xref: /linux/drivers/rtc/rtc-cmos.c (revision 2da572c959dd5815aef153cf62010b16a498a0d3)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 struct cmos_rtc {
47 	struct rtc_device	*rtc;
48 	struct device		*dev;
49 	int			irq;
50 	struct resource		*iomem;
51 
52 	void			(*wake_on)(struct device *);
53 	void			(*wake_off)(struct device *);
54 
55 	u8			enabled_wake;
56 	u8			suspend_ctrl;
57 
58 	/* newer hardware extends the original register set */
59 	u8			day_alrm;
60 	u8			mon_alrm;
61 	u8			century;
62 };
63 
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)		((n) > 0)
66 
67 static const char driver_name[] = "rtc_cmos";
68 
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74 
75 static inline int is_intr(u8 rtc_intr)
76 {
77 	if (!(rtc_intr & RTC_IRQF))
78 		return 0;
79 	return rtc_intr & RTC_IRQMASK;
80 }
81 
82 /*----------------------------------------------------------------*/
83 
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97 
98 static inline int is_hpet_enabled(void)
99 {
100 	return 0;
101 }
102 
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 	return 0;
117 }
118 
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_timer_init(void)
130 {
131 	return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 	return 0;
139 }
140 
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2	true
157 
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 	outb(addr, RTC_PORT(2));
161 	return inb(RTC_PORT(3));
162 }
163 
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2	false
173 
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 	return 0;
177 }
178 
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 	/* REVISIT:  if the clock has a "century" register, use
190 	 * that instead of the heuristic in get_rtc_time().
191 	 * That'll make Y3K compatility (year > 2070) easy!
192 	 */
193 	get_rtc_time(t);
194 	return 0;
195 }
196 
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 	/* REVISIT:  set the "century" register if available
200 	 *
201 	 * NOTE: this ignores the issue whereby updating the seconds
202 	 * takes effect exactly 500ms after we write the register.
203 	 * (Also queueing and other delays before we get this far.)
204 	 */
205 	return set_rtc_time(t);
206 }
207 
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211 	unsigned char	rtc_control;
212 
213 	if (!is_valid_irq(cmos->irq))
214 		return -EIO;
215 
216 	/* Basic alarms only support hour, minute, and seconds fields.
217 	 * Some also support day and month, for alarms up to a year in
218 	 * the future.
219 	 */
220 	t->time.tm_mday = -1;
221 	t->time.tm_mon = -1;
222 
223 	spin_lock_irq(&rtc_lock);
224 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228 	if (cmos->day_alrm) {
229 		/* ignore upper bits on readback per ACPI spec */
230 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 		if (!t->time.tm_mday)
232 			t->time.tm_mday = -1;
233 
234 		if (cmos->mon_alrm) {
235 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 			if (!t->time.tm_mon)
237 				t->time.tm_mon = -1;
238 		}
239 	}
240 
241 	rtc_control = CMOS_READ(RTC_CONTROL);
242 	spin_unlock_irq(&rtc_lock);
243 
244 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 		if (((unsigned)t->time.tm_sec) < 0x60)
246 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 		else
248 			t->time.tm_sec = -1;
249 		if (((unsigned)t->time.tm_min) < 0x60)
250 			t->time.tm_min = bcd2bin(t->time.tm_min);
251 		else
252 			t->time.tm_min = -1;
253 		if (((unsigned)t->time.tm_hour) < 0x24)
254 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 		else
256 			t->time.tm_hour = -1;
257 
258 		if (cmos->day_alrm) {
259 			if (((unsigned)t->time.tm_mday) <= 0x31)
260 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 			else
262 				t->time.tm_mday = -1;
263 
264 			if (cmos->mon_alrm) {
265 				if (((unsigned)t->time.tm_mon) <= 0x12)
266 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 				else
268 					t->time.tm_mon = -1;
269 			}
270 		}
271 	}
272 	t->time.tm_year = -1;
273 
274 	t->enabled = !!(rtc_control & RTC_AIE);
275 	t->pending = 0;
276 
277 	return 0;
278 }
