xref: /linux/drivers/rtc/rtc-cmos.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49 
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52 
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61 
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64 
65 static inline int cmos_use_acpi_alarm(void)
66 {
67 	return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70 
71 static inline int cmos_use_acpi_alarm(void)
72 {
73 	return 0;
74 }
75 #endif
76 
77 struct cmos_rtc {
78 	struct rtc_device	*rtc;
79 	struct device		*dev;
80 	int			irq;
81 	struct resource		*iomem;
82 	time64_t		alarm_expires;
83 
84 	void			(*wake_on)(struct device *);
85 	void			(*wake_off)(struct device *);
86 
87 	u8			enabled_wake;
88 	u8			suspend_ctrl;
89 
90 	/* newer hardware extends the original register set */
91 	u8			day_alrm;
92 	u8			mon_alrm;
93 	u8			century;
94 
95 	struct rtc_wkalrm	saved_wkalrm;
96 };
97 
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)		((n) > 0)
100 
101 static const char driver_name[] = "rtc_cmos";
102 
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
108 
109 static inline int is_intr(u8 rtc_intr)
110 {
111 	if (!(rtc_intr & RTC_IRQF))
112 		return 0;
113 	return rtc_intr & RTC_IRQMASK;
114 }
115 
116 /*----------------------------------------------------------------*/
117 
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131 
132 static inline int is_hpet_enabled(void)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139 	return 0;
140 }
141 
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144 	return 0;
145 }
146 
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150 	return 0;
151 }
152 
153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155 	return 0;
156 }
157 
158 static inline int hpet_rtc_dropped_irq(void)
159 {
160 	return 0;
161 }
162 
163 static inline int hpet_rtc_timer_init(void)
164 {
165 	return 0;
166 }
167 
168 extern irq_handler_t hpet_rtc_interrupt;
169 
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172 	return 0;
173 }
174 
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177 	return 0;
178 }
179 
180 #endif
181 
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
184 {
185 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 #ifdef RTC_PORT
191 
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2	true
197 
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200 	outb(addr, RTC_PORT(2));
201 	return inb(RTC_PORT(3));
202 }
203 
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206 	outb(addr, RTC_PORT(2));
207 	outb(val, RTC_PORT(3));
208 }
209 
210 #else
211 
212 #define can_bank2	false
213 
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216 	return 0;
217 }
218 
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222 
223 #endif
224 
225 /*----------------------------------------------------------------*/
226 
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229 	/*
230 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
231 	 * which tells the caller that this RTC value is unusable.
232 	 */
233 	if (!pm_trace_rtc_valid())
234 		return -EIO;
235 
236 	/* REVISIT:  if the clock has a "century" register, use
237 	 * that instead of the heuristic in mc146818_get_time().
238 	 * That'll make Y3K compatility (year > 2070) easy!
239 	 */
240 	mc146818_get_time(t);
241 	return 0;
242 }
243 
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246 	/* REVISIT:  set the "century" register if available
247 	 *
248 	 * NOTE: this ignores the issue whereby updating the seconds
249 	 * takes effect exactly 500ms after we write the register.
250 	 * (Also queueing and other delays before we get this far.)
251 	 */
252 	return mc146818_set_time(t);
253 }
254 
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
258 	unsigned char	rtc_control;
259 
260 	if (!is_valid_irq(cmos->irq))
261 		return -EIO;
262 
263 	/* Basic alarms only support hour, minute, and seconds fields.
264 	 * Some also support day and month, for alarms up to a year in
265 	 * the future.
266 	 */
267 
268 	spin_lock_irq(&rtc_lock);
269 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
270 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
271 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
272 
273 	if (cmos->day_alrm) {
274 		/* ignore upper bits on readback per ACPI spec */
275 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
276 		if (!t->time.tm_mday)
277 			t->time.tm_mday = -1;
278 
279 		if (cmos->mon_alrm) {
280 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
281 			if (!t->time.tm_mon)
282 				t->time.tm_mon = -1;
283 		}
284 	}
285 
286 	rtc_control = CMOS_READ(RTC_CONTROL);
287 	spin_unlock_irq(&rtc_lock);
288 
289 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
290 		if (((unsigned)t->time.tm_sec) < 0x60)
291 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
292 		else
293 			t->time.tm_sec = -1;
294 		if (((unsigned)t->time.tm_min) < 0x60)
295 			t->time.tm_min = bcd2bin(t->time.tm_min);
296 		else
297 			t->time.tm_min = -1;
298 		if (((unsigned)t->time.tm_hour) < 0x24)
299 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
300 		else
301 			t->time.tm_hour = -1;
302 
303 		if (cmos->day_alrm) {
304 			if (((unsigned)t->time.tm_mday) <= 0x31)
305 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
306 			else
