1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 46 #include <linux/mc146818rtc.h> 47 48 struct cmos_rtc { 49 struct rtc_device *rtc; 50 struct device *dev; 51 int irq; 52 struct resource *iomem; 53 time64_t alarm_expires; 54 55 void (*wake_on)(struct device *); 56 void (*wake_off)(struct device *); 57 58 u8 enabled_wake; 59 u8 suspend_ctrl; 60 61 /* newer hardware extends the original register set */ 62 u8 day_alrm; 63 u8 mon_alrm; 64 u8 century; 65 66 struct rtc_wkalrm saved_wkalrm; 67 }; 68 69 /* both platform and pnp busses use negative numbers for invalid irqs */ 70 #define is_valid_irq(n) ((n) > 0) 71 72 static const char driver_name[] = "rtc_cmos"; 73 74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 77 */ 78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 79 80 static inline int is_intr(u8 rtc_intr) 81 { 82 if (!(rtc_intr & RTC_IRQF)) 83 return 0; 84 return rtc_intr & RTC_IRQMASK; 85 } 86 87 /*----------------------------------------------------------------*/ 88 89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 91 * used in a broken "legacy replacement" mode. The breakage includes 92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 93 * other (better) use. 94 * 95 * When that broken mode is in use, platform glue provides a partial 96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 97 * want to use HPET for anything except those IRQs though... 98 */ 99 #ifdef CONFIG_HPET_EMULATE_RTC 100 #include <asm/hpet.h> 101 #else 102 103 static inline int is_hpet_enabled(void) 104 { 105 return 0; 106 } 107 108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 114 { 115 return 0; 116 } 117 118 static inline int 119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 120 { 121 return 0; 122 } 123 124 static inline int hpet_set_periodic_freq(unsigned long freq) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_dropped_irq(void) 130 { 131 return 0; 132 } 133 134 static inline int hpet_rtc_timer_init(void) 135 { 136 return 0; 137 } 138 139 extern irq_handler_t hpet_rtc_interrupt; 140 141 static inline int hpet_register_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 147 { 148 return 0; 149 } 150 151 #endif 152 153 /*----------------------------------------------------------------*/ 154 155 #ifdef RTC_PORT 156 157 /* Most newer x86 systems have two register banks, the first used 158 * for RTC and NVRAM and the second only for NVRAM. Caller must 159 * own rtc_lock ... and we won't worry about access during NMI. 160 */ 161 #define can_bank2 true 162 163 static inline unsigned char cmos_read_bank2(unsigned char addr) 164 { 165 outb(addr, RTC_PORT(2)); 166 return inb(RTC_PORT(3)); 167 } 168 169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 170 { 171 outb(addr, RTC_PORT(2)); 172 outb(val, RTC_PORT(3)); 173 } 174 175 #else 176 177 #define can_bank2 false 178 179 static inline unsigned char cmos_read_bank2(unsigned char addr) 180 { 181 return 0; 182 } 183 184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 185 { 186 } 187 188 #endif 189 190 /*----------------------------------------------------------------*/ 191 192 static int cmos_read_time(struct device *dev, struct rtc_time *t) 193 { 194 /* 195 * If pm_trace abused the RTC for storage, set the timespec to 0, 196 * which tells the caller that this RTC value is unusable. 197 */ 198 if (!pm_trace_rtc_valid()) 199 return -EIO; 200 201 /* REVISIT: if the clock has a "century" register, use 202 * that instead of the heuristic in mc146818_get_time(). 203 * That'll make Y3K compatility (year > 2070) easy! 204 */ 205 mc146818_get_time(t); 206 return 0; 207 } 208 209 static int cmos_set_time(struct device *dev, struct rtc_time *t) 210 { 211 /* REVISIT: set the "century" register if available 212 * 213 * NOTE: this ignores the issue whereby updating the seconds 214 * takes effect exactly 500ms after we write the register. 215 * (Also queueing and other delays before we get this far.) 216 */ 217 return mc146818_set_time(t); 218 } 219 220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 221 { 222 struct cmos_rtc *cmos = dev_get_drvdata(dev); 223 unsigned char rtc_control; 224 225 if (!is_valid_irq(cmos->irq)) 226 return -EIO; 227 228 /* Basic alarms only support hour, minute, and seconds fields. 229 * Some also support day and month, for alarms up to a year in 230 * the future. 