279 
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 	unsigned char	rtc_intr;
283 
284 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 	 * allegedly some older rtcs need that to handle irqs properly
286 	 */
287 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289 	if (is_hpet_enabled())
290 		return;
291 
292 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 	if (is_intr(rtc_intr))
294 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 	unsigned char	rtc_control;
300 
301 	/* flush any pending IRQ status, notably for update irqs,
302 	 * before we enable new IRQs
303 	 */
304 	rtc_control = CMOS_READ(RTC_CONTROL);
305 	cmos_checkintr(cmos, rtc_control);
306 
307 	rtc_control |= mask;
308 	CMOS_WRITE(rtc_control, RTC_CONTROL);
309 	hpet_set_rtc_irq_bit(mask);
310 
311 	cmos_checkintr(cmos, rtc_control);
312 }
313 
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 	unsigned char	rtc_control;
317 
318 	rtc_control = CMOS_READ(RTC_CONTROL);
319 	rtc_control &= ~mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_mask_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329 	unsigned char mon, mday, hrs, min, sec, rtc_control;
330 
331 	if (!is_valid_irq(cmos->irq))
332 		return -EIO;
333 
334 	mon = t->time.tm_mon + 1;
335 	mday = t->time.tm_mday;
336 	hrs = t->time.tm_hour;
337 	min = t->time.tm_min;
338 	sec = t->time.tm_sec;
339 
340 	rtc_control = CMOS_READ(RTC_CONTROL);
341 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 		/* Writing 0xff means "don't care" or "match all".  */
343 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 		min = (min < 60) ? bin2bcd(min) : 0xff;
347 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 	}
349 
350 	spin_lock_irq(&rtc_lock);
351 
352 	/* next rtc irq must not be from previous alarm setting */
353 	cmos_irq_disable(cmos, RTC_AIE);
354 
355 	/* update alarm */
356 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360 	/* the system may support an "enhanced" alarm */
361 	if (cmos->day_alrm) {
362 		CMOS_WRITE(mday, cmos->day_alrm);
363 		if (cmos->mon_alrm)
364 			CMOS_WRITE(mon, cmos->mon_alrm);
365 	}
366 
367 	/* FIXME the HPET alarm glue currently ignores day_alrm
368 	 * and mon_alrm ...
369 	 */
370 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372 	if (t->enabled)
373 		cmos_irq_enable(cmos, RTC_AIE);
374 
375 	spin_unlock_irq(&rtc_lock);
376 
377 	return 0;
378 }
379 
380 /*
381  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382  */
383 static bool alarm_disable_quirk;
384 
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387 	alarm_disable_quirk = true;
388 	pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 	pr_info("RTC alarms disabled\n");
390 	return 0;
391 }
392 
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 	{
396 		.callback = set_alarm_disable_quirk,
397 		.ident    = "IBM Truman",
398 		.matches  = {
399 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 		},
402 	},
403 	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 	{
405 		.callback = set_alarm_disable_quirk,
406 		.ident    = "Gigabyte GA-990XA-UD3",
407 		.matches  = {
408 			DMI_MATCH(DMI_SYS_VENDOR,
409 					"Gigabyte Technology Co., Ltd."),
410 			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 		},
412 	},
413 	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 	{
415 		.callback = set_alarm_disable_quirk,
416 		.ident    = "Toshiba Satellite L300",
417 		.matches  = {
418 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 		},
421 	},
422 	{}
423 };
424 
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
428 	unsigned long	flags;
429 
430 	if (!is_valid_irq(cmos->irq))
431 		return -EINVAL;
432 
433 	if (alarm_disable_quirk)
434 		return 0;
435 
436 	spin_lock_irqsave(&rtc_lock, flags);
437 
438 	if (enabled)
439 		cmos_irq_enable(cmos, RTC_AIE);
440 	else
441 		cmos_irq_disable(cmos, RTC_AIE);
442 
443 	spin_unlock_irqrestore(&rtc_lock, flags);
444 	return 0;
445 }
446 
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448 
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
452 	unsigned char	rtc_control, valid;
453 
