xref: /linux/drivers/rtc/rtc-cmos.c (revision 308d3165d8b2b98d3dc3d97d6662062735daea67)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47 
48 struct cmos_rtc {
49 	struct rtc_device	*rtc;
50 	struct device		*dev;
51 	int			irq;
52 	struct resource		*iomem;
53 	time64_t		alarm_expires;
54 
55 	void			(*wake_on)(struct device *);
56 	void			(*wake_off)(struct device *);
57 
58 	u8			enabled_wake;
59 	u8			suspend_ctrl;
60 
61 	/* newer hardware extends the original register set */
62 	u8			day_alrm;
63 	u8			mon_alrm;
64 	u8			century;
65 
66 	struct rtc_wkalrm	saved_wkalrm;
67 };
68 
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n)		((n) > 0)
71 
72 static const char driver_name[] = "rtc_cmos";
73 
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
76  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
77  */
78 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
79 
80 static inline int is_intr(u8 rtc_intr)
81 {
82 	if (!(rtc_intr & RTC_IRQF))
83 		return 0;
84 	return rtc_intr & RTC_IRQMASK;
85 }
86 
87 /*----------------------------------------------------------------*/
88 
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91  * used in a broken "legacy replacement" mode.  The breakage includes
92  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93  * other (better) use.
94  *
95  * When that broken mode is in use, platform glue provides a partial
96  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
97  * want to use HPET for anything except those IRQs though...
98  */
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
101 #else
102 
103 static inline int is_hpet_enabled(void)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114 {
115 	return 0;
116 }
117 
118 static inline int
119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_set_periodic_freq(unsigned long freq)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_dropped_irq(void)
130 {
131 	return 0;
132 }
133 
134 static inline int hpet_rtc_timer_init(void)
135 {
136 	return 0;
137 }
138 
139 extern irq_handler_t hpet_rtc_interrupt;
140 
141 static inline int hpet_register_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147 {
148 	return 0;
149 }
150 
151 #endif
152 
153 /*----------------------------------------------------------------*/
154 
155 #ifdef RTC_PORT
156 
157 /* Most newer x86 systems have two register banks, the first used
158  * for RTC and NVRAM and the second only for NVRAM.  Caller must
159  * own rtc_lock ... and we won't worry about access during NMI.
160  */
161 #define can_bank2	true
162 
163 static inline unsigned char cmos_read_bank2(unsigned char addr)
164 {
165 	outb(addr, RTC_PORT(2));
166 	return inb(RTC_PORT(3));
167 }
168 
169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170 {
171 	outb(addr, RTC_PORT(2));
172 	outb(val, RTC_PORT(3));
173 }
174 
175 #else
176 
177 #define can_bank2	false
178 
179 static inline unsigned char cmos_read_bank2(unsigned char addr)
180 {
181 	return 0;
182 }
183 
184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185 {
186 }
187 
188 #endif
189 
190 /*----------------------------------------------------------------*/
191 
192 static int cmos_read_time(struct device *dev, struct rtc_time *t)
193 {
194 	/*
195 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
196 	 * which tells the caller that this RTC value is unusable.
197 	 */
198 	if (!pm_trace_rtc_valid())
199 		return -EIO;
200 
201 	/* REVISIT:  if the clock has a "century" register, use
202 	 * that instead of the heuristic in mc146818_get_time().
203 	 * That'll make Y3K compatility (year > 2070) easy!
204 	 */
205 	mc146818_get_time(t);
206 	return 0;
207 }
208 
209 static int cmos_set_time(struct device *dev, struct rtc_time *t)
210 {
211 	/* REVISIT:  set the "century" register if available
212 	 *
213 	 * NOTE: this ignores the issue whereby updating the seconds
214 	 * takes effect exactly 500ms after we write the register.
215 	 * (Also queueing and other delays before we get this far.)
216 	 */
217 	return mc146818_set_time(t);
218 }
219 
220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
221 {
222 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
223 	unsigned char	rtc_control;
224 
225 	if (!is_valid_irq(cmos->irq))
226 		return -EIO;
227 
228 	/* Basic alarms only support hour, minute, and seconds fields.
229 	 * Some also support day and month, for alarms up to a year in
230 	 * the future.