231 */ 232 233 spin_lock_irq(&rtc_lock); 234 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 235 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 236 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 237 238 if (cmos->day_alrm) { 239 /* ignore upper bits on readback per ACPI spec */ 240 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 241 if (!t->time.tm_mday) 242 t->time.tm_mday = -1; 243 244 if (cmos->mon_alrm) { 245 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 246 if (!t->time.tm_mon) 247 t->time.tm_mon = -1; 248 } 249 } 250 251 rtc_control = CMOS_READ(RTC_CONTROL); 252 spin_unlock_irq(&rtc_lock); 253 254 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 255 if (((unsigned)t->time.tm_sec) < 0x60) 256 t->time.tm_sec = bcd2bin(t->time.tm_sec); 257 else 258 t->time.tm_sec = -1; 259 if (((unsigned)t->time.tm_min) < 0x60) 260 t->time.tm_min = bcd2bin(t->time.tm_min); 261 else 262 t->time.tm_min = -1; 263 if (((unsigned)t->time.tm_hour) < 0x24) 264 t->time.tm_hour = bcd2bin(t->time.tm_hour); 265 else 266 t->time.tm_hour = -1; 267 268 if (cmos->day_alrm) { 269 if (((unsigned)t->time.tm_mday) <= 0x31) 270 t->time.tm_mday = bcd2bin(t->time.tm_mday); 271 else 272 t->time.tm_mday = -1; 273 274 if (cmos->mon_alrm) { 275 if (((unsigned)t->time.tm_mon) <= 0x12) 276 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 277 else 278 t->time.tm_mon = -1; 279 } 280 } 281 } 282 283 t->enabled = !!(rtc_control & RTC_AIE); 284 t->pending = 0; 285 286 return 0; 287 } 288 289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 290 { 291 unsigned char rtc_intr; 292 293 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 294 * allegedly some older rtcs need that to handle irqs properly 295 */ 296 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 297 298 if (is_hpet_enabled()) 299 return; 300 301 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 302 if (is_intr(rtc_intr)) 303 rtc_update_irq(cmos->rtc, 1, rtc_intr); 304 } 305 306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 307 { 308 unsigned char rtc_control; 309 310 /* flush any pending IRQ status, notably for update irqs, 311 * before we enable new IRQs 312 */ 313 rtc_control = CMOS_READ(RTC_CONTROL); 314 cmos_checkintr(cmos, rtc_control); 315 316 rtc_control |= mask; 317 CMOS_WRITE(rtc_control, RTC_CONTROL); 318 hpet_set_rtc_irq_bit(mask); 319 320 cmos_checkintr(cmos, rtc_control); 321 } 322 323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 324 { 325 unsigned char rtc_control; 326 327 rtc_control = CMOS_READ(RTC_CONTROL); 328 rtc_control &= ~mask; 329 CMOS_WRITE(rtc_control, RTC_CONTROL); 330 hpet_mask_rtc_irq_bit(mask); 331 332 cmos_checkintr(cmos, rtc_control); 333 } 334 335 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 336 { 337 struct cmos_rtc *cmos = dev_get_drvdata(dev); 338 unsigned char mon, mday, hrs, min, sec, rtc_control; 339 340 if (!is_valid_irq(cmos->irq)) 341 return -EIO; 342 343 mon = t->time.tm_mon + 1; 344 mday = t->time.tm_mday; 345 hrs = t->time.tm_hour; 346 min = t->time.tm_min; 347 sec = t->time.tm_sec; 348 349 rtc_control = CMOS_READ(RTC_CONTROL); 350 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 351 /* Writing 0xff means "don't care" or "match all". */ 352 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 353 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 354 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 355 min = (min < 60) ? bin2bcd(min) : 0xff; 356 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 357 } 358 359 spin_lock_irq(&rtc_lock); 360 361 /* next rtc irq must not be from previous alarm setting */ 362 cmos_irq_disable(cmos, RTC_AIE); 363 364 /* update alarm */ 365 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 366 CMOS_WRITE(min, RTC_MINUTES_ALARM); 367 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 368 369 /* the system may support an "enhanced" alarm */ 370 if (cmos->day_alrm) { 371 CMOS_WRITE(mday, cmos->day_alrm); 372 if (cmos->mon_alrm) 373 CMOS_WRITE(mon, cmos->mon_alrm); 374 } 375 376 /* FIXME the HPET alarm glue currently ignores day_alrm 377 * and mon_alrm ... 