1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/log2.h> 38 #include <linux/pm.h> 39 #include <linux/of.h> 40 #include <linux/of_platform.h> 41 #include <linux/dmi.h> 42 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 44 #include <asm-generic/rtc.h> 45 46 struct cmos_rtc { 47 struct rtc_device *rtc; 48 struct device *dev; 49 int irq; 50 struct resource *iomem; 51 52 void (*wake_on)(struct device *); 53 void (*wake_off)(struct device *); 54 55 u8 enabled_wake; 56 u8 suspend_ctrl; 57 58 /* newer hardware extends the original register set */ 59 u8 day_alrm; 60 u8 mon_alrm; 61 u8 century; 62 }; 63 64 /* both platform and pnp busses use negative numbers for invalid irqs */ 65 #define is_valid_irq(n) ((n) > 0) 66 67 static const char driver_name[] = "rtc_cmos"; 68 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 72 */ 73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 74 75 static inline int is_intr(u8 rtc_intr) 76 { 77 if (!(rtc_intr & RTC_IRQF)) 78 return 0; 79 return rtc_intr & RTC_IRQMASK; 80 } 81 82 /*----------------------------------------------------------------*/ 83 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 86 * used in a broken "legacy replacement" mode. The breakage includes 87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 88 * other (better) use. 89 * 90 * When that broken mode is in use, platform glue provides a partial 91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 92 * want to use HPET for anything except those IRQs though... 93 */ 94 #ifdef CONFIG_HPET_EMULATE_RTC 95 #include <asm/hpet.h> 96 #else 97 98 static inline int is_hpet_enabled(void) 99 { 100 return 0; 101 } 102 103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 104 { 105 return 0; 106 } 107 108 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int 114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 115 { 116 return 0; 117 } 118 119 static inline int hpet_set_periodic_freq(unsigned long freq) 120 { 121 return 0; 122 } 123 124 static inline int hpet_rtc_dropped_irq(void) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_timer_init(void) 130 { 131 return 0; 132 } 133 134 extern irq_handler_t hpet_rtc_interrupt; 135 136 static inline int hpet_register_irq_handler(irq_handler_t handler) 137 { 138 return 0; 139 } 140 141 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 #endif 147 148 /*----------------------------------------------------------------*/ 149 150 #ifdef RTC_PORT 151 152 /* Most newer x86 systems have two register banks, the first used 153 * for RTC and NVRAM and the second only for NVRAM. Caller must 154 * own rtc_lock ... and we won't worry about access during NMI. 155 */ 156 #define can_bank2 true 157 158 static inline unsigned char cmos_read_bank2(unsigned char addr) 159 { 160 outb(addr, RTC_PORT(2)); 161 return inb(RTC_PORT(3)); 162 } 163 164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 165 { 166 outb(addr, RTC_PORT(2)); 167 outb(val, RTC_PORT(3)); 168 } 169 170 #else 171 172 #define can_bank2 false 173 174 static inline unsigned char cmos_read_bank2(unsigned char addr) 175 { 176 return 0; 177 } 178 179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 180 { 181 } 182 183 #endif 184 185 /*----------------------------------------------------------------*/ 186 187 static int cmos_read_time(struct device *dev, struct rtc_time *t) 188 { 189 /* REVISIT: if the clock has a "century" register, use 190 * that instead of the heuristic in get_rtc_time(). 191 * That'll make Y3K compatility (year > 2070) easy! 192 */ 193 get_rtc_time(t); 194 return 0; 195 } 196 197 static int cmos_set_time(struct device *dev, struct rtc_time *t) 198 { 199 /* REVISIT: set the "century" register if available 200 * 201 * NOTE: this ignores the issue whereby updating the seconds 202 * takes effect exactly 500ms after we write the register. 203 * (Also queueing and other delays before we get this far.) 204 */ 205 return set_rtc_time(t); 206 } 207 208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 209 { 210 struct cmos_rtc *cmos = dev_get_drvdata(dev); 211 unsigned char rtc_control; 212 213 if (!is_valid_irq(cmos->irq)) 214 return -EIO; 215 216 /* Basic alarms only support hour, minute, and seconds fields. 