231 	 */
232 
233 	spin_lock_irq(&rtc_lock);
234 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
235 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
236 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
237 
238 	if (cmos->day_alrm) {
239 		/* ignore upper bits on readback per ACPI spec */
240 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
241 		if (!t->time.tm_mday)
242 			t->time.tm_mday = -1;
243 
244 		if (cmos->mon_alrm) {
245 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
246 			if (!t->time.tm_mon)
247 				t->time.tm_mon = -1;
248 		}
249 	}
250 
251 	rtc_control = CMOS_READ(RTC_CONTROL);
252 	spin_unlock_irq(&rtc_lock);
253 
254 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
255 		if (((unsigned)t->time.tm_sec) < 0x60)
256 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
257 		else
258 			t->time.tm_sec = -1;
259 		if (((unsigned)t->time.tm_min) < 0x60)
260 			t->time.tm_min = bcd2bin(t->time.tm_min);
261 		else
262 			t->time.tm_min = -1;
263 		if (((unsigned)t->time.tm_hour) < 0x24)
264 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
265 		else
266 			t->time.tm_hour = -1;
267 
268 		if (cmos->day_alrm) {
269 			if (((unsigned)t->time.tm_mday) <= 0x31)
270 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
271 			else
272 				t->time.tm_mday = -1;
273 
274 			if (cmos->mon_alrm) {
275 				if (((unsigned)t->time.tm_mon) <= 0x12)
276 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
277 				else
278 					t->time.tm_mon = -1;
279 			}
280 		}
281 	}
282 
283 	t->enabled = !!(rtc_control & RTC_AIE);
284 	t->pending = 0;
285 
286 	return 0;
287 }
288 
289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
290 {
291 	unsigned char	rtc_intr;
292 
293 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
294 	 * allegedly some older rtcs need that to handle irqs properly
295 	 */
296 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297 
298 	if (is_hpet_enabled())
299 		return;
300 
301 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
302 	if (is_intr(rtc_intr))
303 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
304 }
305 
306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
307 {
308 	unsigned char	rtc_control;
309 
310 	/* flush any pending IRQ status, notably for update irqs,
311 	 * before we enable new IRQs
312 	 */
313 	rtc_control = CMOS_READ(RTC_CONTROL);
314 	cmos_checkintr(cmos, rtc_control);
315 
316 	rtc_control |= mask;
317 	CMOS_WRITE(rtc_control, RTC_CONTROL);
318 	hpet_set_rtc_irq_bit(mask);
319 
320 	cmos_checkintr(cmos, rtc_control);
321 }
322 
323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
324 {
325 	unsigned char	rtc_control;
326 
327 	rtc_control = CMOS_READ(RTC_CONTROL);
328 	rtc_control &= ~mask;
329 	CMOS_WRITE(rtc_control, RTC_CONTROL);
330 	hpet_mask_rtc_irq_bit(mask);
331 
332 	cmos_checkintr(cmos, rtc_control);
333 }
334 
335 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
336 {
337 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
338 	unsigned char mon, mday, hrs, min, sec, rtc_control;
339 
340 	if (!is_valid_irq(cmos->irq))
341 		return -EIO;
342 
343 	mon = t->time.tm_mon + 1;
344 	mday = t->time.tm_mday;
345 	hrs = t->time.tm_hour;
346 	min = t->time.tm_min;
347 	sec = t->time.tm_sec;
348 
349 	rtc_control = CMOS_READ(RTC_CONTROL);
350 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
351 		/* Writing 0xff means "don't care" or "match all".  */
352 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
353 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
354 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
355 		min = (min < 60) ? bin2bcd(min) : 0xff;
356 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
357 	}
358 
359 	spin_lock_irq(&rtc_lock);
360 
361 	/* next rtc irq must not be from previous alarm setting */
362 	cmos_irq_disable(cmos, RTC_AIE);
363 
364 	/* update alarm */
365 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
366 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
367 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
368 
369 	/* the system may support an "enhanced" alarm */
370 	if (cmos->day_alrm) {
371 		CMOS_WRITE(mday, cmos->day_alrm);
372 		if (cmos->mon_alrm)
373 			CMOS_WRITE(mon, cmos->mon_alrm);
374 	}
375 
376 	/* FIXME the HPET alarm glue currently ignores day_alrm
377 	 * and mon_alrm ...