378 */ 379 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 380 381 if (t->enabled) 382 cmos_irq_enable(cmos, RTC_AIE); 383 384 spin_unlock_irq(&rtc_lock); 385 386 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 387 388 return 0; 389 } 390 391 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 392 { 393 struct cmos_rtc *cmos = dev_get_drvdata(dev); 394 unsigned long flags; 395 396 if (!is_valid_irq(cmos->irq)) 397 return -EINVAL; 398 399 spin_lock_irqsave(&rtc_lock, flags); 400 401 if (enabled) 402 cmos_irq_enable(cmos, RTC_AIE); 403 else 404 cmos_irq_disable(cmos, RTC_AIE); 405 406 spin_unlock_irqrestore(&rtc_lock, flags); 407 return 0; 408 } 409 410 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 411 412 static int cmos_procfs(struct device *dev, struct seq_file *seq) 413 { 414 struct cmos_rtc *cmos = dev_get_drvdata(dev); 415 unsigned char rtc_control, valid; 416 417 spin_lock_irq(&rtc_lock); 418 rtc_control = CMOS_READ(RTC_CONTROL); 419 valid = CMOS_READ(RTC_VALID); 420 spin_unlock_irq(&rtc_lock); 421 422 /* NOTE: at least ICH6 reports battery status using a different 423 * (non-RTC) bit; and SQWE is ignored on many current systems. 424 */ 425 seq_printf(seq, 426 "periodic_IRQ\t: %s\n" 427 "update_IRQ\t: %s\n" 428 "HPET_emulated\t: %s\n" 429 // "square_wave\t: %s\n" 430 "BCD\t\t: %s\n" 431 "DST_enable\t: %s\n" 432 "periodic_freq\t: %d\n" 433 "batt_status\t: %s\n", 434 (rtc_control & RTC_PIE) ? "yes" : "no", 435 (rtc_control & RTC_UIE) ? "yes" : "no", 436 is_hpet_enabled() ? "yes" : "no", 437 // (rtc_control & RTC_SQWE) ? "yes" : "no", 438 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 439 (rtc_control & RTC_DST_EN) ? "yes" : "no", 440 cmos->rtc->irq_freq, 441 (valid & RTC_VRT) ? "okay" : "dead"); 442 443 return 0; 444 } 445 446 #else 447 #define cmos_procfs NULL 448 #endif 449 450 static const struct rtc_class_ops cmos_rtc_ops = { 451 .read_time = cmos_read_time, 452 .set_time = cmos_set_time, 453 .read_alarm = cmos_read_alarm, 454 .set_alarm = cmos_set_alarm, 455 .proc = cmos_procfs, 456 .alarm_irq_enable = cmos_alarm_irq_enable, 457 }; 458 459 /*----------------------------------------------------------------*/ 460 461 /* 462 * All these chips have at least 64 bytes of address space, shared by 463 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 464 * by boot firmware. Modern chips have 128 or 256 bytes. 465 */ 466 467 #define NVRAM_OFFSET (RTC_REG_D + 1) 468 469 static ssize_t 470 cmos_nvram_read(struct file *filp, struct kobject *kobj, 471 struct bin_attribute *attr, 472 char *buf, loff_t off, size_t count) 473 { 474 int retval; 475 476 off += NVRAM_OFFSET; 477 spin_lock_irq(&rtc_lock); 478 for (retval = 0; count; count--, off++, retval++) { 479 if (off < 128) 480 *buf++ = CMOS_READ(off); 481 else if (can_bank2) 482 *buf++ = cmos_read_bank2(off); 483 else 484 break; 485 } 486 spin_unlock_irq(&rtc_lock); 487 488 return retval; 489 } 490 491 static ssize_t 492 cmos_nvram_write(struct file *filp, struct kobject *kobj, 493 struct bin_attribute *attr, 494 char *buf, loff_t off, size_t count) 495 { 496 struct cmos_rtc *cmos; 497 int retval; 498 499 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 500 501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 502 * checksum on part of the NVRAM data. That's currently ignored 503 * here. If userspace is smart enough to know what fields of 504 * NVRAM to update, updating checksums is also part of its job. 505 */ 506 off += NVRAM_OFFSET; 507 spin_lock_irq(&rtc_lock); 508 for (retval = 0; count; count--, off++, retval++) { 509 /* don't trash RTC registers */ 510 if (off == cmos->day_alrm 511 || off == cmos->mon_alrm 512 || off == cmos->century) 513 buf++; 514 else if (off < 128) 515 CMOS_WRITE(*buf++, off); 516 else if (can_bank2) 517 cmos_write_bank2(*buf++, off); 518 else 519 break; 520 } 521 spin_unlock_irq(&rtc_lock); 522 523 return retval; 524 } 525 526 static struct bin_attribute nvram = { 527 .attr = { 528 .name = "nvram", 529 .mode = S_IRUGO | S_IWUSR, 530 }, 531 532 .read = cmos_nvram_read, 533 .write = cmos_nvram_write, 534 /* size gets set up later */ 535 }; 536 537 /*----------------------------------------------------------------*/ 538 539 static struct cmos_rtc cmos_rtc; 540 541 static irqreturn_t cmos_interrupt(int irq, void *p) 542 { 543 u8 irqstat; 544 u8 rtc_control; 545 546 spin_lock(&rtc_lock); 547 548 /* When the HPET interrupt handler calls us, the interrupt 549 * status is passed as arg1 instead of the irq number. But 550 * always clear irq status, even when HPET is in the way. 551 * 552 * Note that HPET and RTC are almost certainly out of phase, 553 * giving different IRQ status ... 