217 * Some also support day and month, for alarms up to a year in 218 * the future. 219 */ 220 t->time.tm_mday = -1; 221 t->time.tm_mon = -1; 222 223 spin_lock_irq(&rtc_lock); 224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 227 228 if (cmos->day_alrm) { 229 /* ignore upper bits on readback per ACPI spec */ 230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 231 if (!t->time.tm_mday) 232 t->time.tm_mday = -1; 233 234 if (cmos->mon_alrm) { 235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 236 if (!t->time.tm_mon) 237 t->time.tm_mon = -1; 238 } 239 } 240 241 rtc_control = CMOS_READ(RTC_CONTROL); 242 spin_unlock_irq(&rtc_lock); 243 244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 245 if (((unsigned)t->time.tm_sec) < 0x60) 246 t->time.tm_sec = bcd2bin(t->time.tm_sec); 247 else 248 t->time.tm_sec = -1; 249 if (((unsigned)t->time.tm_min) < 0x60) 250 t->time.tm_min = bcd2bin(t->time.tm_min); 251 else 252 t->time.tm_min = -1; 253 if (((unsigned)t->time.tm_hour) < 0x24) 254 t->time.tm_hour = bcd2bin(t->time.tm_hour); 255 else 256 t->time.tm_hour = -1; 257 258 if (cmos->day_alrm) { 259 if (((unsigned)t->time.tm_mday) <= 0x31) 260 t->time.tm_mday = bcd2bin(t->time.tm_mday); 261 else 262 t->time.tm_mday = -1; 263 264 if (cmos->mon_alrm) { 265 if (((unsigned)t->time.tm_mon) <= 0x12) 266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 267 else 268 t->time.tm_mon = -1; 269 } 270 } 271 } 272 t->time.tm_year = -1; 273 274 t->enabled = !!(rtc_control & RTC_AIE); 275 t->pending = 0; 276 277 return 0; 278 } 279 280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 281 { 282 unsigned char rtc_intr; 283 284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 285 * allegedly some older rtcs need that to handle irqs properly 286 */ 287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 288 289 if (is_hpet_enabled()) 290 return; 291 292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 293 if (is_intr(rtc_intr)) 294 rtc_update_irq(cmos->rtc, 1, rtc_intr); 295 } 296 297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 298 { 299 unsigned char rtc_control; 300 301 /* flush any pending IRQ status, notably for update irqs, 302 * before we enable new IRQs 303 */ 304 rtc_control = CMOS_READ(RTC_CONTROL); 305 cmos_checkintr(cmos, rtc_control); 306 307 rtc_control |= mask; 308 CMOS_WRITE(rtc_control, RTC_CONTROL); 309 hpet_set_rtc_irq_bit(mask); 310 311 cmos_checkintr(cmos, rtc_control); 312 } 313 314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 315 { 316 unsigned char rtc_control; 317 318 rtc_control = CMOS_READ(RTC_CONTROL); 319 rtc_control &= ~mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_mask_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 327 { 328 struct cmos_rtc *cmos = dev_get_drvdata(dev); 329 unsigned char mon, mday, hrs, min, sec, rtc_control; 330 331 if (!is_valid_irq(cmos->irq)) 332 return -EIO; 333 334 mon = t->time.tm_mon + 1; 335 mday = t->time.tm_mday; 336 hrs = t->time.tm_hour; 337 min = t->time.tm_min; 338 sec = t->time.tm_sec; 339 340 rtc_control = CMOS_READ(RTC_CONTROL); 341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 342 /* Writing 0xff means "don't care" or "match all". */ 343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 346 min = (min < 60) ? bin2bcd(min) : 0xff; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 } 349 350 spin_lock_irq(&rtc_lock); 351 352 /* next rtc irq must not be from previous alarm setting */ 353 cmos_irq_disable(cmos, RTC_AIE); 354 355 /* update alarm */ 356 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 357 CMOS_WRITE(min, RTC_MINUTES_ALARM); 358 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 359 360 /* the system may support an "enhanced" alarm */ 361 if (cmos->day_alrm) { 362 CMOS_WRITE(mday, cmos->day_alrm); 363 if (cmos->mon_alrm) 364 CMOS_WRITE(mon, cmos->mon_alrm); 365 } 366 367 /* FIXME the HPET alarm glue currently ignores day_alrm 368 * and mon_alrm ... 