378 	 */
379 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
380 
381 	if (t->enabled)
382 		cmos_irq_enable(cmos, RTC_AIE);
383 
384 	spin_unlock_irq(&rtc_lock);
385 
386 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
387 
388 	return 0;
389 }
390 
391 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
392 {
393 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
394 	unsigned long	flags;
395 
396 	if (!is_valid_irq(cmos->irq))
397 		return -EINVAL;
398 
399 	spin_lock_irqsave(&rtc_lock, flags);
400 
401 	if (enabled)
402 		cmos_irq_enable(cmos, RTC_AIE);
403 	else
404 		cmos_irq_disable(cmos, RTC_AIE);
405 
406 	spin_unlock_irqrestore(&rtc_lock, flags);
407 	return 0;
408 }
409 
410 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
411 
412 static int cmos_procfs(struct device *dev, struct seq_file *seq)
413 {
414 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
415 	unsigned char	rtc_control, valid;
416 
417 	spin_lock_irq(&rtc_lock);
418 	rtc_control = CMOS_READ(RTC_CONTROL);
419 	valid = CMOS_READ(RTC_VALID);
420 	spin_unlock_irq(&rtc_lock);
421 
422 	/* NOTE:  at least ICH6 reports battery status using a different
423 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
424 	 */
425 	seq_printf(seq,
426 		   "periodic_IRQ\t: %s\n"
427 		   "update_IRQ\t: %s\n"
428 		   "HPET_emulated\t: %s\n"
429 		   // "square_wave\t: %s\n"
430 		   "BCD\t\t: %s\n"
431 		   "DST_enable\t: %s\n"
432 		   "periodic_freq\t: %d\n"
433 		   "batt_status\t: %s\n",
434 		   (rtc_control & RTC_PIE) ? "yes" : "no",
435 		   (rtc_control & RTC_UIE) ? "yes" : "no",
436 		   is_hpet_enabled() ? "yes" : "no",
437 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
438 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
439 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
440 		   cmos->rtc->irq_freq,
441 		   (valid & RTC_VRT) ? "okay" : "dead");
442 
443 	return 0;
444 }
445 
446 #else
447 #define	cmos_procfs	NULL
448 #endif
449 
450 static const struct rtc_class_ops cmos_rtc_ops = {
451 	.read_time		= cmos_read_time,
452 	.set_time		= cmos_set_time,
453 	.read_alarm		= cmos_read_alarm,
454 	.set_alarm		= cmos_set_alarm,
455 	.proc			= cmos_procfs,
456 	.alarm_irq_enable	= cmos_alarm_irq_enable,
457 };
458 
459 /*----------------------------------------------------------------*/
460 
461 /*
462  * All these chips have at least 64 bytes of address space, shared by
463  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
464  * by boot firmware.  Modern chips have 128 or 256 bytes.
465  */
466 
467 #define NVRAM_OFFSET	(RTC_REG_D + 1)
468 
469 static ssize_t
470 cmos_nvram_read(struct file *filp, struct kobject *kobj,
471 		struct bin_attribute *attr,
472 		char *buf, loff_t off, size_t count)
473 {
474 	int	retval;
475 
476 	off += NVRAM_OFFSET;
477 	spin_lock_irq(&rtc_lock);
478 	for (retval = 0; count; count--, off++, retval++) {
479 		if (off < 128)
480 			*buf++ = CMOS_READ(off);
481 		else if (can_bank2)
482 			*buf++ = cmos_read_bank2(off);
483 		else
484 			break;
485 	}
486 	spin_unlock_irq(&rtc_lock);
487 
488 	return retval;
489 }
490 
491 static ssize_t
492 cmos_nvram_write(struct file *filp, struct kobject *kobj,
493 		struct bin_attribute *attr,
494 		char *buf, loff_t off, size_t count)
495 {
496 	struct cmos_rtc	*cmos;
497 	int		retval;
498 
499 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
500 
501 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
502 	 * checksum on part of the NVRAM data.  That's currently ignored
503 	 * here.  If userspace is smart enough to know what fields of
504 	 * NVRAM to update, updating checksums is also part of its job.
505 	 */
506 	off += NVRAM_OFFSET;
507 	spin_lock_irq(&rtc_lock);
508 	for (retval = 0; count; count--, off++, retval++) {
509 		/* don't trash RTC registers */
510 		if (off == cmos->day_alrm
511 				|| off == cmos->mon_alrm
512 				|| off == cmos->century)
513 			buf++;
514 		else if (off < 128)
515 			CMOS_WRITE(*buf++, off);
516 		else if (can_bank2)
517 			cmos_write_bank2(*buf++, off);
518 		else
519 			break;
520 	}
521 	spin_unlock_irq(&rtc_lock);
522 
523 	return retval;
524 }
525 
526 static struct bin_attribute nvram = {
527 	.attr = {
528 		.name	= "nvram",
529 		.mode	= S_IRUGO | S_IWUSR,
530 	},
531 
532 	.read	= cmos_nvram_read,
533 	.write	= cmos_nvram_write,
534 	/* size gets set up later */
535 };
536 
537 /*----------------------------------------------------------------*/
538 
539 static struct cmos_rtc	cmos_rtc;
540 
541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543 	u8		irqstat;
544 	u8		rtc_control;
545 
546 	spin_lock(&rtc_lock);
547 
548 	/* When the HPET interrupt handler calls us, the interrupt
549 	 * status is passed as arg1 instead of the irq number.  But
550 	 * always clear irq status, even when HPET is in the way.
551 	 *
552 	 * Note that HPET and RTC are almost certainly out of phase,
553 	 * giving different IRQ status ...
554 	 */
555 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 	rtc_control = CMOS_READ(RTC_CONTROL);
557 	if (is_hpet_enabled())
558 		irqstat = (unsigned long)irq & 0xF0;
559 
560 	/* If we were suspended, RTC_CONTROL may not be accurate since the
561 	 * bios may have cleared it.