554 */ 555 irqstat = CMOS_READ(RTC_INTR_FLAGS); 556 rtc_control = CMOS_READ(RTC_CONTROL); 557 if (is_hpet_enabled()) 558 irqstat = (unsigned long)irq & 0xF0; 559 560 /* If we were suspended, RTC_CONTROL may not be accurate since the 561 * bios may have cleared it. 562 */ 563 if (!cmos_rtc.suspend_ctrl) 564 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 565 else 566 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 567 568 /* All Linux RTC alarms should be treated as if they were oneshot. 569 * Similar code may be needed in system wakeup paths, in case the 570 * alarm woke the system. 571 */ 572 if (irqstat & RTC_AIE) { 573 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 574 rtc_control &= ~RTC_AIE; 575 CMOS_WRITE(rtc_control, RTC_CONTROL); 576 hpet_mask_rtc_irq_bit(RTC_AIE); 577 CMOS_READ(RTC_INTR_FLAGS); 578 } 579 spin_unlock(&rtc_lock); 580 581 if (is_intr(irqstat)) { 582 rtc_update_irq(p, 1, irqstat); 583 return IRQ_HANDLED; 584 } else 585 return IRQ_NONE; 586 } 587 588 #ifdef CONFIG_PNP 589 #define INITSECTION 590 591 #else 592 #define INITSECTION __init 593 #endif 594 595 static int INITSECTION 596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 597 { 598 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 599 int retval = 0; 600 unsigned char rtc_control; 601 unsigned address_space; 602 u32 flags = 0; 603 604 /* there can be only one ... */ 605 if (cmos_rtc.dev) 606 return -EBUSY; 607 608 if (!ports) 609 return -ENODEV; 610 611 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 612 * 613 * REVISIT non-x86 systems may instead use memory space resources 614 * (needing ioremap etc), not i/o space resources like this ... 615 */ 616 if (RTC_IOMAPPED) 617 ports = request_region(ports->start, resource_size(ports), 618 driver_name); 619 else 620 ports = request_mem_region(ports->start, resource_size(ports), 621 driver_name); 622 if (!ports) { 623 dev_dbg(dev, "i/o registers already in use\n"); 624 return -EBUSY; 625 } 626 627 cmos_rtc.irq = rtc_irq; 628 cmos_rtc.iomem = ports; 629 630 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 631 * driver did, but don't reject unknown configs. Old hardware 632 * won't address 128 bytes. Newer chips have multiple banks, 633 * though they may not be listed in one I/O resource. 634 */ 635 #if defined(CONFIG_ATARI) 636 address_space = 64; 637 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 638 || defined(__sparc__) || defined(__mips__) \ 639 || defined(__powerpc__) || defined(CONFIG_MN10300) 640 address_space = 128; 641 #else 642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 643 address_space = 128; 644 #endif 645 if (can_bank2 && ports->end > (ports->start + 1)) 646 address_space = 256; 647 648 /* For ACPI systems extension info comes from the FADT. On others, 649 * board specific setup provides it as appropriate. Systems where 650 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 651 * some almost-clones) can provide hooks to make that behave. 652 * 653 * Note that ACPI doesn't preclude putting these registers into 654 * "extended" areas of the chip, including some that we won't yet 655 * expect CMOS_READ and friends to handle. 656 */ 657 if (info) { 658 if (info->flags) 659 flags = info->flags; 660 if (info->address_space) 661 address_space = info->address_space; 662 663 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 664 cmos_rtc.day_alrm = info->rtc_day_alarm; 665 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 666 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 667 if (info->rtc_century && info->rtc_century < 128) 668 cmos_rtc.century = info->rtc_century; 669 670 if (info->wake_on && info->wake_off) { 671 cmos_rtc.wake_on = info->wake_on; 672 cmos_rtc.wake_off = info->wake_off; 673 } 674 } 675 676 cmos_rtc.dev = dev; 677 dev_set_drvdata(dev, &cmos_rtc); 678 679 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 680 &cmos_rtc_ops, THIS_MODULE); 681 if (IS_ERR(cmos_rtc.rtc)) { 682 retval = PTR_ERR(cmos_rtc.rtc); 683 goto cleanup0; 684 } 685 686 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 687 688 spin_lock_irq(&rtc_lock); 689 690 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 691 /* force periodic irq to CMOS reset default of 1024Hz; 692 * 693 * REVISIT it's been reported that at least one x86_64 ALI 694 * mobo doesn't use 32KHz here ... for portability we might 695 * need to do something about other clock frequencies. 