307 				t->time.tm_mday = -1;
308 
309 			if (cmos->mon_alrm) {
310 				if (((unsigned)t->time.tm_mon) <= 0x12)
311 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
312 				else
313 					t->time.tm_mon = -1;
314 			}
315 		}
316 	}
317 
318 	t->enabled = !!(rtc_control & RTC_AIE);
319 	t->pending = 0;
320 
321 	return 0;
322 }
323 
324 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
325 {
326 	unsigned char	rtc_intr;
327 
328 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
329 	 * allegedly some older rtcs need that to handle irqs properly
330 	 */
331 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
332 
333 	if (use_hpet_alarm())
334 		return;
335 
336 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
337 	if (is_intr(rtc_intr))
338 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
339 }
340 
341 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
342 {
343 	unsigned char	rtc_control;
344 
345 	/* flush any pending IRQ status, notably for update irqs,
346 	 * before we enable new IRQs
347 	 */
348 	rtc_control = CMOS_READ(RTC_CONTROL);
349 	cmos_checkintr(cmos, rtc_control);
350 
351 	rtc_control |= mask;
352 	CMOS_WRITE(rtc_control, RTC_CONTROL);
353 	if (use_hpet_alarm())
354 		hpet_set_rtc_irq_bit(mask);
355 
356 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
357 		if (cmos->wake_on)
358 			cmos->wake_on(cmos->dev);
359 	}
360 
361 	cmos_checkintr(cmos, rtc_control);
362 }
363 
364 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
365 {
366 	unsigned char	rtc_control;
367 
368 	rtc_control = CMOS_READ(RTC_CONTROL);
369 	rtc_control &= ~mask;
370 	CMOS_WRITE(rtc_control, RTC_CONTROL);
371 	if (use_hpet_alarm())
372 		hpet_mask_rtc_irq_bit(mask);
373 
374 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
375 		if (cmos->wake_off)
376 			cmos->wake_off(cmos->dev);
377 	}
378 
379 	cmos_checkintr(cmos, rtc_control);
380 }
381 
382 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
383 {
384 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
385 	struct rtc_time now;
386 
387 	cmos_read_time(dev, &now);
388 
389 	if (!cmos->day_alrm) {
390 		time64_t t_max_date;
391 		time64_t t_alrm;
392 
393 		t_max_date = rtc_tm_to_time64(&now);
394 		t_max_date += 24 * 60 * 60 - 1;
395 		t_alrm = rtc_tm_to_time64(&t->time);
396 		if (t_alrm > t_max_date) {
397 			dev_err(dev,
398 				"Alarms can be up to one day in the future\n");
399 			return -EINVAL;
400 		}
401 	} else if (!cmos->mon_alrm) {
402 		struct rtc_time max_date = now;
403 		time64_t t_max_date;
404 		time64_t t_alrm;
405 		int max_mday;
406 
407 		if (max_date.tm_mon == 11) {
408 			max_date.tm_mon = 0;
409 			max_date.tm_year += 1;
410 		} else {
411 			max_date.tm_mon += 1;
412 		}
413 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
414 		if (max_date.tm_mday > max_mday)
415 			max_date.tm_mday = max_mday;
416 
417 		t_max_date = rtc_tm_to_time64(&max_date);
418 		t_max_date -= 1;
419 		t_alrm = rtc_tm_to_time64(&t->time);
420 		if (t_alrm > t_max_date) {
421 			dev_err(dev,
422 				"Alarms can be up to one month in the future\n");
423 			return -EINVAL;
424 		}
425 	} else {
426 		struct rtc_time max_date = now;
427 		time64_t t_max_date;
428 		time64_t t_alrm;
429 		int max_mday;
430 
431 		max_date.tm_year += 1;
432 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433 		if (max_date.tm_mday > max_mday)
434 			max_date.tm_mday = max_mday;
435 
436 		t_max_date = rtc_tm_to_time64(&max_date);
437 		t_max_date -= 1;
438 		t_alrm = rtc_tm_to_time64(&t->time);
439 		if (t_alrm > t_max_date) {
440 			dev_err(dev,
441 				"Alarms can be up to one year in the future\n");
442 			return -EINVAL;
443 		}
444 	}
445 
446 	return 0;
447 }
448 
449 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
450 {
451 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
452 	unsigned char mon, mday, hrs, min, sec, rtc_control;
453 	int ret;
454 
455 	if (!is_valid_irq(cmos->irq))
456 		return -EIO;
457 
458 	ret = cmos_validate_alarm(dev, t);
459 	if (ret < 0)
460 		return ret;
461 
462 	mon = t->time.tm_mon + 1;
463 	mday = t->time.tm_mday;
464 	hrs = t->time.tm_hour;
465 	min = t->time.tm_min;
466 	sec = t->time.tm_sec;
467 
468 	rtc_control = CMOS_READ(RTC_CONTROL);
469 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
470 		/* Writing 0xff means "don't care" or "match all".  */
471 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
472 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
473 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
474 		min = (min < 60) ? bin2bcd(min) : 0xff;
475 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
476 	}
477 
478 	spin_lock_irq(&rtc_lock);
479 
480 	/* next rtc irq must not be from previous alarm setting */
481 	cmos_irq_disable(cmos, RTC_AIE);
482 
483 	/* update alarm */
484 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
485 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
486 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
487 
488 	/* the system may support an "enhanced" alarm */
489 	if (cmos->day_alrm) {
490 		CMOS_WRITE(mday, cmos->day_alrm);
491 		if (cmos->mon_alrm)
492 			CMOS_WRITE(mon, cmos->mon_alrm);
493 	}
494 
495 	if (use_hpet_alarm()) {
496 		/*
497 		 * FIXME the HPET alarm glue currently ignores day_alrm
498 		 * and mon_alrm ...