562 	 */
563 	if (!cmos_rtc.suspend_ctrl)
564 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
565 	else
566 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
567 
568 	/* All Linux RTC alarms should be treated as if they were oneshot.
569 	 * Similar code may be needed in system wakeup paths, in case the
570 	 * alarm woke the system.
571 	 */
572 	if (irqstat & RTC_AIE) {
573 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
574 		rtc_control &= ~RTC_AIE;
575 		CMOS_WRITE(rtc_control, RTC_CONTROL);
576 		hpet_mask_rtc_irq_bit(RTC_AIE);
577 		CMOS_READ(RTC_INTR_FLAGS);
578 	}
579 	spin_unlock(&rtc_lock);
580 
581 	if (is_intr(irqstat)) {
582 		rtc_update_irq(p, 1, irqstat);
583 		return IRQ_HANDLED;
584 	} else
585 		return IRQ_NONE;
586 }
587 
588 #ifdef	CONFIG_PNP
589 #define	INITSECTION
590 
591 #else
592 #define	INITSECTION	__init
593 #endif
594 
595 static int INITSECTION
596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
597 {
598 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
599 	int				retval = 0;
600 	unsigned char			rtc_control;
601 	unsigned			address_space;
602 	u32				flags = 0;
603 
604 	/* there can be only one ... */
605 	if (cmos_rtc.dev)
606 		return -EBUSY;
607 
608 	if (!ports)
609 		return -ENODEV;
610 
611 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
612 	 *
613 	 * REVISIT non-x86 systems may instead use memory space resources
614 	 * (needing ioremap etc), not i/o space resources like this ...
615 	 */
616 	if (RTC_IOMAPPED)
617 		ports = request_region(ports->start, resource_size(ports),
618 				       driver_name);
619 	else
620 		ports = request_mem_region(ports->start, resource_size(ports),
621 					   driver_name);
622 	if (!ports) {
623 		dev_dbg(dev, "i/o registers already in use\n");
624 		return -EBUSY;
625 	}
626 
627 	cmos_rtc.irq = rtc_irq;
628 	cmos_rtc.iomem = ports;
629 
630 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
631 	 * driver did, but don't reject unknown configs.   Old hardware
632 	 * won't address 128 bytes.  Newer chips have multiple banks,
633 	 * though they may not be listed in one I/O resource.
634 	 */
635 #if	defined(CONFIG_ATARI)
636 	address_space = 64;
637 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
638 			|| defined(__sparc__) || defined(__mips__) \
639 			|| defined(__powerpc__) || defined(CONFIG_MN10300)
640 	address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643 	address_space = 128;
644 #endif
645 	if (can_bank2 && ports->end > (ports->start + 1))
646 		address_space = 256;
647 
648 	/* For ACPI systems extension info comes from the FADT.  On others,
649 	 * board specific setup provides it as appropriate.  Systems where
650 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
651 	 * some almost-clones) can provide hooks to make that behave.
652 	 *
653 	 * Note that ACPI doesn't preclude putting these registers into
654 	 * "extended" areas of the chip, including some that we won't yet
655 	 * expect CMOS_READ and friends to handle.
656 	 */
657 	if (info) {
658 		if (info->flags)
659 			flags = info->flags;
660 		if (info->address_space)
661 			address_space = info->address_space;
662 
663 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
664 			cmos_rtc.day_alrm = info->rtc_day_alarm;
665 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
666 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
667 		if (info->rtc_century && info->rtc_century < 128)
668 			cmos_rtc.century = info->rtc_century;
669 
670 		if (info->wake_on && info->wake_off) {
671 			cmos_rtc.wake_on = info->wake_on;
672 			cmos_rtc.wake_off = info->wake_off;
673 		}
674 	}
675 
676 	cmos_rtc.dev = dev;
677 	dev_set_drvdata(dev, &cmos_rtc);
678 
679 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
680 				&cmos_rtc_ops, THIS_MODULE);
681 	if (IS_ERR(cmos_rtc.rtc)) {
682 		retval = PTR_ERR(cmos_rtc.rtc);
683 		goto cleanup0;
684 	}
685 
686 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
687 
688 	spin_lock_irq(&rtc_lock);
689 
690 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
691 		/* force periodic irq to CMOS reset default of 1024Hz;
692 		 *
693 		 * REVISIT it's been reported that at least one x86_64 ALI
694 		 * mobo doesn't use 32KHz here ... for portability we might
695 		 * need to do something about other clock frequencies.
