 545 } 546 547 static void cmos_do_shutdown(void) 548 { 549 unsigned char rtc_control; 550 551 spin_lock_irq(&rtc_lock); 552 rtc_control = CMOS_READ(RTC_CONTROL); 553 rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 554 CMOS_WRITE(rtc_control, RTC_CONTROL); 555 CMOS_READ(RTC_INTR_FLAGS); 556 spin_unlock_irq(&rtc_lock); 557 } 558 559 static void __exit cmos_do_remove(struct device *dev) 560 { 561 struct cmos_rtc *cmos = dev_get_drvdata(dev); 562 struct resource *ports; 563 564 cmos_do_shutdown(); 565 566 if (is_valid_irq(cmos->irq)) 567 free_irq(cmos->irq, cmos->rtc); 568 569 rtc_device_unregister(cmos->rtc); 570 cmos->rtc = NULL; 571 572 ports = cmos->iomem; 573 release_region(ports->start, ports->end + 1 - ports->start); 574 cmos->iomem = NULL; 575 576 cmos->dev = NULL; 577 dev_set_drvdata(dev, NULL); 578 } 579 580 #ifdef CONFIG_PM 581 582 static int cmos_suspend(struct device *dev, pm_message_t mesg) 583 { 584 struct cmos_rtc *cmos = dev_get_drvdata(dev); 585 int do_wake = device_may_wakeup(dev); 586 unsigned char tmp; 587 588 /* only the alarm might be a wakeup event source */ 589 spin_lock_irq(&rtc_lock); 590 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 591 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 592 unsigned char irqstat; 593 594 if (do_wake) 595 tmp &= ~(RTC_PIE|RTC_UIE); 596 else 597 tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE); 598 CMOS_WRITE(tmp, RTC_CONTROL); 599 irqstat = CMOS_READ(RTC_INTR_FLAGS); 600 irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF; 601 if (is_intr(irqstat)) 602 rtc_update_irq(cmos->rtc, 1, irqstat); 603 } 604 spin_unlock_irq(&rtc_lock); 605 606 if (tmp & RTC_AIE) { 607 cmos->enabled_wake = 1; 608 if (cmos->wake_on) 609 cmos->wake_on(dev); 610 else 611 enable_irq_wake(cmos->irq); 612 } 613 614 pr_debug("%s: suspend%s, ctrl %02x\n", 615 cmos_rtc.rtc->dev.bus_id, 616 (tmp & RTC_AIE) ? ", alarm may wake" : "", 617 tmp); 618 619 return 0; 620 } 621 622 static int cmos_resume(struct device *dev) 623 { 624 struct cmos_rtc *cmos = dev_get_drvdata(dev); 625 unsigned char tmp = cmos->suspend_ctrl; 626 627 /* re-enable any irqs previously active */ 628 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 629 630 if (cmos->enabled_wake) { 631 if (cmos->wake_off) 632 cmos->wake_off(dev); 633 else 634 disable_irq_wake(cmos->irq); 635 cmos->enabled_wake = 0; 636 } 637 638 spin_lock_irq(&rtc_lock); 639 CMOS_WRITE(tmp, RTC_CONTROL); 640 tmp = CMOS_READ(RTC_INTR_FLAGS); 641 tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 642 if (is_intr(tmp)) 643 rtc_update_irq(cmos->rtc, 1, tmp); 644 spin_unlock_irq(&rtc_lock); 645 } 646 647 pr_debug("%s: resume, ctrl %02x\n", 648 cmos_rtc.rtc->dev.bus_id, 649 cmos->suspend_ctrl); 650 651 652 return 0; 653 } 654 655 #else 656 #define cmos_suspend NULL 657 #define cmos_resume NULL 658 #endif 659 660 /*----------------------------------------------------------------*/ 661 662 /* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems, 663 * the device node will always be created as a PNPACPI device. Plus 664 * pre-ACPI PCs probably list it in the PNPBIOS tables. 