696 */ 697 cmos_rtc.rtc->irq_freq = 1024; 698 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 699 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 700 } 701 702 /* disable irqs */ 703 if (is_valid_irq(rtc_irq)) 704 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 705 706 rtc_control = CMOS_READ(RTC_CONTROL); 707 708 spin_unlock_irq(&rtc_lock); 709 710 /* FIXME: 711 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 712 */ 713 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 714 dev_warn(dev, "only 24-hr supported\n"); 715 retval = -ENXIO; 716 goto cleanup1; 717 } 718 719 hpet_rtc_timer_init(); 720 721 if (is_valid_irq(rtc_irq)) { 722 irq_handler_t rtc_cmos_int_handler; 723 724 if (is_hpet_enabled()) { 725 rtc_cmos_int_handler = hpet_rtc_interrupt; 726 retval = hpet_register_irq_handler(cmos_interrupt); 727 if (retval) { 728 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 729 dev_warn(dev, "hpet_register_irq_handler " 730 " failed in rtc_init()."); 731 goto cleanup1; 732 } 733 } else 734 rtc_cmos_int_handler = cmos_interrupt; 735 736 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 737 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), 738 cmos_rtc.rtc); 739 if (retval < 0) { 740 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 741 goto cleanup1; 742 } 743 } 744 745 /* export at least the first block of NVRAM */ 746 nvram.size = address_space - NVRAM_OFFSET; 747 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 748 if (retval < 0) { 749 dev_dbg(dev, "can't create nvram file? %d\n", retval); 750 goto cleanup2; 751 } 752 753 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 754 !is_valid_irq(rtc_irq) ? "no alarms" : 755 cmos_rtc.mon_alrm ? "alarms up to one year" : 756 cmos_rtc.day_alrm ? "alarms up to one month" : 757 "alarms up to one day", 758 cmos_rtc.century ? ", y3k" : "", 759 nvram.size, 760 is_hpet_enabled() ? ", hpet irqs" : ""); 761 762 return 0; 763 764 cleanup2: 765 if (is_valid_irq(rtc_irq)) 766 free_irq(rtc_irq, cmos_rtc.rtc); 767 cleanup1: 768 cmos_rtc.dev = NULL; 769 rtc_device_unregister(cmos_rtc.rtc); 770 cleanup0: 771 if (RTC_IOMAPPED) 772 release_region(ports->start, resource_size(ports)); 773 else 774 release_mem_region(ports->start, resource_size(ports)); 775 return retval; 776 } 777 778 static void cmos_do_shutdown(int rtc_irq) 779 { 780 spin_lock_irq(&rtc_lock); 781 if (is_valid_irq(rtc_irq)) 782 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 783 spin_unlock_irq(&rtc_lock); 784 } 785 786 static void cmos_do_remove(struct device *dev) 787 { 788 struct cmos_rtc *cmos = dev_get_drvdata(dev); 789 struct resource *ports; 790 791 cmos_do_shutdown(cmos->irq); 792 793 sysfs_remove_bin_file(&dev->kobj, &nvram); 794 795 if (is_valid_irq(cmos->irq)) { 796 free_irq(cmos->irq, cmos->rtc); 797 hpet_unregister_irq_handler(cmos_interrupt); 798 } 799 800 rtc_device_unregister(cmos->rtc); 801 cmos->rtc = NULL; 802 803 ports = cmos->iomem; 804 if (RTC_IOMAPPED) 805 release_region(ports->start, resource_size(ports)); 806 else 807 release_mem_region(ports->start, resource_size(ports)); 808 cmos->iomem = NULL; 809 810 cmos->dev = NULL; 811 } 812 813 static int cmos_aie_poweroff(struct device *dev) 814 { 815 struct cmos_rtc *cmos = dev_get_drvdata(dev); 816 struct rtc_time now; 817 time64_t t_now; 818 int retval = 0; 819 unsigned char rtc_control; 820 821 if (!cmos->alarm_expires) 822 return -EINVAL; 823 824 spin_lock_irq(&rtc_lock); 825 rtc_control = CMOS_READ(RTC_CONTROL); 826 spin_unlock_irq(&rtc_lock); 827 828 /* We only care about the situation where AIE is disabled. */ 829 if (rtc_control & RTC_AIE) 830 return -EBUSY; 831 832 cmos_read_time(dev, &now); 833 t_now = rtc_tm_to_time64(&now); 834 835 /* 836 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 837 * automatically right after shutdown on some buggy boxes. 838 * This automatic rebooting issue won't happen when the alarm 839 * time is larger than now+1 seconds. 840 * 841 * If the alarm time is equal to now+1 seconds, the issue can be 842 * prevented by cancelling the alarm. 