696 		 */
697 		cmos_rtc.rtc->irq_freq = 1024;
698 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
699 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
700 	}
701 
702 	/* disable irqs */
703 	if (is_valid_irq(rtc_irq))
704 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
705 
706 	rtc_control = CMOS_READ(RTC_CONTROL);
707 
708 	spin_unlock_irq(&rtc_lock);
709 
710 	/* FIXME:
711 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
712 	 */
713 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
714 		dev_warn(dev, "only 24-hr supported\n");
715 		retval = -ENXIO;
716 		goto cleanup1;
717 	}
718 
719 	hpet_rtc_timer_init();
720 
721 	if (is_valid_irq(rtc_irq)) {
722 		irq_handler_t rtc_cmos_int_handler;
723 
724 		if (is_hpet_enabled()) {
725 			rtc_cmos_int_handler = hpet_rtc_interrupt;
726 			retval = hpet_register_irq_handler(cmos_interrupt);
727 			if (retval) {
728 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
729 				dev_warn(dev, "hpet_register_irq_handler "
730 						" failed in rtc_init().");
731 				goto cleanup1;
732 			}
733 		} else
734 			rtc_cmos_int_handler = cmos_interrupt;
735 
736 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
737 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
738 				cmos_rtc.rtc);
739 		if (retval < 0) {
740 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
741 			goto cleanup1;
742 		}
743 	}
744 
745 	/* export at least the first block of NVRAM */
746 	nvram.size = address_space - NVRAM_OFFSET;
747 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
748 	if (retval < 0) {
749 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
750 		goto cleanup2;
751 	}
752 
753 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
754 		!is_valid_irq(rtc_irq) ? "no alarms" :
755 			cmos_rtc.mon_alrm ? "alarms up to one year" :
756 			cmos_rtc.day_alrm ? "alarms up to one month" :
757 			"alarms up to one day",
758 		cmos_rtc.century ? ", y3k" : "",
759 		nvram.size,
760 		is_hpet_enabled() ? ", hpet irqs" : "");
761 
762 	return 0;
763 
764 cleanup2:
765 	if (is_valid_irq(rtc_irq))
766 		free_irq(rtc_irq, cmos_rtc.rtc);
767 cleanup1:
768 	cmos_rtc.dev = NULL;
769 	rtc_device_unregister(cmos_rtc.rtc);
770 cleanup0:
771 	if (RTC_IOMAPPED)
772 		release_region(ports->start, resource_size(ports));
773 	else
774 		release_mem_region(ports->start, resource_size(ports));
775 	return retval;
776 }
777 
778 static void cmos_do_shutdown(int rtc_irq)
779 {
780 	spin_lock_irq(&rtc_lock);
781 	if (is_valid_irq(rtc_irq))
782 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
783 	spin_unlock_irq(&rtc_lock);
784 }
785 
786 static void cmos_do_remove(struct device *dev)
787 {
788 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
789 	struct resource *ports;
790 
791 	cmos_do_shutdown(cmos->irq);
792 
793 	sysfs_remove_bin_file(&dev->kobj, &nvram);
794 
795 	if (is_valid_irq(cmos->irq)) {
796 		free_irq(cmos->irq, cmos->rtc);
797 		hpet_unregister_irq_handler(cmos_interrupt);
798 	}
799 
800 	rtc_device_unregister(cmos->rtc);
801 	cmos->rtc = NULL;
802 
803 	ports = cmos->iomem;
804 	if (RTC_IOMAPPED)
805 		release_region(ports->start, resource_size(ports));
806 	else
807 		release_mem_region(ports->start, resource_size(ports));
808 	cmos->iomem = NULL;
809 
810 	cmos->dev = NULL;
811 }
812 
813 static int cmos_aie_poweroff(struct device *dev)
814 {
815 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
816 	struct rtc_time now;
817 	time64_t t_now;
818 	int retval = 0;
819 	unsigned char rtc_control;
820 
821 	if (!cmos->alarm_expires)
822 		return -EINVAL;
823 
824 	spin_lock_irq(&rtc_lock);
825 	rtc_control = CMOS_READ(RTC_CONTROL);
826 	spin_unlock_irq(&rtc_lock);
827 
828 	/* We only care about the situation where AIE is disabled. */
829 	if (rtc_control & RTC_AIE)
830 		return -EBUSY;
831 
832 	cmos_read_time(dev, &now);
833 	t_now = rtc_tm_to_time64(&now);
834 
835 	/*
836 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
837 	 * automatically right after shutdown on some buggy boxes.
838 	 * This automatic rebooting issue won't happen when the alarm
839 	 * time is larger than now+1 seconds.
840 	 *
841 	 * If the alarm time is equal to now+1 seconds, the issue can be
842 	 * prevented by cancelling the alarm.