454 	spin_lock_irq(&rtc_lock);
455 	rtc_control = CMOS_READ(RTC_CONTROL);
456 	valid = CMOS_READ(RTC_VALID);
457 	spin_unlock_irq(&rtc_lock);
458 
459 	/* NOTE:  at least ICH6 reports battery status using a different
460 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 	 */
462 	seq_printf(seq,
463 		   "periodic_IRQ\t: %s\n"
464 		   "update_IRQ\t: %s\n"
465 		   "HPET_emulated\t: %s\n"
466 		   // "square_wave\t: %s\n"
467 		   "BCD\t\t: %s\n"
468 		   "DST_enable\t: %s\n"
469 		   "periodic_freq\t: %d\n"
470 		   "batt_status\t: %s\n",
471 		   (rtc_control & RTC_PIE) ? "yes" : "no",
472 		   (rtc_control & RTC_UIE) ? "yes" : "no",
473 		   is_hpet_enabled() ? "yes" : "no",
474 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 		   cmos->rtc->irq_freq,
478 		   (valid & RTC_VRT) ? "okay" : "dead");
479 
480 	return 0;
481 }
482 
483 #else
484 #define	cmos_procfs	NULL
485 #endif
486 
487 static const struct rtc_class_ops cmos_rtc_ops = {
488 	.read_time		= cmos_read_time,
489 	.set_time		= cmos_set_time,
490 	.read_alarm		= cmos_read_alarm,
491 	.set_alarm		= cmos_set_alarm,
492 	.proc			= cmos_procfs,
493 	.alarm_irq_enable	= cmos_alarm_irq_enable,
494 };
495 
496 /*----------------------------------------------------------------*/
497 
498 /*
499  * All these chips have at least 64 bytes of address space, shared by
500  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
501  * by boot firmware.  Modern chips have 128 or 256 bytes.
502  */
503 
504 #define NVRAM_OFFSET	(RTC_REG_D + 1)
505 
506 static ssize_t
507 cmos_nvram_read(struct file *filp, struct kobject *kobj,
508 		struct bin_attribute *attr,
509 		char *buf, loff_t off, size_t count)
510 {
511 	int	retval;
512 
513 	if (unlikely(off >= attr->size))
514 		return 0;
515 	if (unlikely(off < 0))
516 		return -EINVAL;
517 	if ((off + count) > attr->size)
518 		count = attr->size - off;
519 
520 	off += NVRAM_OFFSET;
521 	spin_lock_irq(&rtc_lock);
522 	for (retval = 0; count; count--, off++, retval++) {
523 		if (off < 128)
524 			*buf++ = CMOS_READ(off);
525 		else if (can_bank2)
526 			*buf++ = cmos_read_bank2(off);
527 		else
528 			break;
529 	}
530 	spin_unlock_irq(&rtc_lock);
531 
532 	return retval;
533 }
534 
535 static ssize_t
536 cmos_nvram_write(struct file *filp, struct kobject *kobj,
537 		struct bin_attribute *attr,
538 		char *buf, loff_t off, size_t count)
539 {
540 	struct cmos_rtc	*cmos;
541 	int		retval;
542 
543 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
544 	if (unlikely(off >= attr->size))
545 		return -EFBIG;
546 	if (unlikely(off < 0))
547 		return -EINVAL;
548 	if ((off + count) > attr->size)
549 		count = attr->size - off;
550 
551 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
552 	 * checksum on part of the NVRAM data.  That's currently ignored
553 	 * here.  If userspace is smart enough to know what fields of
554 	 * NVRAM to update, updating checksums is also part of its job.
555 	 */
556 	off += NVRAM_OFFSET;
557 	spin_lock_irq(&rtc_lock);
558 	for (retval = 0; count; count--, off++, retval++) {
559 		/* don't trash RTC registers */
560 		if (off == cmos->day_alrm
561 				|| off == cmos->mon_alrm
562 				|| off == cmos->century)
563 			buf++;
564 		else if (off < 128)
565 			CMOS_WRITE(*buf++, off);
566 		else if (can_bank2)
567 			cmos_write_bank2(*buf++, off);
568 		else
569 			break;
570 	}
571 	spin_unlock_irq(&rtc_lock);
572 
573 	return retval;
574 }
575 
576 static struct bin_attribute nvram = {
577 	.attr = {
578 		.name	= "nvram",
579 		.mode	= S_IRUGO | S_IWUSR,
580 	},
581 
582 	.read	= cmos_nvram_read,
583 	.write	= cmos_nvram_write,
584 	/* size gets set up later */
585 };
586 
587 /*----------------------------------------------------------------*/
588 
589 static struct cmos_rtc	cmos_rtc;
590 
591 static irqreturn_t cmos_interrupt(int irq, void *p)
592 {
593 	u8		irqstat;
594 	u8		rtc_control;
595 
596 	spin_lock(&rtc_lock);
597 
598 	/* When the HPET interrupt handler calls us, the interrupt
599 	 * status is passed as arg1 instead of the irq number.  But
600 	 * always clear irq status, even when HPET is in the way.