843 */ 844 if (cmos->alarm_expires == t_now + 1) { 845 struct rtc_wkalrm alarm; 846 847 /* Cancel the AIE timer by configuring the past time. */ 848 rtc_time64_to_tm(t_now - 1, &alarm.time); 849 alarm.enabled = 0; 850 retval = cmos_set_alarm(dev, &alarm); 851 } else if (cmos->alarm_expires > t_now + 1) { 852 retval = -EBUSY; 853 } 854 855 return retval; 856 } 857 858 static int cmos_suspend(struct device *dev) 859 { 860 struct cmos_rtc *cmos = dev_get_drvdata(dev); 861 unsigned char tmp; 862 863 /* only the alarm might be a wakeup event source */ 864 spin_lock_irq(&rtc_lock); 865 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 866 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 867 unsigned char mask; 868 869 if (device_may_wakeup(dev)) 870 mask = RTC_IRQMASK & ~RTC_AIE; 871 else 872 mask = RTC_IRQMASK; 873 tmp &= ~mask; 874 CMOS_WRITE(tmp, RTC_CONTROL); 875 hpet_mask_rtc_irq_bit(mask); 876 877 cmos_checkintr(cmos, tmp); 878 } 879 spin_unlock_irq(&rtc_lock); 880 881 if (tmp & RTC_AIE) { 882 cmos->enabled_wake = 1; 883 if (cmos->wake_on) 884 cmos->wake_on(dev); 885 else 886 enable_irq_wake(cmos->irq); 887 } 888 889 cmos_read_alarm(dev, &cmos->saved_wkalrm); 890 891 dev_dbg(dev, "suspend%s, ctrl %02x\n", 892 (tmp & RTC_AIE) ? ", alarm may wake" : "", 893 tmp); 894 895 return 0; 896 } 897 898 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 899 * after a detour through G3 "mechanical off", although the ACPI spec 900 * says wakeup should only work from G1/S4 "hibernate". To most users, 901 * distinctions between S4 and S5 are pointless. So when the hardware 902 * allows, don't draw that distinction. 903 */ 904 static inline int cmos_poweroff(struct device *dev) 905 { 906 if (!IS_ENABLED(CONFIG_PM)) 907 return -ENOSYS; 908 909 return cmos_suspend(dev); 910 } 911 912 static void cmos_check_wkalrm(struct device *dev) 913 { 914 struct cmos_rtc *cmos = dev_get_drvdata(dev); 915 struct rtc_wkalrm current_alarm; 916 time64_t t_current_expires; 917 time64_t t_saved_expires; 918 919 cmos_read_alarm(dev, ¤t_alarm); 920 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 921 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 922 if (t_current_expires != t_saved_expires || 923 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 924 cmos_set_alarm(dev, &cmos->saved_wkalrm); 925 } 926 } 927 928 static void cmos_check_acpi_rtc_status(struct device *dev, 929 unsigned char *rtc_control); 930 931 static int __maybe_unused cmos_resume(struct device *dev) 932 { 933 struct cmos_rtc *cmos = dev_get_drvdata(dev); 934 unsigned char tmp; 935 936 if (cmos->enabled_wake) { 937 if (cmos->wake_off) 938 cmos->wake_off(dev); 939 else 940 disable_irq_wake(cmos->irq); 941 cmos->enabled_wake = 0; 942 } 943 944 /* The BIOS might have changed the alarm, restore it */ 945 cmos_check_wkalrm(dev); 946 947 spin_lock_irq(&rtc_lock); 948 tmp = cmos->suspend_ctrl; 949 cmos->suspend_ctrl = 0; 950 /* re-enable any irqs previously active */ 951 if (tmp & RTC_IRQMASK) { 952 unsigned char mask; 953 954 if (device_may_wakeup(dev)) 955 hpet_rtc_timer_init(); 956 957 do { 958 CMOS_WRITE(tmp, RTC_CONTROL); 959 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 960 961 mask = CMOS_READ(RTC_INTR_FLAGS); 962 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 963 if (!is_hpet_enabled() || !is_intr(mask)) 964 break; 965 966 /* force one-shot behavior if HPET blocked 967 * the wake alarm's irq 968 */ 969 rtc_update_irq(cmos->rtc, 1, mask); 970 tmp &= ~RTC_AIE; 971 hpet_mask_rtc_irq_bit(RTC_AIE); 972 } while (mask & RTC_AIE); 973 974 if (tmp & RTC_AIE) 975 cmos_check_acpi_rtc_status(dev, &tmp); 976 } 977 spin_unlock_irq(&rtc_lock); 978 979 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 980 981 return 0; 982 } 983 984 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 985 986 /*----------------------------------------------------------------*/ 987 988 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 989 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 990 * probably list them in similar PNPBIOS tables; so PNP is more common. 991 * 992 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 993 * predate even PNPBIOS should set up platform_bus devices. 