843 	 */
844 	if (cmos->alarm_expires == t_now + 1) {
845 		struct rtc_wkalrm alarm;
846 
847 		/* Cancel the AIE timer by configuring the past time. */
848 		rtc_time64_to_tm(t_now - 1, &alarm.time);
849 		alarm.enabled = 0;
850 		retval = cmos_set_alarm(dev, &alarm);
851 	} else if (cmos->alarm_expires > t_now + 1) {
852 		retval = -EBUSY;
853 	}
854 
855 	return retval;
856 }
857 
858 static int cmos_suspend(struct device *dev)
859 {
860 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
861 	unsigned char	tmp;
862 
863 	/* only the alarm might be a wakeup event source */
864 	spin_lock_irq(&rtc_lock);
865 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
866 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
867 		unsigned char	mask;
868 
869 		if (device_may_wakeup(dev))
870 			mask = RTC_IRQMASK & ~RTC_AIE;
871 		else
872 			mask = RTC_IRQMASK;
873 		tmp &= ~mask;
874 		CMOS_WRITE(tmp, RTC_CONTROL);
875 		hpet_mask_rtc_irq_bit(mask);
876 
877 		cmos_checkintr(cmos, tmp);
878 	}
879 	spin_unlock_irq(&rtc_lock);
880 
881 	if (tmp & RTC_AIE) {
882 		cmos->enabled_wake = 1;
883 		if (cmos->wake_on)
884 			cmos->wake_on(dev);
885 		else
886 			enable_irq_wake(cmos->irq);
887 	}
888 
889 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
890 
891 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
892 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
893 			tmp);
894 
895 	return 0;
896 }
897 
898 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
899  * after a detour through G3 "mechanical off", although the ACPI spec
900  * says wakeup should only work from G1/S4 "hibernate".  To most users,
901  * distinctions between S4 and S5 are pointless.  So when the hardware
902  * allows, don't draw that distinction.
903  */
904 static inline int cmos_poweroff(struct device *dev)
905 {
906 	if (!IS_ENABLED(CONFIG_PM))
907 		return -ENOSYS;
908 
909 	return cmos_suspend(dev);
910 }
911 
912 static void cmos_check_wkalrm(struct device *dev)
913 {
914 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
915 	struct rtc_wkalrm current_alarm;
916 	time64_t t_current_expires;
917 	time64_t t_saved_expires;
918 
919 	cmos_read_alarm(dev, &current_alarm);
920 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
921 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
922 	if (t_current_expires != t_saved_expires ||
923 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
924 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
925 	}
926 }
927 
928 static void cmos_check_acpi_rtc_status(struct device *dev,
929 				       unsigned char *rtc_control);
930 
931 static int __maybe_unused cmos_resume(struct device *dev)
932 {
933 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
934 	unsigned char tmp;
935 
936 	if (cmos->enabled_wake) {
937 		if (cmos->wake_off)
938 			cmos->wake_off(dev);
939 		else
940 			disable_irq_wake(cmos->irq);
941 		cmos->enabled_wake = 0;
942 	}
943 
944 	/* The BIOS might have changed the alarm, restore it */
945 	cmos_check_wkalrm(dev);
946 
947 	spin_lock_irq(&rtc_lock);
948 	tmp = cmos->suspend_ctrl;
949 	cmos->suspend_ctrl = 0;
950 	/* re-enable any irqs previously active */
951 	if (tmp & RTC_IRQMASK) {
952 		unsigned char	mask;
953 
954 		if (device_may_wakeup(dev))
955 			hpet_rtc_timer_init();
956 
957 		do {
958 			CMOS_WRITE(tmp, RTC_CONTROL);
959 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
960 
961 			mask = CMOS_READ(RTC_INTR_FLAGS);
962 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
963 			if (!is_hpet_enabled() || !is_intr(mask))
964 				break;
965 
966 			/* force one-shot behavior if HPET blocked
967 			 * the wake alarm's irq
968 			 */
969 			rtc_update_irq(cmos->rtc, 1, mask);
970 			tmp &= ~RTC_AIE;
971 			hpet_mask_rtc_irq_bit(RTC_AIE);
972 		} while (mask & RTC_AIE);
973 
974 		if (tmp & RTC_AIE)
975 			cmos_check_acpi_rtc_status(dev, &tmp);
976 	}
977 	spin_unlock_irq(&rtc_lock);
978 
979 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
980 
981 	return 0;
982 }
983 
984 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
985 
986 /*----------------------------------------------------------------*/
987 
988 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
989  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
990  * probably list them in similar PNPBIOS tables; so PNP is more common.
991  *
992  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
993  * predate even PNPBIOS should set up platform_bus devices.