499 		 */
500 		hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
501 				    t->time.tm_sec);
502 	}
503 
504 	if (t->enabled)
505 		cmos_irq_enable(cmos, RTC_AIE);
506 
507 	spin_unlock_irq(&rtc_lock);
508 
509 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
510 
511 	return 0;
512 }
513 
514 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
515 {
516 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
517 	unsigned long	flags;
518 
519 	if (!is_valid_irq(cmos->irq))
520 		return -EINVAL;
521 
522 	spin_lock_irqsave(&rtc_lock, flags);
523 
524 	if (enabled)
525 		cmos_irq_enable(cmos, RTC_AIE);
526 	else
527 		cmos_irq_disable(cmos, RTC_AIE);
528 
529 	spin_unlock_irqrestore(&rtc_lock, flags);
530 	return 0;
531 }
532 
533 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
534 
535 static int cmos_procfs(struct device *dev, struct seq_file *seq)
536 {
537 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
538 	unsigned char	rtc_control, valid;
539 
540 	spin_lock_irq(&rtc_lock);
541 	rtc_control = CMOS_READ(RTC_CONTROL);
542 	valid = CMOS_READ(RTC_VALID);
543 	spin_unlock_irq(&rtc_lock);
544 
545 	/* NOTE:  at least ICH6 reports battery status using a different
546 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
547 	 */
548 	seq_printf(seq,
549 		   "periodic_IRQ\t: %s\n"
550 		   "update_IRQ\t: %s\n"
551 		   "HPET_emulated\t: %s\n"
552 		   // "square_wave\t: %s\n"
553 		   "BCD\t\t: %s\n"
554 		   "DST_enable\t: %s\n"
555 		   "periodic_freq\t: %d\n"
556 		   "batt_status\t: %s\n",
557 		   (rtc_control & RTC_PIE) ? "yes" : "no",
558 		   (rtc_control & RTC_UIE) ? "yes" : "no",
559 		   use_hpet_alarm() ? "yes" : "no",
560 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
561 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
562 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
563 		   cmos->rtc->irq_freq,
564 		   (valid & RTC_VRT) ? "okay" : "dead");
565 
566 	return 0;
567 }
568 
569 #else
570 #define	cmos_procfs	NULL
571 #endif
572 
573 static const struct rtc_class_ops cmos_rtc_ops = {
574 	.read_time		= cmos_read_time,
575 	.set_time		= cmos_set_time,
576 	.read_alarm		= cmos_read_alarm,
577 	.set_alarm		= cmos_set_alarm,
578 	.proc			= cmos_procfs,
579 	.alarm_irq_enable	= cmos_alarm_irq_enable,
580 };
581 
582 /*----------------------------------------------------------------*/
583 
584 /*
585  * All these chips have at least 64 bytes of address space, shared by
586  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
587  * by boot firmware.  Modern chips have 128 or 256 bytes.
588  */
589 
590 #define NVRAM_OFFSET	(RTC_REG_D + 1)
591 
592 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
593 			   size_t count)
594 {
595 	unsigned char *buf = val;
596 	int	retval;
597 
598 	off += NVRAM_OFFSET;
599 	spin_lock_irq(&rtc_lock);
600 	for (retval = 0; count; count--, off++, retval++) {
601 		if (off < 128)
602 			*buf++ = CMOS_READ(off);
603 		else if (can_bank2)
604 			*buf++ = cmos_read_bank2(off);
605 		else
606 			break;
607 	}
608 	spin_unlock_irq(&rtc_lock);
609 
610 	return retval;
611 }
612 
613 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
614 			    size_t count)
615 {
616 	struct cmos_rtc	*cmos = priv;
617 	unsigned char	*buf = val;
618 	int		retval;
619 
620 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
621 	 * checksum on part of the NVRAM data.  That's currently ignored
622 	 * here.  If userspace is smart enough to know what fields of
623 	 * NVRAM to update, updating checksums is also part of its job.
624 	 */
625 	off += NVRAM_OFFSET;
626 	spin_lock_irq(&rtc_lock);
627 	for (retval = 0; count; count--, off++, retval++) {
628 		/* don't trash RTC registers */
629 		if (off == cmos->day_alrm
630 				|| off == cmos->mon_alrm
631 				|| off == cmos->century)
632 			buf++;
633 		else if (off < 128)
634 			CMOS_WRITE(*buf++, off);
635 		else if (can_bank2)
636 			cmos_write_bank2(*buf++, off);
637 		else
638 			break;
639 	}
640 	spin_unlock_irq(&rtc_lock);
641 
642 	return retval;
643 }
644 
645 /*----------------------------------------------------------------*/
646 
647 static struct cmos_rtc	cmos_rtc;
648 
649 static irqreturn_t cmos_interrupt(int irq, void *p)
650 {
651 	u8		irqstat;
652 	u8		rtc_control;
653 
654 	spin_lock(&rtc_lock);
655 
656 	/* When the HPET interrupt handler calls us, the interrupt
657 	 * status is passed as arg1 instead of the irq number.  But
658 	 * always clear irq status, even when HPET is in the way.