369 */ 370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 371 372 if (t->enabled) 373 cmos_irq_enable(cmos, RTC_AIE); 374 375 spin_unlock_irq(&rtc_lock); 376 377 return 0; 378 } 379 380 /* 381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes. 382 */ 383 static bool alarm_disable_quirk; 384 385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id) 386 { 387 alarm_disable_quirk = true; 388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. "); 389 pr_info("RTC alarms disabled\n"); 390 return 0; 391 } 392 393 static const struct dmi_system_id rtc_quirks[] __initconst = { 394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */ 395 { 396 .callback = set_alarm_disable_quirk, 397 .ident = "IBM Truman", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"), 401 }, 402 }, 403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */ 404 { 405 .callback = set_alarm_disable_quirk, 406 .ident = "Gigabyte GA-990XA-UD3", 407 .matches = { 408 DMI_MATCH(DMI_SYS_VENDOR, 409 "Gigabyte Technology Co., Ltd."), 410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"), 411 }, 412 }, 413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */ 414 { 415 .callback = set_alarm_disable_quirk, 416 .ident = "Toshiba Satellite L300", 417 .matches = { 418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"), 420 }, 421 }, 422 {} 423 }; 424 425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 426 { 427 struct cmos_rtc *cmos = dev_get_drvdata(dev); 428 unsigned long flags; 429 430 if (!is_valid_irq(cmos->irq)) 431 return -EINVAL; 432 433 if (alarm_disable_quirk) 434 return 0; 435 436 spin_lock_irqsave(&rtc_lock, flags); 437 438 if (enabled) 439 cmos_irq_enable(cmos, RTC_AIE); 440 else 441 cmos_irq_disable(cmos, RTC_AIE); 442 443 spin_unlock_irqrestore(&rtc_lock, flags); 444 return 0; 445 } 446 447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 448 449 static int cmos_procfs(struct device *dev, struct seq_file *seq) 450 { 451 struct cmos_rtc *cmos = dev_get_drvdata(dev); 452 unsigned char rtc_control, valid; 453 454 spin_lock_irq(&rtc_lock); 455 rtc_control = CMOS_READ(RTC_CONTROL); 456 valid = CMOS_READ(RTC_VALID); 457 spin_unlock_irq(&rtc_lock); 458 459 /* NOTE: at least ICH6 reports battery status using a different 460 * (non-RTC) bit; and SQWE is ignored on many current systems. 461 */ 462 return seq_printf(seq, 463 "periodic_IRQ\t: %s\n" 464 "update_IRQ\t: %s\n" 465 "HPET_emulated\t: %s\n" 466 // "square_wave\t: %s\n" 467 "BCD\t\t: %s\n" 468 "DST_enable\t: %s\n" 469 "periodic_freq\t: %d\n" 470 "batt_status\t: %s\n", 471 (rtc_control & RTC_PIE) ? "yes" : "no", 472 (rtc_control & RTC_UIE) ? "yes" : "no", 473 is_hpet_enabled() ? "yes" : "no", 474 // (rtc_control & RTC_SQWE) ? "yes" : "no", 475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 476 (rtc_control & RTC_DST_EN) ? "yes" : "no", 477 cmos->rtc->irq_freq, 478 (valid & RTC_VRT) ? "okay" : "dead"); 479 } 480 481 #else 482 #define cmos_procfs NULL 483 #endif 484 485 static const struct rtc_class_ops cmos_rtc_ops = { 486 .read_time = cmos_read_time, 487 .set_time = cmos_set_time, 488 .read_alarm = cmos_read_alarm, 489 .set_alarm = cmos_set_alarm, 490 .proc = cmos_procfs, 491 .alarm_irq_enable = cmos_alarm_irq_enable, 492 }; 493 494 /*----------------------------------------------------------------*/ 495 496 /* 497 * All these chips have at least 64 bytes of address space, shared by 498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 499 * by boot firmware. Modern chips have 128 or 256 bytes. 