601 	 *
602 	 * Note that HPET and RTC are almost certainly out of phase,
603 	 * giving different IRQ status ...
604 	 */
605 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
606 	rtc_control = CMOS_READ(RTC_CONTROL);
607 	if (is_hpet_enabled())
608 		irqstat = (unsigned long)irq & 0xF0;
609 
610 	/* If we were suspended, RTC_CONTROL may not be accurate since the
611 	 * bios may have cleared it.
612 	 */
613 	if (!cmos_rtc.suspend_ctrl)
614 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
615 	else
616 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
617 
618 	/* All Linux RTC alarms should be treated as if they were oneshot.
619 	 * Similar code may be needed in system wakeup paths, in case the
620 	 * alarm woke the system.
621 	 */
622 	if (irqstat & RTC_AIE) {
623 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
624 		rtc_control &= ~RTC_AIE;
625 		CMOS_WRITE(rtc_control, RTC_CONTROL);
626 		hpet_mask_rtc_irq_bit(RTC_AIE);
627 		CMOS_READ(RTC_INTR_FLAGS);
628 	}
629 	spin_unlock(&rtc_lock);
630 
631 	if (is_intr(irqstat)) {
632 		rtc_update_irq(p, 1, irqstat);
633 		return IRQ_HANDLED;
634 	} else
635 		return IRQ_NONE;
636 }
637 
638 #ifdef	CONFIG_PNP
639 #define	INITSECTION
640 
641 #else
642 #define	INITSECTION	__init
643 #endif
644 
645 static int INITSECTION
646 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
647 {
648 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
649 	int				retval = 0;
650 	unsigned char			rtc_control;
651 	unsigned			address_space;
652 	u32				flags = 0;
653 
654 	/* there can be only one ... */
655 	if (cmos_rtc.dev)
656 		return -EBUSY;
657 
658 	if (!ports)
659 		return -ENODEV;
660 
661 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
662 	 *
663 	 * REVISIT non-x86 systems may instead use memory space resources
664 	 * (needing ioremap etc), not i/o space resources like this ...
665 	 */
666 	if (RTC_IOMAPPED)
667 		ports = request_region(ports->start, resource_size(ports),
668 				       driver_name);
669 	else
670 		ports = request_mem_region(ports->start, resource_size(ports),
671 					   driver_name);
672 	if (!ports) {
673 		dev_dbg(dev, "i/o registers already in use\n");
674 		return -EBUSY;
675 	}
676 
677 	cmos_rtc.irq = rtc_irq;
678 	cmos_rtc.iomem = ports;
679 
680 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
681 	 * driver did, but don't reject unknown configs.   Old hardware
682 	 * won't address 128 bytes.  Newer chips have multiple banks,
683 	 * though they may not be listed in one I/O resource.
684 	 */
685 #if	defined(CONFIG_ATARI)
686 	address_space = 64;
687 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
688 			|| defined(__sparc__) || defined(__mips__) \
689 			|| defined(__powerpc__)
690 	address_space = 128;
691 #else
692 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
693 	address_space = 128;
694 #endif
695 	if (can_bank2 && ports->end > (ports->start + 1))
696 		address_space = 256;
697 
698 	/* For ACPI systems extension info comes from the FADT.  On others,
699 	 * board specific setup provides it as appropriate.  Systems where
700 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
701 	 * some almost-clones) can provide hooks to make that behave.
702 	 *
703 	 * Note that ACPI doesn't preclude putting these registers into
704 	 * "extended" areas of the chip, including some that we won't yet
705 	 * expect CMOS_READ and friends to handle.