659 	 *
660 	 * Note that HPET and RTC are almost certainly out of phase,
661 	 * giving different IRQ status ...
662 	 */
663 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
664 	rtc_control = CMOS_READ(RTC_CONTROL);
665 	if (use_hpet_alarm())
666 		irqstat = (unsigned long)irq & 0xF0;
667 
668 	/* If we were suspended, RTC_CONTROL may not be accurate since the
669 	 * bios may have cleared it.
670 	 */
671 	if (!cmos_rtc.suspend_ctrl)
672 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
673 	else
674 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
675 
676 	/* All Linux RTC alarms should be treated as if they were oneshot.
677 	 * Similar code may be needed in system wakeup paths, in case the
678 	 * alarm woke the system.
679 	 */
680 	if (irqstat & RTC_AIE) {
681 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
682 		rtc_control &= ~RTC_AIE;
683 		CMOS_WRITE(rtc_control, RTC_CONTROL);
684 		if (use_hpet_alarm())
685 			hpet_mask_rtc_irq_bit(RTC_AIE);
686 		CMOS_READ(RTC_INTR_FLAGS);
687 	}
688 	spin_unlock(&rtc_lock);
689 
690 	if (is_intr(irqstat)) {
691 		rtc_update_irq(p, 1, irqstat);
692 		return IRQ_HANDLED;
693 	} else
694 		return IRQ_NONE;
695 }
696 
697 #ifdef	CONFIG_PNP
698 #define	INITSECTION
699 
700 #else
701 #define	INITSECTION	__init
702 #endif
703 
704 static int INITSECTION
705 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
706 {
707 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
708 	int				retval = 0;
709 	unsigned char			rtc_control;
710 	unsigned			address_space;
711 	u32				flags = 0;
712 	struct nvmem_config nvmem_cfg = {
713 		.name = "cmos_nvram",
714 		.word_size = 1,
715 		.stride = 1,
716 		.reg_read = cmos_nvram_read,
717 		.reg_write = cmos_nvram_write,
718 		.priv = &cmos_rtc,
719 	};
720 
721 	/* there can be only one ... */
722 	if (cmos_rtc.dev)
723 		return -EBUSY;
724 
725 	if (!ports)
726 		return -ENODEV;
727 
728 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
729 	 *
730 	 * REVISIT non-x86 systems may instead use memory space resources
731 	 * (needing ioremap etc), not i/o space resources like this ...
732 	 */
733 	if (RTC_IOMAPPED)
734 		ports = request_region(ports->start, resource_size(ports),
735 				       driver_name);
736 	else
737 		ports = request_mem_region(ports->start, resource_size(ports),
738 					   driver_name);
739 	if (!ports) {
740 		dev_dbg(dev, "i/o registers already in use\n");
741 		return -EBUSY;
742 	}
743 
744 	cmos_rtc.irq = rtc_irq;
745 	cmos_rtc.iomem = ports;
746 
747 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
748 	 * driver did, but don't reject unknown configs.   Old hardware
749 	 * won't address 128 bytes.  Newer chips have multiple banks,
750 	 * though they may not be listed in one I/O resource.
751 	 */
752 #if	defined(CONFIG_ATARI)
753 	address_space = 64;
754 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
755 			|| defined(__sparc__) || defined(__mips__) \
756 			|| defined(__powerpc__)
757 	address_space = 128;
758 #else
759 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
760 	address_space = 128;
761 #endif
762 	if (can_bank2 && ports->end > (ports->start + 1))
763 		address_space = 256;
764 
765 	/* For ACPI systems extension info comes from the FADT.  On others,
766 	 * board specific setup provides it as appropriate.  Systems where
767 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
768 	 * some almost-clones) can provide hooks to make that behave.
769 	 *
770 	 * Note that ACPI doesn't preclude putting these registers into
771 	 * "extended" areas of the chip, including some that we won't yet
772 	 * expect CMOS_READ and friends to handle.
773 	 */
774 	if (info) {
775 		if (info->flags)
776 			flags = info->flags;
777 		if (info->address_space)
778 			address_space = info->address_space;
779 
780 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
781 			cmos_rtc.day_alrm = info->rtc_day_alarm;
782 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
783 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
784 		if (info->rtc_century && info->rtc_century < 128)
785 			cmos_rtc.century = info->rtc_century;
786 
787 		if (info->wake_on && info->wake_off) {
788 			cmos_rtc.wake_on = info->wake_on;
789 			cmos_rtc.wake_off = info->wake_off;
790 		}
791 	}
792 
793 	cmos_rtc.dev = dev;
794 	dev_set_drvdata(dev, &cmos_rtc);
795 
796 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
797 	if (IS_ERR(cmos_rtc.rtc)) {
798 		retval = PTR_ERR(cmos_rtc.rtc);
799 		goto cleanup0;
800 	}
801 
802 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
803 
804 	spin_lock_irq(&rtc_lock);
805 
806 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
807 		/* force periodic irq to CMOS reset default of 1024Hz;
808 		 *
809 		 * REVISIT it's been reported that at least one x86_64 ALI
810 		 * mobo doesn't use 32KHz here ... for portability we might
811 		 * need to do something about other clock frequencies.