500 */ 501 502 #define NVRAM_OFFSET (RTC_REG_D + 1) 503 504 static ssize_t 505 cmos_nvram_read(struct file *filp, struct kobject *kobj, 506 struct bin_attribute *attr, 507 char *buf, loff_t off, size_t count) 508 { 509 int retval; 510 511 if (unlikely(off >= attr->size)) 512 return 0; 513 if (unlikely(off < 0)) 514 return -EINVAL; 515 if ((off + count) > attr->size) 516 count = attr->size - off; 517 518 off += NVRAM_OFFSET; 519 spin_lock_irq(&rtc_lock); 520 for (retval = 0; count; count--, off++, retval++) { 521 if (off < 128) 522 *buf++ = CMOS_READ(off); 523 else if (can_bank2) 524 *buf++ = cmos_read_bank2(off); 525 else 526 break; 527 } 528 spin_unlock_irq(&rtc_lock); 529 530 return retval; 531 } 532 533 static ssize_t 534 cmos_nvram_write(struct file *filp, struct kobject *kobj, 535 struct bin_attribute *attr, 536 char *buf, loff_t off, size_t count) 537 { 538 struct cmos_rtc *cmos; 539 int retval; 540 541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 542 if (unlikely(off >= attr->size)) 543 return -EFBIG; 544 if (unlikely(off < 0)) 545 return -EINVAL; 546 if ((off + count) > attr->size) 547 count = attr->size - off; 548 549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 550 * checksum on part of the NVRAM data. That's currently ignored 551 * here. If userspace is smart enough to know what fields of 552 * NVRAM to update, updating checksums is also part of its job. 553 */ 554 off += NVRAM_OFFSET; 555 spin_lock_irq(&rtc_lock); 556 for (retval = 0; count; count--, off++, retval++) { 557 /* don't trash RTC registers */ 558 if (off == cmos->day_alrm 559 || off == cmos->mon_alrm 560 || off == cmos->century) 561 buf++; 562 else if (off < 128) 563 CMOS_WRITE(*buf++, off); 564 else if (can_bank2) 565 cmos_write_bank2(*buf++, off); 566 else 567 break; 568 } 569 spin_unlock_irq(&rtc_lock); 570 571 return retval; 572 } 573 574 static struct bin_attribute nvram = { 575 .attr = { 576 .name = "nvram", 577 .mode = S_IRUGO | S_IWUSR, 578 }, 579 580 .read = cmos_nvram_read, 581 .write = cmos_nvram_write, 582 /* size gets set up later */ 583 }; 584 585 /*----------------------------------------------------------------*/ 586 587 static struct cmos_rtc cmos_rtc; 588 589 static irqreturn_t cmos_interrupt(int irq, void *p) 590 { 591 u8 irqstat; 592 u8 rtc_control; 593 594 spin_lock(&rtc_lock); 595 596 /* When the HPET interrupt handler calls us, the interrupt 597 * status is passed as arg1 instead of the irq number. But 598 * always clear irq status, even when HPET is in the way. 599 * 600 * Note that HPET and RTC are almost certainly out of phase, 601 * giving different IRQ status ... 602 */ 603 irqstat = CMOS_READ(RTC_INTR_FLAGS); 604 rtc_control = CMOS_READ(RTC_CONTROL); 605 if (is_hpet_enabled()) 606 irqstat = (unsigned long)irq & 0xF0; 607 608 /* If we were suspended, RTC_CONTROL may not be accurate since the 609 * bios may have cleared it. 610 */ 611 if (!cmos_rtc.suspend_ctrl) 612 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 613 else 614 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 615 616 /* All Linux RTC alarms should be treated as if they were oneshot. 617 * Similar code may be needed in system wakeup paths, in case the 618 * alarm woke the system. 619 */ 620 if (irqstat & RTC_AIE) { 621 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 622 rtc_control &= ~RTC_AIE; 623 CMOS_WRITE(rtc_control, RTC_CONTROL); 624 hpet_mask_rtc_irq_bit(RTC_AIE); 625 CMOS_READ(RTC_INTR_FLAGS); 626 } 627 spin_unlock(&rtc_lock); 628 629 if (is_intr(irqstat)) { 630 rtc_update_irq(p, 1, irqstat); 631 return IRQ_HANDLED; 632 } else 633 return IRQ_NONE; 634 } 635 636 #ifdef CONFIG_PNP 637 #define INITSECTION 638 639 #else 640 #define INITSECTION __init 641 #endif 642 643 static int INITSECTION 644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 645 { 646 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 647 int retval = 0; 648 unsigned char rtc_control; 649 unsigned address_space; 650 u32 flags = 0; 651 652 /* there can be only one ... */ 653 if (cmos_rtc.dev) 654 return -EBUSY; 655 656 if (!ports) 657 return -ENODEV; 658 659 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 660 * 661 * REVISIT non-x86 systems may instead use memory space resources 662 * (needing ioremap etc), not i/o space resources like this ... 663 */ 664 if (RTC_IOMAPPED) 665 ports = request_region(ports->start, resource_size(ports), 666 driver_name); 667 else 668 ports = request_mem_region(ports->start, resource_size(ports), 669 driver_name); 670 if (!ports) { 671 dev_dbg(dev, "i/o registers already in use\n"); 672 return -EBUSY; 673 } 674 675 cmos_rtc.irq = rtc_irq; 676 cmos_rtc.iomem = ports; 677 678 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 679 * driver did, but don't reject unknown configs. Old hardware 680 * won't address 128 bytes. Newer chips have multiple banks, 681 * though they may not be listed in one I/O resource. 