665 */ 666 667 #ifdef CONFIG_PNP 668 669 #include <linux/pnp.h> 670 671 static int __devinit 672 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 673 { 674 /* REVISIT paranoia argues for a shutdown notifier, since PNP 675 * drivers can't provide shutdown() methods to disable IRQs. 676 * Or better yet, fix PNP to allow those methods... 677 */ 678 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) 679 /* Some machines contain a PNP entry for the RTC, but 680 * don't define the IRQ. It should always be safe to 681 * hardcode it in these cases 682 */ 683 return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8); 684 else 685 return cmos_do_probe(&pnp->dev, 686 &pnp->res.port_resource[0], 687 pnp->res.irq_resource[0].start); 688 } 689 690 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 691 { 692 cmos_do_remove(&pnp->dev); 693 } 694 695 #ifdef CONFIG_PM 696 697 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) 698 { 699 return cmos_suspend(&pnp->dev, mesg); 700 } 701 702 static int cmos_pnp_resume(struct pnp_dev *pnp) 703 { 704 return cmos_resume(&pnp->dev); 705 } 706 707 #else 708 #define cmos_pnp_suspend NULL 709 #define cmos_pnp_resume NULL 710 #endif 711 712 713 static const struct pnp_device_id rtc_ids[] = { 714 { .id = "PNP0b00", }, 715 { .id = "PNP0b01", }, 716 { .id = "PNP0b02", }, 717 { }, 718 }; 719 MODULE_DEVICE_TABLE(pnp, rtc_ids); 720 721 static struct pnp_driver cmos_pnp_driver = { 722 .name = (char *) driver_name, 723 .id_table = rtc_ids, 724 .probe = cmos_pnp_probe, 725 .remove = __exit_p(cmos_pnp_remove), 726 727 /* flag ensures resume() gets called, and stops syslog spam */ 728 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 729 .suspend = cmos_pnp_suspend, 730 .resume = cmos_pnp_resume, 731 }; 732 733 static int __init cmos_init(void) 734 { 735 return pnp_register_driver(&cmos_pnp_driver); 736 } 737 module_init(cmos_init); 738 739 static void __exit cmos_exit(void) 740 { 741 pnp_unregister_driver(&cmos_pnp_driver); 742 } 743 module_exit(cmos_exit); 744 745 #else /* no PNP */ 746 747 /*----------------------------------------------------------------*/ 748 749 /* Platform setup should have set up an RTC device, when PNP is 750 * unavailable ... this could happen even on (older) PCs. 751 */ 752 753 static int __init cmos_platform_probe(struct platform_device *pdev) 754 { 755 return cmos_do_probe(&pdev->dev, 756 platform_get_resource(pdev, IORESOURCE_IO, 0), 757 platform_get_irq(pdev, 0)); 758 } 759 760 static int __exit cmos_platform_remove(struct platform_device *pdev) 761 { 762 cmos_do_remove(&pdev->dev); 763 return 0; 764 } 765 766 static void cmos_platform_shutdown(struct platform_device *pdev) 767 { 768 cmos_do_shutdown(); 769 } 770 771 static struct platform_driver cmos_platform_driver = { 772 .remove = __exit_p(cmos_platform_remove), 773 .shutdown = cmos_platform_shutdown, 774 .driver = { 775 .name = (char *) driver_name, 776 .suspend = cmos_suspend, 777 .resume = cmos_resume, 778 } 779 }; 780 781 static int __init cmos_init(void) 782 { 783 return platform_driver_probe(&cmos_platform_driver, 784 cmos_platform_probe); 785 } 786 module_init(cmos_init); 787 788 static void __exit cmos_exit(void) 789 { 790 platform_driver_unregister(&cmos_platform_driver); 791 } 792 module_exit(cmos_exit); 793 794 795 #endif /* !PNP */ 796 797 MODULE_AUTHOR("David Brownell"); 798 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 799 MODULE_LICENSE("GPL"); 800