812 		 */
813 		cmos_rtc.rtc->irq_freq = 1024;
814 		if (use_hpet_alarm())
815 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
816 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
817 	}
818 
819 	/* disable irqs */
820 	if (is_valid_irq(rtc_irq))
821 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
822 
823 	rtc_control = CMOS_READ(RTC_CONTROL);
824 
825 	spin_unlock_irq(&rtc_lock);
826 
827 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
828 		dev_warn(dev, "only 24-hr supported\n");
829 		retval = -ENXIO;
830 		goto cleanup1;
831 	}
832 
833 	if (use_hpet_alarm())
834 		hpet_rtc_timer_init();
835 
836 	if (is_valid_irq(rtc_irq)) {
837 		irq_handler_t rtc_cmos_int_handler;
838 
839 		if (use_hpet_alarm()) {
840 			rtc_cmos_int_handler = hpet_rtc_interrupt;
841 			retval = hpet_register_irq_handler(cmos_interrupt);
842 			if (retval) {
843 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
844 				dev_warn(dev, "hpet_register_irq_handler "
845 						" failed in rtc_init().");
846 				goto cleanup1;
847 			}
848 		} else
849 			rtc_cmos_int_handler = cmos_interrupt;
850 
851 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
852 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
853 				cmos_rtc.rtc);
854 		if (retval < 0) {
855 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
856 			goto cleanup1;
857 		}
858 	}
859 
860 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 	cmos_rtc.rtc->nvram_old_abi = true;
862 	retval = rtc_register_device(cmos_rtc.rtc);
863 	if (retval)
864 		goto cleanup2;
865 
866 	/* export at least the first block of NVRAM */
867 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
868 	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
869 		dev_err(dev, "nvmem registration failed\n");
870 
871 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
872 		 !is_valid_irq(rtc_irq) ? "no alarms" :
873 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
874 		 cmos_rtc.day_alrm ? "alarms up to one month" :
875 		 "alarms up to one day",
876 		 cmos_rtc.century ? ", y3k" : "",
877 		 nvmem_cfg.size,
878 		 use_hpet_alarm() ? ", hpet irqs" : "");
879 
880 	return 0;
881 
882 cleanup2:
883 	if (is_valid_irq(rtc_irq))
884 		free_irq(rtc_irq, cmos_rtc.rtc);
885 cleanup1:
886 	cmos_rtc.dev = NULL;
887 cleanup0:
888 	if (RTC_IOMAPPED)
889 		release_region(ports->start, resource_size(ports));
890 	else
891 		release_mem_region(ports->start, resource_size(ports));
892 	return retval;
893 }
894 
895 static void cmos_do_shutdown(int rtc_irq)
896 {
897 	spin_lock_irq(&rtc_lock);
898 	if (is_valid_irq(rtc_irq))
899 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
900 	spin_unlock_irq(&rtc_lock);
901 }
902 
903 static void cmos_do_remove(struct device *dev)
904 {
905 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
906 	struct resource *ports;
907 
908 	cmos_do_shutdown(cmos->irq);
909 
910 	if (is_valid_irq(cmos->irq)) {
911 		free_irq(cmos->irq, cmos->rtc);
912 		if (use_hpet_alarm())
913 			hpet_unregister_irq_handler(cmos_interrupt);
914 	}
915 
916 	cmos->rtc = NULL;
917 
918 	ports = cmos->iomem;
919 	if (RTC_IOMAPPED)
920 		release_region(ports->start, resource_size(ports));
921 	else
922 		release_mem_region(ports->start, resource_size(ports));
923 	cmos->iomem = NULL;
924 
925 	cmos->dev = NULL;
926 }
927 
928 static int cmos_aie_poweroff(struct device *dev)
929 {
930 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
931 	struct rtc_time now;
932 	time64_t t_now;
933 	int retval = 0;
934 	unsigned char rtc_control;
935 
936 	if (!cmos->alarm_expires)
937 		return -EINVAL;
938 
939 	spin_lock_irq(&rtc_lock);
940 	rtc_control = CMOS_READ(RTC_CONTROL);
941 	spin_unlock_irq(&rtc_lock);
942 
943 	/* We only care about the situation where AIE is disabled. */
944 	if (rtc_control & RTC_AIE)
945 		return -EBUSY;
946 
947 	cmos_read_time(dev, &now);
948 	t_now = rtc_tm_to_time64(&now);
949 
950 	/*
951 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
952 	 * automatically right after shutdown on some buggy boxes.
953 	 * This automatic rebooting issue won't happen when the alarm
954 	 * time is larger than now+1 seconds.
955 	 *
956 	 * If the alarm time is equal to now+1 seconds, the issue can be
957 	 * prevented by cancelling the alarm.