682 */ 683 #if defined(CONFIG_ATARI) 684 address_space = 64; 685 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 686 || defined(__sparc__) || defined(__mips__) \ 687 || defined(__powerpc__) 688 address_space = 128; 689 #else 690 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 691 address_space = 128; 692 #endif 693 if (can_bank2 && ports->end > (ports->start + 1)) 694 address_space = 256; 695 696 /* For ACPI systems extension info comes from the FADT. On others, 697 * board specific setup provides it as appropriate. Systems where 698 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 699 * some almost-clones) can provide hooks to make that behave. 700 * 701 * Note that ACPI doesn't preclude putting these registers into 702 * "extended" areas of the chip, including some that we won't yet 703 * expect CMOS_READ and friends to handle. 704 */ 705 if (info) { 706 if (info->flags) 707 flags = info->flags; 708 if (info->address_space) 709 address_space = info->address_space; 710 711 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 712 cmos_rtc.day_alrm = info->rtc_day_alarm; 713 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 714 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 715 if (info->rtc_century && info->rtc_century < 128) 716 cmos_rtc.century = info->rtc_century; 717 718 if (info->wake_on && info->wake_off) { 719 cmos_rtc.wake_on = info->wake_on; 720 cmos_rtc.wake_off = info->wake_off; 721 } 722 } 723 724 cmos_rtc.dev = dev; 725 dev_set_drvdata(dev, &cmos_rtc); 726 727 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 728 &cmos_rtc_ops, THIS_MODULE); 729 if (IS_ERR(cmos_rtc.rtc)) { 730 retval = PTR_ERR(cmos_rtc.rtc); 731 goto cleanup0; 732 } 733 734 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 735 736 spin_lock_irq(&rtc_lock); 737 738 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 739 /* force periodic irq to CMOS reset default of 1024Hz; 740 * 741 * REVISIT it's been reported that at least one x86_64 ALI 742 * mobo doesn't use 32KHz here ... for portability we might 743 * need to do something about other clock frequencies. 744 */ 745 cmos_rtc.rtc->irq_freq = 1024; 746 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 747 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 748 } 749 750 /* disable irqs */ 751 if (is_valid_irq(rtc_irq)) 752 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 753 754 rtc_control = CMOS_READ(RTC_CONTROL); 755 756 spin_unlock_irq(&rtc_lock); 757 758 /* FIXME: 759 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 760 */ 761 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 762 dev_warn(dev, "only 24-hr supported\n"); 763 retval = -ENXIO; 764 goto cleanup1; 765 } 766 767 if (is_valid_irq(rtc_irq)) { 768 irq_handler_t rtc_cmos_int_handler; 769 770 if (is_hpet_enabled()) { 771 rtc_cmos_int_handler = hpet_rtc_interrupt; 772 retval = hpet_register_irq_handler(cmos_interrupt); 773 if (retval) { 774 dev_warn(dev, "hpet_register_irq_handler " 775 " failed in rtc_init()."); 776 goto cleanup1; 777 } 778 } else 779 rtc_cmos_int_handler = cmos_interrupt; 780 781 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 782 0, dev_name(&cmos_rtc.rtc->dev), 783 cmos_rtc.rtc); 784 if (retval < 0) { 785 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 786 goto cleanup1; 787 } 788 } 789 hpet_rtc_timer_init(); 790 791 /* export at least the first block of NVRAM */ 792 nvram.size = address_space - NVRAM_OFFSET; 793 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 794 if (retval < 0) { 795 dev_dbg(dev, "can't create nvram file? %d\n", retval); 796 goto cleanup2; 797 } 798 799 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 800 !is_valid_irq(rtc_irq) ? "no alarms" : 801 cmos_rtc.mon_alrm ? "alarms up to one year" : 802 cmos_rtc.day_alrm ? "alarms up