706 	 */
707 	if (info) {
708 		if (info->flags)
709 			flags = info->flags;
710 		if (info->address_space)
711 			address_space = info->address_space;
712 
713 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
714 			cmos_rtc.day_alrm = info->rtc_day_alarm;
715 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
716 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
717 		if (info->rtc_century && info->rtc_century < 128)
718 			cmos_rtc.century = info->rtc_century;
719 
720 		if (info->wake_on && info->wake_off) {
721 			cmos_rtc.wake_on = info->wake_on;
722 			cmos_rtc.wake_off = info->wake_off;
723 		}
724 	}
725 
726 	cmos_rtc.dev = dev;
727 	dev_set_drvdata(dev, &cmos_rtc);
728 
729 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
730 				&cmos_rtc_ops, THIS_MODULE);
731 	if (IS_ERR(cmos_rtc.rtc)) {
732 		retval = PTR_ERR(cmos_rtc.rtc);
733 		goto cleanup0;
734 	}
735 
736 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
737 
738 	spin_lock_irq(&rtc_lock);
739 
740 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
741 		/* force periodic irq to CMOS reset default of 1024Hz;
742 		 *
743 		 * REVISIT it's been reported that at least one x86_64 ALI
744 		 * mobo doesn't use 32KHz here ... for portability we might
745 		 * need to do something about other clock frequencies.
746 		 */
747 		cmos_rtc.rtc->irq_freq = 1024;
748 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
749 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
750 	}
751 
752 	/* disable irqs */
753 	if (is_valid_irq(rtc_irq))
754 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
755 
756 	rtc_control = CMOS_READ(RTC_CONTROL);
757 
758 	spin_unlock_irq(&rtc_lock);
759 
760 	/* FIXME:
761 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
762 	 */
763 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
764 		dev_warn(dev, "only 24-hr supported\n");
765 		retval = -ENXIO;
766 		goto cleanup1;
767 	}
768 
769 	if (is_valid_irq(rtc_irq)) {
770 		irq_handler_t rtc_cmos_int_handler;
771 
772 		if (is_hpet_enabled()) {
773 			rtc_cmos_int_handler = hpet_rtc_interrupt;
774 			retval = hpet_register_irq_handler(cmos_interrupt);
775 			if (retval) {
776 				dev_warn(dev, "hpet_register_irq_handler "
777 						" failed in rtc_init().");
778 				goto cleanup1;
779 			}
780 		} else
781 			rtc_cmos_int_handler = cmos_interrupt;
782 
783 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
784 				0, dev_name(&cmos_rtc.rtc->dev),
785 				cmos_rtc.rtc);
786 		if (retval < 0) {
787 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
788 			goto cleanup1;
789 		}
790 	}
791 	hpet_rtc_timer_init();
792 
793 	/* export at least the first block of NVRAM */
794 	nvram.size = address_space - NVRAM_OFFSET;
795 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
796 	if (retval < 0) {
797 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
798 		goto cleanup2;
799 	}
800 
801 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
802 		!is_valid_irq(rtc_irq) ? "no alarms" :
803 			cmos_rtc.mon_alrm ? "alarms up to one year" :
804 			cmos_rtc.day_alrm ? "alarms up to one month" :
805 			"alarms up to one day",
806 		cmos_rtc.century ? ", y3k" : "",
807 		nvram.size,
808 		is_hpet_enabled() ? ", hpet irqs" : "");
809 
810 	return 0;
811 
812 cleanup2:
813 	if (is_valid_irq(rtc_irq))
814 		free_irq(rtc_irq, cmos_rtc.rtc);
815 cleanup1:
816 	cmos_rtc.dev = NULL;
817 	rtc_device_unregister(cmos_rtc.rtc);
818 cleanup0:
819 	if (RTC_IOMAPPED)
820 		release_region(ports->start, resource_size(ports));
821 	else
822 		release_mem_region(ports->start, resource_size(ports));
823 	return retval;
824 }
825 
826 static void cmos_do_shutdown(int rtc_irq)
827 {
828 	spin_lock_irq(&rtc_lock);
829 	if (is_valid_irq(rtc_irq))
830 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
831 	spin_unlock_irq(&rtc_lock);
832 }
833 
834 static void __exit cmos_do_remove(struct device *dev)
835 {