958 	 */
959 	if (cmos->alarm_expires == t_now + 1) {
960 		struct rtc_wkalrm alarm;
961 
962 		/* Cancel the AIE timer by configuring the past time. */
963 		rtc_time64_to_tm(t_now - 1, &alarm.time);
964 		alarm.enabled = 0;
965 		retval = cmos_set_alarm(dev, &alarm);
966 	} else if (cmos->alarm_expires > t_now + 1) {
967 		retval = -EBUSY;
968 	}
969 
970 	return retval;
971 }
972 
973 static int cmos_suspend(struct device *dev)
974 {
975 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
976 	unsigned char	tmp;
977 
978 	/* only the alarm might be a wakeup event source */
979 	spin_lock_irq(&rtc_lock);
980 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
981 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
982 		unsigned char	mask;
983 
984 		if (device_may_wakeup(dev))
985 			mask = RTC_IRQMASK & ~RTC_AIE;
986 		else
987 			mask = RTC_IRQMASK;
988 		tmp &= ~mask;
989 		CMOS_WRITE(tmp, RTC_CONTROL);
990 		if (use_hpet_alarm())
991 			hpet_mask_rtc_irq_bit(mask);
992 		cmos_checkintr(cmos, tmp);
993 	}
994 	spin_unlock_irq(&rtc_lock);
995 
996 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
997 		cmos->enabled_wake = 1;
998 		if (cmos->wake_on)
999 			cmos->wake_on(dev);
1000 		else
1001 			enable_irq_wake(cmos->irq);
1002 	}
1003 
1004 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1005 
1006 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1007 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1008 			tmp);
1009 
1010 	return 0;
1011 }
1012 
1013 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1014  * after a detour through G3 "mechanical off", although the ACPI spec
1015  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1016  * distinctions between S4 and S5 are pointless.  So when the hardware
1017  * allows, don't draw that distinction.
1018  */
1019 static inline int cmos_poweroff(struct device *dev)
1020 {
1021 	if (!IS_ENABLED(CONFIG_PM))
1022 		return -ENOSYS;
1023 
1024 	return cmos_suspend(dev);
1025 }
1026 
1027 static void cmos_check_wkalrm(struct device *dev)
1028 {
1029 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1030 	struct rtc_wkalrm current_alarm;
1031 	time64_t t_now;
1032 	time64_t t_current_expires;
1033 	time64_t t_saved_expires;
1034 	struct rtc_time now;
1035 
1036 	/* Check if we have RTC Alarm armed */
1037 	if (!(cmos->suspend_ctrl & RTC_AIE))
1038 		return;
1039 
1040 	cmos_read_time(dev, &now);
1041 	t_now = rtc_tm_to_time64(&now);
1042 
1043 	/*
1044 	 * ACPI RTC wake event is cleared after resume from STR,
1045 	 * ACK the rtc irq here
1046 	 */
1047 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1048 		cmos_interrupt(0, (void *)cmos->rtc);
1049 		return;
1050 	}
1051 
1052 	cmos_read_alarm(dev, &current_alarm);
1053 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1054 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1055 	if (t_current_expires != t_saved_expires ||
1056 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1057 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1058 	}
1059 }
1060 
1061 static void cmos_check_acpi_rtc_status(struct device *dev,
1062 				       unsigned char *rtc_control);
1063 
1064 static int __maybe_unused cmos_resume(struct device *dev)
1065 {
1066 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1067 	unsigned char tmp;
1068 
1069 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1070 		if (cmos->wake_off)
1071 			cmos->wake_off(dev);
1072 		else
1073 			disable_irq_wake(cmos->irq);
1074 		cmos->enabled_wake = 0;
1075 	}
1076 
1077 	/* The BIOS might have changed the alarm, restore it */
1078 	cmos_check_wkalrm(dev);
1079 
1080 	spin_lock_irq(&rtc_lock);
1081 	tmp = cmos->suspend_ctrl;
1082 	cmos->suspend_ctrl = 0;
1083 	/* re-enable any irqs previously active */
1084 	if (tmp & RTC_IRQMASK) {
1085 		unsigned char	mask;
1086 
1087 		if (device_may_wakeup(dev) && use_hpet_alarm())
1088 			hpet_rtc_timer_init();
1089 
1090 		do {
1091 			CMOS_WRITE(tmp, RTC_CONTROL);
1092 			if (use_hpet_alarm())
1093 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1094 
1095 			mask = CMOS_READ(RTC_INTR_FLAGS);
1096 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1097 			if (!use_hpet_alarm() || !is_intr(mask))
1098 				break;
1099 
1100 			/* force one-shot behavior if HPET blocked
1101 			 * the wake alarm's irq
1102 			 */
1103 			rtc_update_irq(cmos->rtc, 1, mask);
1104 			tmp &= ~RTC_AIE;
1105 			hpet_mask_rtc_irq_bit(RTC_AIE);
1106 		} while (mask & RTC_AIE);
1107 
1108 		if (tmp & RTC_AIE)
1109 			cmos_check_acpi_rtc_status(dev, &tmp);
1110 	}
1111 	spin_unlock_irq(&rtc_lock);
1112 
1113 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1114 
1115 	return 0;
1116 }
1117 
1118 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1119 
1120 /*----------------------------------------------------------------*/
1121 
1122 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1123  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1124  * probably list them in similar PNPBIOS tables; so PNP is more common.