to one month" : 803 "alarms up to one day", 804 cmos_rtc.century ? ", y3k" : "", 805 nvram.size, 806 is_hpet_enabled() ? ", hpet irqs" : ""); 807 808 return 0; 809 810 cleanup2: 811 if (is_valid_irq(rtc_irq)) 812 free_irq(rtc_irq, cmos_rtc.rtc); 813 cleanup1: 814 cmos_rtc.dev = NULL; 815 rtc_device_unregister(cmos_rtc.rtc); 816 cleanup0: 817 if (RTC_IOMAPPED) 818 release_region(ports->start, resource_size(ports)); 819 else 820 release_mem_region(ports->start, resource_size(ports)); 821 return retval; 822 } 823 824 static void cmos_do_shutdown(int rtc_irq) 825 { 826 spin_lock_irq(&rtc_lock); 827 if (is_valid_irq(rtc_irq)) 828 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 829 spin_unlock_irq(&rtc_lock); 830 } 831 832 static void __exit cmos_do_remove(struct device *dev) 833 { 834 struct cmos_rtc *cmos = dev_get_drvdata(dev); 835 struct resource *ports; 836 837 cmos_do_shutdown(cmos->irq); 838 839 sysfs_remove_bin_file(&dev->kobj, &nvram); 840 841 if (is_valid_irq(cmos->irq)) { 842 free_irq(cmos->irq, cmos->rtc); 843 hpet_unregister_irq_handler(cmos_interrupt); 844 } 845 846 rtc_device_unregister(cmos->rtc); 847 cmos->rtc = NULL; 848 849 ports = cmos->iomem; 850 if (RTC_IOMAPPED) 851 release_region(ports->start, resource_size(ports)); 852 else 853 release_mem_region(ports->start, resource_size(ports)); 854 cmos->iomem = NULL; 855 856 cmos->dev = NULL; 857 } 858 859 #ifdef CONFIG_PM_SLEEP 860 861 static int cmos_suspend(struct device *dev) 862 { 863 struct cmos_rtc *cmos = dev_get_drvdata(dev); 864 unsigned char tmp; 865 866 /* only the alarm might be a wakeup event source */ 867 spin_lock_irq(&rtc_lock); 868 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 869 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 870 unsigned char mask; 871 872 if (device_may_wakeup(dev)) 873 mask = RTC_IRQMASK & ~RTC_AIE; 874 else 875 mask = RTC_IRQMASK; 876 tmp &= ~mask; 877 CMOS_WRITE(tmp, RTC_CONTROL); 878 hpet_mask_rtc_irq_bit(mask); 879 880 cmos_checkintr(cmos, tmp); 881 } 882 spin_unlock_irq(&rtc_lock); 883 884 if (tmp & RTC_AIE) { 885 cmos->enabled_wake = 1; 886 if (cmos->wake_on) 887 cmos->wake_on(dev); 888 else 889 enable_irq_wake(cmos->irq); 890 } 891 892 dev_dbg(dev, "suspend%s, ctrl %02x\n", 893 (tmp & RTC_AIE) ? ", alarm may wake" : "", 894 tmp); 895 896 return 0; 897 } 898 899 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 900 * after a detour through G3 "mechanical off", although the ACPI spec 901 * says wakeup should only work from G1/S4 "hibernate". To most users, 902 * distinctions between S4 and S5 are pointless. So when the hardware 903 * allows, don't draw that distinction. 904 */ 905 static inline int cmos_poweroff(struct device *dev) 906 { 907 return cmos_suspend(dev); 908 } 909 910 static int cmos_resume(struct device *dev) 911 { 912 struct cmos_rtc *cmos = dev_get_drvdata(dev); 913 unsigned char tmp; 914 915 if (cmos->enabled_wake) { 916 if (cmos->wake_off) 917 cmos->wake_off(dev); 918 else 919 disable_irq_wake(cmos->irq); 920 cmos->enabled_wake = 0; 921 } 922 923 spin_lock_irq(&rtc_lock); 924 tmp = cmos->suspend_ctrl; 925 cmos->suspend_ctrl = 0; 926 /* re-enable any irqs previously active */ 927 if (tmp & RTC_IRQMASK) { 928 unsigned char mask; 929 930 if (device_may_wakeup(dev)) 931 hpet_rtc_timer_init(); 932 933 do { 934 CMOS_WRITE(tmp, RTC_CONTROL); 935 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 936 937 mask = CMOS_READ(RTC_INTR_FLAGS); 938 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 939 if (!is_hpet_enabled() || !is_intr(mask)) 940 break; 941 942 /* force one-shot behavior if HPET blocked 943 * the wake alarm's irq 944 */ 945 rtc_update_irq(cmos->rtc, 1, mask); 946 tmp &= ~RTC_AIE; 947 hpet_mask_rtc_irq_bit(RTC_AIE); 948 } while (mask & RTC_AIE); 949 } 950 spin_unlock_irq(&rtc_lock); 951 952 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 953 954 return 0; 955 } 956 957 #else 958 959 static inline int cmos_poweroff(struct device *dev) 960 { 961 return -ENOSYS; 962 } 963 964 #endif 965 966 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 967 968 /*----------------------------------------------------------------*/ 969 970 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 971 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 972 * probably list them in similar PNPBIOS tables; so PNP is more common. 