836 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
837 	struct resource *ports;
838 
839 	cmos_do_shutdown(cmos->irq);
840 
841 	sysfs_remove_bin_file(&dev->kobj, &nvram);
842 
843 	if (is_valid_irq(cmos->irq)) {
844 		free_irq(cmos->irq, cmos->rtc);
845 		hpet_unregister_irq_handler(cmos_interrupt);
846 	}
847 
848 	rtc_device_unregister(cmos->rtc);
849 	cmos->rtc = NULL;
850 
851 	ports = cmos->iomem;
852 	if (RTC_IOMAPPED)
853 		release_region(ports->start, resource_size(ports));
854 	else
855 		release_mem_region(ports->start, resource_size(ports));
856 	cmos->iomem = NULL;
857 
858 	cmos->dev = NULL;
859 }
860 
861 #ifdef CONFIG_PM
862 
863 static int cmos_suspend(struct device *dev)
864 {
865 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
866 	unsigned char	tmp;
867 
868 	/* only the alarm might be a wakeup event source */
869 	spin_lock_irq(&rtc_lock);
870 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
871 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
872 		unsigned char	mask;
873 
874 		if (device_may_wakeup(dev))
875 			mask = RTC_IRQMASK & ~RTC_AIE;
876 		else
877 			mask = RTC_IRQMASK;
878 		tmp &= ~mask;
879 		CMOS_WRITE(tmp, RTC_CONTROL);
880 		hpet_mask_rtc_irq_bit(mask);
881 
882 		cmos_checkintr(cmos, tmp);
883 	}
884 	spin_unlock_irq(&rtc_lock);
885 
886 	if (tmp & RTC_AIE) {
887 		cmos->enabled_wake = 1;
888 		if (cmos->wake_on)
889 			cmos->wake_on(dev);
890 		else
891 			enable_irq_wake(cmos->irq);
892 	}
893 
894 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
895 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
896 			tmp);
897 
898 	return 0;
899 }
900 
901 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
902  * after a detour through G3 "mechanical off", although the ACPI spec
903  * says wakeup should only work from G1/S4 "hibernate".  To most users,
904  * distinctions between S4 and S5 are pointless.  So when the hardware
905  * allows, don't draw that distinction.
906  */
907 static inline int cmos_poweroff(struct device *dev)
908 {
909 	return cmos_suspend(dev);
910 }
911 
912 #ifdef	CONFIG_PM_SLEEP
913 
914 static int cmos_resume(struct device *dev)
915 {
916 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
917 	unsigned char tmp;
918 
919 	if (cmos->enabled_wake) {
920 		if (cmos->wake_off)
921 			cmos->wake_off(dev);
922 		else
923 			disable_irq_wake(cmos->irq);
924 		cmos->enabled_wake = 0;
925 	}
926 
927 	spin_lock_irq(&rtc_lock);
928 	tmp = cmos->suspend_ctrl;
929 	cmos->suspend_ctrl = 0;
930 	/* re-enable any irqs previously active */
931 	if (tmp & RTC_IRQMASK) {
932 		unsigned char	mask;
933 
934 		if (device_may_wakeup(dev))
935 			hpet_rtc_timer_init();
936 
937 		do {
938 			CMOS_WRITE(tmp, RTC_CONTROL);
939 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
940 
941 			mask = CMOS_READ(RTC_INTR_FLAGS);
942 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
943 			if (!is_hpet_enabled() || !is_intr(mask))
944 				break;
945 
946 			/* force one-shot behavior if HPET blocked
947 			 * the wake alarm's irq
948 			 */
949 			rtc_update_irq(cmos->rtc, 1, mask);
950 			tmp &= ~RTC_AIE;
951 			hpet_mask_rtc_irq_bit(RTC_AIE);
952 		} while (mask & RTC_AIE);
953 	}
954 	spin_unlock_irq(&rtc_lock);
955 
956 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
957 
958 	return 0;
959 }
960 
961 #endif
962 #else
963 
964 static inline int cmos_poweroff(struct device *dev)
965 {
966 	return -ENOSYS;
967 }
968 
969 #endif
970 
971 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
972 
973 /*----------------------------------------------------------------*/
974 
975 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
976  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
977  * probably list them in similar PNPBIOS tables; so PNP is more common.
978  *
979  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
980  * predate even PNPBIOS should set up platform_bus devices.