1125  *
1126  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1127  * predate even PNPBIOS should set up platform_bus devices.
1128  */
1129 
1130 #ifdef	CONFIG_ACPI
1131 
1132 #include <linux/acpi.h>
1133 
1134 static u32 rtc_handler(void *context)
1135 {
1136 	struct device *dev = context;
1137 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1138 	unsigned char rtc_control = 0;
1139 	unsigned char rtc_intr;
1140 	unsigned long flags;
1141 
1142 
1143 	/*
1144 	 * Always update rtc irq when ACPI is used as RTC Alarm.
1145 	 * Or else, ACPI SCI is enabled during suspend/resume only,
1146 	 * update rtc irq in that case.
1147 	 */
1148 	if (cmos_use_acpi_alarm())
1149 		cmos_interrupt(0, (void *)cmos->rtc);
1150 	else {
1151 		/* Fix me: can we use cmos_interrupt() here as well? */
1152 		spin_lock_irqsave(&rtc_lock, flags);
1153 		if (cmos_rtc.suspend_ctrl)
1154 			rtc_control = CMOS_READ(RTC_CONTROL);
1155 		if (rtc_control & RTC_AIE) {
1156 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1157 			CMOS_WRITE(rtc_control, RTC_CONTROL);
1158 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1159 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
1160 		}
1161 		spin_unlock_irqrestore(&rtc_lock, flags);
1162 	}
1163 
1164 	pm_wakeup_hard_event(dev);
1165 	acpi_clear_event(ACPI_EVENT_RTC);
1166 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1167 	return ACPI_INTERRUPT_HANDLED;
1168 }
1169 
1170 static inline void rtc_wake_setup(struct device *dev)
1171 {
1172 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1173 	/*
1174 	 * After the RTC handler is installed, the Fixed_RTC event should
1175 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1176 	 */
1177 	acpi_clear_event(ACPI_EVENT_RTC);
1178 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1179 }
1180 
1181 static void rtc_wake_on(struct device *dev)
1182 {
1183 	acpi_clear_event(ACPI_EVENT_RTC);
1184 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1185 }
1186 
1187 static void rtc_wake_off(struct device *dev)
1188 {
1189 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1190 }
1191 
1192 #ifdef CONFIG_X86
1193 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1194 static void use_acpi_alarm_quirks(void)
1195 {
1196 	int year;
1197 
1198 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1199 		return;
1200 
1201 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1202 		return;
1203 
1204 	if (!is_hpet_enabled())
1205 		return;
1206 
1207 	if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1208 		use_acpi_alarm = true;
1209 }
1210 #else
1211 static inline void use_acpi_alarm_quirks(void) { }
1212 #endif
1213 
1214 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1215  * its device node and pass extra config data.  This helps its driver use
1216  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1217  * that this board's RTC is wakeup-capable (per ACPI spec).
1218  */
1219 static struct cmos_rtc_board_info acpi_rtc_info;
1220 
1221 static void cmos_wake_setup(struct device *dev)
1222 {
1223 	if (acpi_disabled)
1224 		return;
1225 
1226 	use_acpi_alarm_quirks();
1227 
1228 	rtc_wake_setup(dev);
1229 	acpi_rtc_info.wake_on = rtc_wake_on;
1230 	acpi_rtc_info.wake_off = rtc_wake_off;
1231 
1232 	/* workaround bug in some ACPI tables */
1233 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1234 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1235 			acpi_gbl_FADT.month_alarm);
1236 		acpi_gbl_FADT.month_alarm = 0;
1237 	}
1238 
1239 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1240 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1241 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1242 
1243 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1244 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1245 		dev_info(dev, "RTC can wake from S4\n");
1246 
1247 	dev->platform_data = &acpi_rtc_info;
1248 
1249 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1250 	device_init_wakeup(dev, 1);
1251 }
1252 
1253 static void cmos_check_acpi_rtc_status(struct device *dev,
1254 				       unsigned char *rtc_control)
1255 {
1256 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1257 	acpi_event_status rtc_status;
1258 	acpi_status status;
1259 
1260 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1261 		return;
1262 
1263 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1264 	if (ACPI_FAILURE(status)) {
1265 		dev_err(dev, "Could not get RTC status\n");
1266 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1267 		unsigned char mask;
1268 		*rtc_control &= ~RTC_AIE;
1269 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1270 		mask = CMOS_READ(RTC_INTR_FLAGS);
1271 		rtc_update_irq(cmos->rtc, 1, mask);
1272 	}
1273 }
1274 
1275 #else
1276 
1277 static void cmos_wake_setup(struct device *dev)
1278 {
1279 }
1280 
1281 static void cmos_check_acpi_rtc_status(struct device *dev,
1282 				       unsigned char *rtc_control)
1283 {
1284 }
1285 
1286 #endif
1287 
1288 #ifdef	CONFIG_PNP
1289 
1290 #include <linux/pnp.h>
1291 
1292 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1293 {
1294 	cmos_wake_setup(&pnp->dev);
1295 
1296 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1297 		unsigned int irq = 0;
1298 #ifdef CONFIG_X86
1299 		/* Some machines contain a PNP entry for the RTC, but
1300 		 * don't define the IRQ. It should always be safe to
1301 		 * hardcode it on systems with a legacy PIC.