973 * 974 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 975 * predate even PNPBIOS should set up platform_bus devices. 976 */ 977 978 #ifdef CONFIG_ACPI 979 980 #include <linux/acpi.h> 981 982 static u32 rtc_handler(void *context) 983 { 984 struct device *dev = context; 985 986 pm_wakeup_event(dev, 0); 987 acpi_clear_event(ACPI_EVENT_RTC); 988 acpi_disable_event(ACPI_EVENT_RTC, 0); 989 return ACPI_INTERRUPT_HANDLED; 990 } 991 992 static inline void rtc_wake_setup(struct device *dev) 993 { 994 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 995 /* 996 * After the RTC handler is installed, the Fixed_RTC event should 997 * be disabled. Only when the RTC alarm is set will it be enabled. 998 */ 999 acpi_clear_event(ACPI_EVENT_RTC); 1000 acpi_disable_event(ACPI_EVENT_RTC, 0); 1001 } 1002 1003 static void rtc_wake_on(struct device *dev) 1004 { 1005 acpi_clear_event(ACPI_EVENT_RTC); 1006 acpi_enable_event(ACPI_EVENT_RTC, 0); 1007 } 1008 1009 static void rtc_wake_off(struct device *dev) 1010 { 1011 acpi_disable_event(ACPI_EVENT_RTC, 0); 1012 } 1013 1014 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1015 * its device node and pass extra config data. This helps its driver use 1016 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1017 * that this board's RTC is wakeup-capable (per ACPI spec). 1018 */ 1019 static struct cmos_rtc_board_info acpi_rtc_info; 1020 1021 static void cmos_wake_setup(struct device *dev) 1022 { 1023 if (acpi_disabled) 1024 return; 1025 1026 rtc_wake_setup(dev); 1027 acpi_rtc_info.wake_on = rtc_wake_on; 1028 acpi_rtc_info.wake_off = rtc_wake_off; 1029 1030 /* workaround bug in some ACPI tables */ 1031 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1032 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1033 acpi_gbl_FADT.month_alarm); 1034 acpi_gbl_FADT.month_alarm = 0; 1035 } 1036 1037 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1038 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1039 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1040 1041 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1042 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1043 dev_info(dev, "RTC can wake from S4\n"); 1044 1045 dev->platform_data = &acpi_rtc_info; 1046 1047 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1048 device_init_wakeup(dev, 1); 1049 } 1050 1051 #else 1052 1053 static void cmos_wake_setup(struct device *dev) 1054 { 1055 } 1056 1057 #endif 1058 1059 #ifdef CONFIG_PNP 1060 1061 #include <linux/pnp.h> 1062 1063 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1064 { 1065 cmos_wake_setup(&pnp->dev); 1066 1067 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1068 /* Some machines contain a PNP entry for the RTC, but 1069 * don't define the IRQ. It should always be safe to 1070 * hardcode it in these cases 1071 */ 1072 return cmos_do_probe(&pnp->dev, 1073 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1074 else 1075 return cmos_do_probe(&pnp->dev, 1076 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1077 pnp_irq(pnp, 0)); 1078 } 1079 1080 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1081 { 1082 cmos_do_remove(&pnp->dev); 1083 } 1084 1085 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1086 { 1087 struct device *dev = &pnp->dev; 1088 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1089 1090 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev)) 1091 return; 1092 1093 cmos_do_shutdown(cmos->irq); 1094 } 1095 1096 static const struct pnp_device_id rtc_ids[] = { 1097 { .id = "PNP0b00", }, 1098 { .id = "PNP0b01", }, 1099 { .id = "PNP0b02", }, 1100 { }, 1101 }; 1102 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1103 1104 static struct pnp_driver cmos_pnp_driver = { 1105 .name = (char *) driver_name, 1106 .id_table = rtc_ids, 1107 .probe = cmos_pnp_probe, 1108 .remove = __exit_p(cmos_pnp_remove), 1109 .shutdown = cmos_pnp_shutdown, 1110 1111 /* flag ensures resume() gets called, and stops syslog spam */ 1112 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1113 .driver = { 1114 .pm = &cmos_pm_ops, 1115 }, 1116 }; 1117 1118 #endif /* CONFIG_PNP */ 1119 1120 #ifdef CONFIG_OF 1121 static const struct of_device_id of_cmos_match[] = { 1122 { 1123 .compatible = "motorola,mc146818", 1124 }, 1125 { }, 1126 }; 1127 MODULE_DEVICE_TABLE(of, of_cmos_match); 1128 1129 static __init void cmos_of_init(struct platform_device *pdev) 1130 { 1131 struct device_node *node = pdev->dev.of_node; 1132 struct rtc_time time; 1133 int ret; 1134 const __be32 *val; 1135 1136 if (!node) 1137 return; 1138 1139 val = of_get_property(node, "ctrl-reg", NULL); 1140 if (val) 1141 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1142 1143 val = of_get_property(node, "freq-reg", NULL); 1144 if (val) 1145 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1146 1147 get_rtc_time(&time); 1148 ret = rtc_valid_tm(&time); 1149 if (ret) { 1150 struct rtc_time def_time = { 1151 .tm_year = 1, 1152 .tm_mday = 1, 1153 }; 1154 set_rtc_time(&def_time); 1155 } 1156 } 1157 #else 1158 static inline void cmos_of_init(struct platform_device *pdev) {} 1159 #endif 1160 /*----------------------------------------------------------------*/ 1161 1162 /* Platform setup should have set up an RTC device, when PNP is 1163 * unavailable ... this could happen even on (older) PCs. 1164 */ 1165 1166 static int __init cmos_platform_probe(struct platform_device *pdev) 1167 { 1168 struct resource *resource; 1169 int irq; 1170 1171 cmos_of_init(pdev); 1172 cmos_wake_setup(&pdev->dev); 1173 1174 if (RTC_IOMAPPED) 1175 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1176 else 1177 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1178 irq = platform_get_irq(pdev, 0); 1179 if (irq < 0) 1180 irq = -1; 1181 1182 return cmos_do_probe(&pdev->dev, resource, irq); 1183 } 1184 1185 static int __exit cmos_platform_remove(struct platform_device *pdev) 1186 { 1187 cmos_do_remove(&pdev->dev); 1188 return 0; 1189 } 1190 1191 static void cmos_platform_shutdown(struct platform_device *pdev) 1192 { 1193 struct device *dev = &pdev->dev; 1194 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1195 1196 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev)) 1197 return; 1198 1199 cmos_do_shutdown(cmos->irq); 1200 } 1201 1202 /* work with hotplug and coldplug */ 1203 MODULE_ALIAS("platform:rtc_cmos"); 1204 1205 static struct platform_driver cmos_platform_driver = { 1206 .remove = __exit_p(cmos_platform_remove), 1207 .shutdown = cmos_platform_shutdown, 1208 .driver = { 1209 .name = driver_name, 1210 #ifdef CONFIG_PM 1211 .pm = &cmos_pm_ops, 1212 #endif 1213 .of_match_table = of_match_ptr(of_cmos_match), 1214 } 1215 }; 1216 1217 #ifdef CONFIG_PNP 1218 static bool pnp_driver_registered; 1219 #endif 1220 static bool platform_driver_registered; 1221 1222 static int __init cmos_init(void) 1223 { 1224 int retval = 0; 1225 1226 #ifdef CONFIG_PNP 1227 retval = pnp_register_driver(&cmos_pnp_driver); 1228 if (retval == 0) 1229 pnp_driver_registered = true; 1230 #endif 1231 1232 if (!cmos_rtc.dev) { 1233 retval = platform_driver_probe(&cmos_platform_driver, 1234 cmos_platform_probe); 1235 if (retval == 0) 1236 platform_driver_registered = true; 1237 } 1238 1239 dmi_check_system(rtc_quirks); 1240 1241 if (retval == 0) 1242 return 0; 1243 1244 #ifdef CONFIG_PNP 1245 if (pnp_driver_registered) 1246 pnp_unregister_driver(&cmos_pnp_driver); 1247 #endif 1248 return retval; 1249 } 1250 module_init(cmos_init); 1251 1252 static void __exit cmos_exit(void) 1253 { 1254 #ifdef CONFIG_PNP 1255 if (pnp_driver_registered) 1256 pnp_unregister_driver(&cmos_pnp_driver); 1257 #endif 1258 if (platform_driver_registered) 1259 platform_driver_unregister(&cmos_platform_driver); 1260 } 1261 module_exit(cmos_exit); 1262 1263 1264 MODULE_AUTHOR("David Brownell"); 1265 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1266 MODULE_LICENSE("GPL"); 1267