981  */
982 
983 #ifdef	CONFIG_ACPI
984 
985 #include <linux/acpi.h>
986 
987 static u32 rtc_handler(void *context)
988 {
989 	struct device *dev = context;
990 
991 	pm_wakeup_event(dev, 0);
992 	acpi_clear_event(ACPI_EVENT_RTC);
993 	acpi_disable_event(ACPI_EVENT_RTC, 0);
994 	return ACPI_INTERRUPT_HANDLED;
995 }
996 
997 static inline void rtc_wake_setup(struct device *dev)
998 {
999 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1000 	/*
1001 	 * After the RTC handler is installed, the Fixed_RTC event should
1002 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1003 	 */
1004 	acpi_clear_event(ACPI_EVENT_RTC);
1005 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1006 }
1007 
1008 static void rtc_wake_on(struct device *dev)
1009 {
1010 	acpi_clear_event(ACPI_EVENT_RTC);
1011 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1012 }
1013 
1014 static void rtc_wake_off(struct device *dev)
1015 {
1016 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1017 }
1018 
1019 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1020  * its device node and pass extra config data.  This helps its driver use
1021  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1022  * that this board's RTC is wakeup-capable (per ACPI spec).
1023  */
1024 static struct cmos_rtc_board_info acpi_rtc_info;
1025 
1026 static void cmos_wake_setup(struct device *dev)
1027 {
1028 	if (acpi_disabled)
1029 		return;
1030 
1031 	rtc_wake_setup(dev);
1032 	acpi_rtc_info.wake_on = rtc_wake_on;
1033 	acpi_rtc_info.wake_off = rtc_wake_off;
1034 
1035 	/* workaround bug in some ACPI tables */
1036 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1037 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1038 			acpi_gbl_FADT.month_alarm);
1039 		acpi_gbl_FADT.month_alarm = 0;
1040 	}
1041 
1042 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1043 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1044 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1045 
1046 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1047 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1048 		dev_info(dev, "RTC can wake from S4\n");
1049 
1050 	dev->platform_data = &acpi_rtc_info;
1051 
1052 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1053 	device_init_wakeup(dev, 1);
1054 }
1055 
1056 #else
1057 
1058 static void cmos_wake_setup(struct device *dev)
1059 {
1060 }
1061 
1062 #endif
1063 
1064 #ifdef	CONFIG_PNP
1065 
1066 #include <linux/pnp.h>
1067 
1068 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1069 {
1070 	cmos_wake_setup(&pnp->dev);
1071 
1072 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1073 		/* Some machines contain a PNP entry for the RTC, but
1074 		 * don't define the IRQ. It should always be safe to
1075 		 * hardcode it in these cases
1076 		 */
1077 		return cmos_do_probe(&pnp->dev,
1078 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1079 	else
1080 		return cmos_do_probe(&pnp->dev,
1081 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1082 				pnp_irq(pnp, 0));
1083 }
1084 
1085 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1086 {
1087 	cmos_do_remove(&pnp->dev);
1088 }
1089 
1090 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1091 {
1092 	struct device *dev = &pnp->dev;
1093 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1094 
1095 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1096 		return;
1097 
1098 	cmos_do_shutdown(cmos->irq);
1099 }
1100 
1101 static const struct pnp_device_id rtc_ids[] = {
1102 	{ .id = "PNP0b00", },
1103 	{ .id = "PNP0b01", },
1104 	{ .id = "PNP0b02", },
1105 	{ },
1106 };
1107 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1108 
1109 static struct pnp_driver cmos_pnp_driver = {
1110 	.name		= (char *) driver_name,
1111 	.id_table	= rtc_ids,
1112 	.probe		= cmos_pnp_probe,
1113 	.remove		= __exit_p(cmos_pnp_remove),
1114 	.shutdown	= cmos_pnp_shutdown,
1115 
1116 	/* flag ensures resume() gets called, and stops syslog spam */
1117 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1118 	.driver		= {
1119 			.pm = &cmos_pm_ops,
1120 	},
1121 };
1122 
1123 #endif	/* CONFIG_PNP */
1124 
1125 #ifdef CONFIG_OF
1126 static const struct of_device_id of_cmos_match[] = {
1127 	{
1128 		.compatible = "motorola,mc146818",
1129 	},
1130 	{ },
1131 };
1132 MODULE_DEVICE_TABLE(of, of_cmos_match);
1133 
1134 static __init void cmos_of_init(struct platform_device *pdev)
1135 {
1136 	struct device_node *node = pdev->dev.of_node;
1137 	struct rtc_time time;
1138 	int ret;
1139 	const __be32 *val;
1140 
1141 	if (!node)
1142 		return;
1143 
1144 	val = of_get_property(node, "ctrl-reg", NULL);
1145 	if (val)
1146 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1147 
1148 	val = of_get_property(node, "freq-reg", NULL);
1149 	if (val)
1150 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1151 
1152 	get_rtc_time(&time);
1153 	ret = rtc_valid_tm(&time);
1154 	if (ret) {
1155 		struct rtc_time def_time = {
1156 			.tm_year = 1,
1157 			.tm_mday = 1,
1158 		};
1159 		set_rtc_time(&def_time);
1160 	}
1161 }
1162 #else
1163 static inline void cmos_of_init(struct platform_device *pdev) {}
1164 #endif
1165 /*----------------------------------------------------------------*/
1166 
1167 /* Platform setup should have set up an RTC device, when PNP is
1168  * unavailable ... this could happen even on (older) PCs.