994 */ 995 996 #ifdef CONFIG_ACPI 997 998 #include <linux/acpi.h> 999 1000 static u32 rtc_handler(void *context) 1001 { 1002 struct device *dev = context; 1003 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1004 unsigned char rtc_control = 0; 1005 unsigned char rtc_intr; 1006 unsigned long flags; 1007 1008 spin_lock_irqsave(&rtc_lock, flags); 1009 if (cmos_rtc.suspend_ctrl) 1010 rtc_control = CMOS_READ(RTC_CONTROL); 1011 if (rtc_control & RTC_AIE) { 1012 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1013 CMOS_WRITE(rtc_control, RTC_CONTROL); 1014 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1015 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1016 } 1017 spin_unlock_irqrestore(&rtc_lock, flags); 1018 1019 pm_wakeup_event(dev, 0); 1020 acpi_clear_event(ACPI_EVENT_RTC); 1021 acpi_disable_event(ACPI_EVENT_RTC, 0); 1022 return ACPI_INTERRUPT_HANDLED; 1023 } 1024 1025 static inline void rtc_wake_setup(struct device *dev) 1026 { 1027 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1028 /* 1029 * After the RTC handler is installed, the Fixed_RTC event should 1030 * be disabled. Only when the RTC alarm is set will it be enabled. 1031 */ 1032 acpi_clear_event(ACPI_EVENT_RTC); 1033 acpi_disable_event(ACPI_EVENT_RTC, 0); 1034 } 1035 1036 static void rtc_wake_on(struct device *dev) 1037 { 1038 acpi_clear_event(ACPI_EVENT_RTC); 1039 acpi_enable_event(ACPI_EVENT_RTC, 0); 1040 } 1041 1042 static void rtc_wake_off(struct device *dev) 1043 { 1044 acpi_disable_event(ACPI_EVENT_RTC, 0); 1045 } 1046 1047 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1048 * its device node and pass extra config data. This helps its driver use 1049 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1050 * that this board's RTC is wakeup-capable (per ACPI spec). 1051 */ 1052 static struct cmos_rtc_board_info acpi_rtc_info; 1053 1054 static void cmos_wake_setup(struct device *dev) 1055 { 1056 if (acpi_disabled) 1057 return; 1058 1059 rtc_wake_setup(dev); 1060 acpi_rtc_info.wake_on = rtc_wake_on; 1061 acpi_rtc_info.wake_off = rtc_wake_off; 1062 1063 /* workaround bug in some ACPI tables */ 1064 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1065 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1066 acpi_gbl_FADT.month_alarm); 1067 acpi_gbl_FADT.month_alarm = 0; 1068 } 1069 1070 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1071 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1072 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1073 1074 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1075 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1076 dev_info(dev, "RTC can wake from S4\n"); 1077 1078 dev->platform_data = &acpi_rtc_info; 1079 1080 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1081 device_init_wakeup(dev, 1); 1082 } 1083 1084 static void cmos_check_acpi_rtc_status(struct device *dev, 1085 unsigned char *rtc_control) 1086 { 1087 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1088 acpi_event_status rtc_status; 1089 acpi_status status; 1090 1091 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1092 return; 1093 1094 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1095 if (ACPI_FAILURE(status)) { 1096 dev_err(dev, "Could not get RTC status\n"); 1097 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1098 unsigned char mask; 1099 *rtc_control &= ~RTC_AIE; 1100 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1101 mask = CMOS_READ(RTC_INTR_FLAGS); 1102 rtc_update_irq(cmos->rtc, 1, mask); 1103 } 1104 } 1105 1106 #else 1107 1108 static void cmos_wake_setup(struct device *dev) 1109 { 1110 } 1111 1112 static void cmos_check_acpi_rtc_status(struct device *dev, 1113 unsigned char *rtc_control) 1114 { 1115 } 1116 1117 #endif 1118 1119 #ifdef CONFIG_PNP 1120 1121 #include <linux/pnp.h> 1122 1123 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1124 { 1125 cmos_wake_setup(&pnp->dev); 1126 1127 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1128 /* Some machines contain a PNP entry for the RTC, but 1129 * don't define the IRQ. It should always be safe to 1130 * hardcode it in these cases 1131 */ 1132 return cmos_do_probe(&pnp->dev, 1133 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1134 else 1135 return cmos_do_probe(&pnp->dev, 1136 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1137 pnp_irq(pnp, 0)); 1138 } 1139 1140 static void cmos_pnp_remove(struct pnp_dev *pnp) 1141 { 1142 cmos_do_remove(&pnp->dev); 1143 } 1144 1145 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1146 { 1147 struct device *dev = &pnp->dev; 1148 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1149 1150 if (system_state == SYSTEM_POWER_OFF) { 1151 int retval = cmos_poweroff(dev); 1152 1153 if (cmos_aie_poweroff(dev) < 0 && !retval) 1154 return; 1155 } 1156 1157 cmos_do_shutdown(cmos->irq); 1158 } 1159 1160 static const struct pnp_device_id