994  */
995 
996 #ifdef	CONFIG_ACPI
997 
998 #include <linux/acpi.h>
999 
1000 static u32 rtc_handler(void *context)
1001 {
1002 	struct device *dev = context;
1003 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1004 	unsigned char rtc_control = 0;
1005 	unsigned char rtc_intr;
1006 	unsigned long flags;
1007 
1008 	spin_lock_irqsave(&rtc_lock, flags);
1009 	if (cmos_rtc.suspend_ctrl)
1010 		rtc_control = CMOS_READ(RTC_CONTROL);
1011 	if (rtc_control & RTC_AIE) {
1012 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1013 		CMOS_WRITE(rtc_control, RTC_CONTROL);
1014 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1015 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1016 	}
1017 	spin_unlock_irqrestore(&rtc_lock, flags);
1018 
1019 	pm_wakeup_event(dev, 0);
1020 	acpi_clear_event(ACPI_EVENT_RTC);
1021 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1022 	return ACPI_INTERRUPT_HANDLED;
1023 }
1024 
1025 static inline void rtc_wake_setup(struct device *dev)
1026 {
1027 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1028 	/*
1029 	 * After the RTC handler is installed, the Fixed_RTC event should
1030 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1031 	 */
1032 	acpi_clear_event(ACPI_EVENT_RTC);
1033 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1034 }
1035 
1036 static void rtc_wake_on(struct device *dev)
1037 {
1038 	acpi_clear_event(ACPI_EVENT_RTC);
1039 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1040 }
1041 
1042 static void rtc_wake_off(struct device *dev)
1043 {
1044 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1045 }
1046 
1047 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1048  * its device node and pass extra config data.  This helps its driver use
1049  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1050  * that this board's RTC is wakeup-capable (per ACPI spec).
1051  */
1052 static struct cmos_rtc_board_info acpi_rtc_info;
1053 
1054 static void cmos_wake_setup(struct device *dev)
1055 {
1056 	if (acpi_disabled)
1057 		return;
1058 
1059 	rtc_wake_setup(dev);
1060 	acpi_rtc_info.wake_on = rtc_wake_on;
1061 	acpi_rtc_info.wake_off = rtc_wake_off;
1062 
1063 	/* workaround bug in some ACPI tables */
1064 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1065 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1066 			acpi_gbl_FADT.month_alarm);
1067 		acpi_gbl_FADT.month_alarm = 0;
1068 	}
1069 
1070 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1071 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1072 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1073 
1074 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1075 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1076 		dev_info(dev, "RTC can wake from S4\n");
1077 
1078 	dev->platform_data = &acpi_rtc_info;
1079 
1080 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1081 	device_init_wakeup(dev, 1);
1082 }
1083 
1084 static void cmos_check_acpi_rtc_status(struct device *dev,
1085 				       unsigned char *rtc_control)
1086 {
1087 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1088 	acpi_event_status rtc_status;
1089 	acpi_status status;
1090 
1091 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1092 		return;
1093 
1094 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1095 	if (ACPI_FAILURE(status)) {
1096 		dev_err(dev, "Could not get RTC status\n");
1097 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1098 		unsigned char mask;
1099 		*rtc_control &= ~RTC_AIE;
1100 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1101 		mask = CMOS_READ(RTC_INTR_FLAGS);
1102 		rtc_update_irq(cmos->rtc, 1, mask);
1103 	}
1104 }
1105 
1106 #else
1107 
1108 static void cmos_wake_setup(struct device *dev)
1109 {
1110 }
1111 
1112 static void cmos_check_acpi_rtc_status(struct device *dev,
1113 				       unsigned char *rtc_control)
1114 {
1115 }
1116 
1117 #endif
1118 
1119 #ifdef	CONFIG_PNP
1120 
1121 #include <linux/pnp.h>
1122 
1123 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1124 {
1125 	cmos_wake_setup(&pnp->dev);
1126 
1127 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1128 		/* Some machines contain a PNP entry for the RTC, but
1129 		 * don't define the IRQ. It should always be safe to
1130 		 * hardcode it in these cases
1131 		 */
1132 		return cmos_do_probe(&pnp->dev,
1133 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1134 	else
1135 		return cmos_do_probe(&pnp->dev,
1136 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1137 				pnp_irq(pnp, 0));
1138 }
1139 
1140 static void cmos_pnp_remove(struct pnp_dev *pnp)
1141 {
1142 	cmos_do_remove(&pnp->dev);
1143 }
1144 
1145 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1146 {
1147 	struct device *dev = &pnp->dev;
1148 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1149 