1169  */
1170 
1171 static int __init cmos_platform_probe(struct platform_device *pdev)
1172 {
1173 	struct resource *resource;
1174 	int irq;
1175 
1176 	cmos_of_init(pdev);
1177 	cmos_wake_setup(&pdev->dev);
1178 
1179 	if (RTC_IOMAPPED)
1180 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1181 	else
1182 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1183 	irq = platform_get_irq(pdev, 0);
1184 	if (irq < 0)
1185 		irq = -1;
1186 
1187 	return cmos_do_probe(&pdev->dev, resource, irq);
1188 }
1189 
1190 static int __exit cmos_platform_remove(struct platform_device *pdev)
1191 {
1192 	cmos_do_remove(&pdev->dev);
1193 	return 0;
1194 }
1195 
1196 static void cmos_platform_shutdown(struct platform_device *pdev)
1197 {
1198 	struct device *dev = &pdev->dev;
1199 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1200 
1201 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1202 		return;
1203 
1204 	cmos_do_shutdown(cmos->irq);
1205 }
1206 
1207 /* work with hotplug and coldplug */
1208 MODULE_ALIAS("platform:rtc_cmos");
1209 
1210 static struct platform_driver cmos_platform_driver = {
1211 	.remove		= __exit_p(cmos_platform_remove),
1212 	.shutdown	= cmos_platform_shutdown,
1213 	.driver = {
1214 		.name		= driver_name,
1215 #ifdef CONFIG_PM
1216 		.pm		= &cmos_pm_ops,
1217 #endif
1218 		.of_match_table = of_match_ptr(of_cmos_match),
1219 	}
1220 };
1221 
1222 #ifdef CONFIG_PNP
1223 static bool pnp_driver_registered;
1224 #endif
1225 static bool platform_driver_registered;
1226 
1227 static int __init cmos_init(void)
1228 {
1229 	int retval = 0;
1230 
1231 #ifdef	CONFIG_PNP
1232 	retval = pnp_register_driver(&cmos_pnp_driver);
1233 	if (retval == 0)
1234 		pnp_driver_registered = true;
1235 #endif
1236 
1237 	if (!cmos_rtc.dev) {
1238 		retval = platform_driver_probe(&cmos_platform_driver,
1239 					       cmos_platform_probe);
1240 		if (retval == 0)
1241 			platform_driver_registered = true;
1242 	}
1243 
1244 	dmi_check_system(rtc_quirks);
1245 
1246 	if (retval == 0)
1247 		return 0;
1248 
1249 #ifdef	CONFIG_PNP
1250 	if (pnp_driver_registered)
1251 		pnp_unregister_driver(&cmos_pnp_driver);
1252 #endif
1253 	return retval;
1254 }
1255 module_init(cmos_init);
1256 
1257 static void __exit cmos_exit(void)
1258 {
1259 #ifdef	CONFIG_PNP
1260 	if (pnp_driver_registered)
1261 		pnp_unregister_driver(&cmos_pnp_driver);
1262 #endif
1263 	if (platform_driver_registered)
1264 		platform_driver_unregister(&cmos_platform_driver);
1265 }
1266 module_exit(cmos_exit);
1267 
1268 
1269 MODULE_AUTHOR("David Brownell");
1270 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1271 MODULE_LICENSE("GPL");
1272