rtc_ids[] = { 1161 { .id = "PNP0b00", }, 1162 { .id = "PNP0b01", }, 1163 { .id = "PNP0b02", }, 1164 { }, 1165 }; 1166 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1167 1168 static struct pnp_driver cmos_pnp_driver = { 1169 .name = (char *) driver_name, 1170 .id_table = rtc_ids, 1171 .probe = cmos_pnp_probe, 1172 .remove = cmos_pnp_remove, 1173 .shutdown = cmos_pnp_shutdown, 1174 1175 /* flag ensures resume() gets called, and stops syslog spam */ 1176 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1177 .driver = { 1178 .pm = &cmos_pm_ops, 1179 }, 1180 }; 1181 1182 #endif /* CONFIG_PNP */ 1183 1184 #ifdef CONFIG_OF 1185 static const struct of_device_id of_cmos_match[] = { 1186 { 1187 .compatible = "motorola,mc146818", 1188 }, 1189 { }, 1190 }; 1191 MODULE_DEVICE_TABLE(of, of_cmos_match); 1192 1193 static __init void cmos_of_init(struct platform_device *pdev) 1194 { 1195 struct device_node *node = pdev->dev.of_node; 1196 struct rtc_time time; 1197 int ret; 1198 const __be32 *val; 1199 1200 if (!node) 1201 return; 1202 1203 val = of_get_property(node, "ctrl-reg", NULL); 1204 if (val) 1205 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1206 1207 val = of_get_property(node, "freq-reg", NULL); 1208 if (val) 1209 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1210 1211 cmos_read_time(&pdev->dev, &time); 1212 ret = rtc_valid_tm(&time); 1213 if (ret) { 1214 struct rtc_time def_time = { 1215 .tm_year = 1, 1216 .tm_mday = 1, 1217 }; 1218 cmos_set_time(&pdev->dev, &def_time); 1219 } 1220 } 1221 #else 1222 static inline void cmos_of_init(struct platform_device *pdev) {} 1223 #endif 1224 /*----------------------------------------------------------------*/ 1225 1226 /* Platform setup should have set up an RTC device, when PNP is 1227 * unavailable ... this could happen even on (older) PCs. 1228 */ 1229 1230 static int __init cmos_platform_probe(struct platform_device *pdev) 1231 { 1232 struct resource *resource; 1233 int irq; 1234 1235 cmos_of_init(pdev); 1236 cmos_wake_setup(&pdev->dev); 1237 1238 if (RTC_IOMAPPED) 1239 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1240 else 1241 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1242 irq = platform_get_irq(pdev, 0); 1243 if (irq < 0) 1244 irq = -1; 1245 1246 return cmos_do_probe(&pdev->dev, resource, irq); 1247 } 1248 1249 static int cmos_platform_remove(struct platform_device *pdev) 1250 { 1251 cmos_do_remove(&pdev->dev); 1252 return 0; 1253 } 1254 1255 static void cmos_platform_shutdown(struct platform_device *pdev) 1256 { 1257 struct device *dev = &pdev->dev; 1258 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1259 1260 if (system_state == SYSTEM_POWER_OFF) { 1261 int retval = cmos_poweroff(dev); 1262 1263 if (cmos_aie_poweroff(dev) < 0 && !retval) 1264 return; 1265 } 1266 1267 cmos_do_shutdown(cmos->irq); 1268 } 1269 1270 /* work with hotplug and coldplug */ 1271 MODULE_ALIAS("platform:rtc_cmos"); 1272 1273 static struct platform_driver cmos_platform_driver = { 1274 .remove = cmos_platform_remove, 1275 .shutdown = cmos_platform_shutdown, 1276 .driver = { 1277 .name = driver_name, 1278 .pm = &cmos_pm_ops, 1279 .of_match_table = of_match_ptr(of_cmos_match), 1280 } 1281 }; 1282 1283 #ifdef CONFIG_PNP 1284 static bool pnp_driver_registered; 1285 #endif 1286 static bool platform_driver_registered; 1287 1288 static int __init cmos_init(void) 1289 { 1290 int retval = 0; 1291 1292 #ifdef CONFIG_PNP 1293 retval = pnp_register_driver(&cmos_pnp_driver); 1294 if (retval == 0) 1295 pnp_driver_registered = true; 1296 #endif 1297 1298 if (!cmos_rtc.dev) { 1299 retval = platform_driver_probe(&cmos_platform_driver, 1300 cmos_platform_probe); 1301 if (retval == 0) 1302 platform_driver_registered = true; 1303 } 1304 1305 if (retval == 0) 1306 return 0; 1307 1308 #ifdef CONFIG_PNP 1309 if (pnp_driver_registered) 1310 pnp_unregister_driver(&cmos_pnp_driver); 1311 #endif 1312 return retval; 1313 } 1314 module_init(cmos_init); 1315 1316 static void __exit cmos_exit(void) 1317 { 1318 #ifdef CONFIG_PNP 1319 if (pnp_driver_registered) 1320 pnp_unregister_driver(&cmos_pnp_driver); 1321 #endif 1322 if (platform_driver_registered) 1323 platform_driver_unregister(&cmos_platform_driver); 1324 } 1325 module_exit(cmos_exit); 1326 1327 1328 MODULE_AUTHOR("David Brownell"); 1329 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1330 MODULE_LICENSE("GPL"); 1331