1150 	if (system_state == SYSTEM_POWER_OFF) {
1151 		int retval = cmos_poweroff(dev);
1152 
1153 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1154 			return;
1155 	}
1156 
1157 	cmos_do_shutdown(cmos->irq);
1158 }
1159 
1160 static const struct pnp_device_id rtc_ids[] = {
1161 	{ .id = "PNP0b00", },
1162 	{ .id = "PNP0b01", },
1163 	{ .id = "PNP0b02", },
1164 	{ },
1165 };
1166 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1167 
1168 static struct pnp_driver cmos_pnp_driver = {
1169 	.name		= (char *) driver_name,
1170 	.id_table	= rtc_ids,
1171 	.probe		= cmos_pnp_probe,
1172 	.remove		= cmos_pnp_remove,
1173 	.shutdown	= cmos_pnp_shutdown,
1174 
1175 	/* flag ensures resume() gets called, and stops syslog spam */
1176 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1177 	.driver		= {
1178 			.pm = &cmos_pm_ops,
1179 	},
1180 };
1181 
1182 #endif	/* CONFIG_PNP */
1183 
1184 #ifdef CONFIG_OF
1185 static const struct of_device_id of_cmos_match[] = {
1186 	{
1187 		.compatible = "motorola,mc146818",
1188 	},
1189 	{ },
1190 };
1191 MODULE_DEVICE_TABLE(of, of_cmos_match);
1192 
1193 static __init void cmos_of_init(struct platform_device *pdev)
1194 {
1195 	struct device_node *node = pdev->dev.of_node;
1196 	struct rtc_time time;
1197 	int ret;
1198 	const __be32 *val;
1199 
1200 	if (!node)
1201 		return;
1202 
1203 	val = of_get_property(node, "ctrl-reg", NULL);
1204 	if (val)
1205 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1206 
1207 	val = of_get_property(node, "freq-reg", NULL);
1208 	if (val)
1209 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1210 
1211 	cmos_read_time(&pdev->dev, &time);
1212 	ret = rtc_valid_tm(&time);
1213 	if (ret) {
1214 		struct rtc_time def_time = {
1215 			.tm_year = 1,
1216 			.tm_mday = 1,
1217 		};
1218 		cmos_set_time(&pdev->dev, &def_time);
1219 	}
1220 }
1221 #else
1222 static inline void cmos_of_init(struct platform_device *pdev) {}
1223 #endif
1224 /*----------------------------------------------------------------*/
1225 
1226 /* Platform setup should have set up an RTC device, when PNP is
1227  * unavailable ... this could happen even on (older) PCs.
1228  */
1229 
1230 static int __init cmos_platform_probe(struct platform_device *pdev)
1231 {
1232 	struct resource *resource;
1233 	int irq;
1234 
1235 	cmos_of_init(pdev);
1236 	cmos_wake_setup(&pdev->dev);
1237 
1238 	if (RTC_IOMAPPED)
1239 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1240 	else
1241 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1242 	irq = platform_get_irq(pdev, 0);
1243 	if (irq < 0)
1244 		irq = -1;
1245 
1246 	return cmos_do_probe(&pdev->dev, resource, irq);
1247 }
1248 
1249 static int cmos_platform_remove(struct platform_device *pdev)
1250 {
1251 	cmos_do_remove(&pdev->dev);
1252 	return 0;
1253 }
1254 
1255 static void cmos_platform_shutdown(struct platform_device *pdev)
1256 {
1257 	struct device *dev = &pdev->dev;
1258 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1259 
1260 	if (system_state == SYSTEM_POWER_OFF) {
1261 		int retval = cmos_poweroff(dev);
1262 
1263 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1264 			return;
1265 	}
1266 
1267 	cmos_do_shutdown(cmos->irq);
1268 }
1269 
1270 /* work with hotplug and coldplug */
1271 MODULE_ALIAS("platform:rtc_cmos");
1272 
1273 static struct platform_driver cmos_platform_driver = {
1274 	.remove		= cmos_platform_remove,
1275 	.shutdown	= cmos_platform_shutdown,
1276 	.driver = {
1277 		.name		= driver_name,
1278 		.pm		= &cmos_pm_ops,
1279 		.of_match_table = of_match_ptr(of_cmos_match),
1280 	}
1281 };
1282 
1283 #ifdef CONFIG_PNP
1284 static bool pnp_driver_registered;
1285 #endif
1286 static bool platform_driver_registered;
1287 
1288 static int __init cmos_init(void)
1289 {
1290 	int retval = 0;
1291 
1292 #ifdef	CONFIG_PNP
1293 	retval = pnp_register_driver(&cmos_pnp_driver);
1294 	if (retval == 0)
1295 		pnp_driver_registered = true;
1296 #endif
1297 
1298 	if (!cmos_rtc.dev) {
1299 		retval = platform_driver_probe(&cmos_platform_driver,
1300 					       cmos_platform_probe);
1301 		if (retval == 0)
1302 			platform_driver_registered = true;
1303 	}
1304 
1305 	if (retval == 0)
1306 		return 0;
1307 
1308 #ifdef	CONFIG_PNP
1309 	if (pnp_driver_registered)
1310 		pnp_unregister_driver(&cmos_pnp_driver);
1311 #endif
1312 	return retval;
1313 }
1314 module_init(cmos_init);
1315 
1316 static void __exit cmos_exit(void)
1317 {
1318 #ifdef	CONFIG_PNP
1319 	if (pnp_driver_registered)
1320 		pnp_unregister_driver(&cmos_pnp_driver);
1321 #endif
1322 	if (platform_driver_registered)
1323 		platform_driver_unregister(&cmos_platform_driver);
1324 }
1325 module_exit(cmos_exit);
1326 
1327 
1328 MODULE_AUTHOR("David Brownell");
1329 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1330 MODULE_LICENSE("GPL");
1331