1302 		 */
1303 		if (nr_legacy_irqs())
1304 			irq = 8;
1305 #endif
1306 		return cmos_do_probe(&pnp->dev,
1307 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1308 	} else {
1309 		return cmos_do_probe(&pnp->dev,
1310 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1311 				pnp_irq(pnp, 0));
1312 	}
1313 }
1314 
1315 static void cmos_pnp_remove(struct pnp_dev *pnp)
1316 {
1317 	cmos_do_remove(&pnp->dev);
1318 }
1319 
1320 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1321 {
1322 	struct device *dev = &pnp->dev;
1323 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1324 
1325 	if (system_state == SYSTEM_POWER_OFF) {
1326 		int retval = cmos_poweroff(dev);
1327 
1328 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1329 			return;
1330 	}
1331 
1332 	cmos_do_shutdown(cmos->irq);
1333 }
1334 
1335 static const struct pnp_device_id rtc_ids[] = {
1336 	{ .id = "PNP0b00", },
1337 	{ .id = "PNP0b01", },
1338 	{ .id = "PNP0b02", },
1339 	{ },
1340 };
1341 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1342 
1343 static struct pnp_driver cmos_pnp_driver = {
1344 	.name		= (char *) driver_name,
1345 	.id_table	= rtc_ids,
1346 	.probe		= cmos_pnp_probe,
1347 	.remove		= cmos_pnp_remove,
1348 	.shutdown	= cmos_pnp_shutdown,
1349 
1350 	/* flag ensures resume() gets called, and stops syslog spam */
1351 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1352 	.driver		= {
1353 			.pm = &cmos_pm_ops,
1354 	},
1355 };
1356 
1357 #endif	/* CONFIG_PNP */
1358 
1359 #ifdef CONFIG_OF
1360 static const struct of_device_id of_cmos_match[] = {
1361 	{
1362 		.compatible = "motorola,mc146818",
1363 	},
1364 	{ },
1365 };
1366 MODULE_DEVICE_TABLE(of, of_cmos_match);
1367 
1368 static __init void cmos_of_init(struct platform_device *pdev)
1369 {
1370 	struct device_node *node = pdev->dev.of_node;
1371 	const __be32 *val;
1372 
1373 	if (!node)
1374 		return;
1375 
1376 	val = of_get_property(node, "ctrl-reg", NULL);
1377 	if (val)
1378 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1379 
1380 	val = of_get_property(node, "freq-reg", NULL);
1381 	if (val)
1382 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1383 }
1384 #else
1385 static inline void cmos_of_init(struct platform_device *pdev) {}
1386 #endif
1387 /*----------------------------------------------------------------*/
1388 
1389 /* Platform setup should have set up an RTC device, when PNP is
1390  * unavailable ... this could happen even on (older) PCs.
1391  */
1392 
1393 static int __init cmos_platform_probe(struct platform_device *pdev)
1394 {
1395 	struct resource *resource;
1396 	int irq;
1397 
1398 	cmos_of_init(pdev);
1399 	cmos_wake_setup(&pdev->dev);
1400 
1401 	if (RTC_IOMAPPED)
1402 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1403 	else
1404 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1405 	irq = platform_get_irq(pdev, 0);
1406 	if (irq < 0)
1407 		irq = -1;
1408 
1409 	return cmos_do_probe(&pdev->dev, resource, irq);
1410 }
1411 
1412 static int cmos_platform_remove(struct platform_device *pdev)
1413 {
1414 	cmos_do_remove(&pdev->dev);
1415 	return 0;
1416 }
1417 
1418 static void cmos_platform_shutdown(struct platform_device *pdev)
1419 {
1420 	struct device *dev = &pdev->dev;
1421 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1422 
1423 	if (system_state == SYSTEM_POWER_OFF) {
1424 		int retval = cmos_poweroff(dev);
1425 
1426 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1427 			return;
1428 	}
1429 
1430 	cmos_do_shutdown(cmos->irq);
1431 }
1432 
1433 /* work with hotplug and coldplug */
1434 MODULE_ALIAS("platform:rtc_cmos");
1435 
1436 static struct platform_driver cmos_platform_driver = {
1437 	.remove		= cmos_platform_remove,
1438 	.shutdown	= cmos_platform_shutdown,
1439 	.driver = {
1440 		.name		= driver_name,
1441 		.pm		= &cmos_pm_ops,
1442 		.of_match_table = of_match_ptr(of_cmos_match),
1443 	}
1444 };
1445 
1446 #ifdef CONFIG_PNP
1447 static bool pnp_driver_registered;
1448 #endif
1449 static bool platform_driver_registered;
1450 
1451 static int __init cmos_init(void)
1452 {
1453 	int retval = 0;
1454 
1455 #ifdef	CONFIG_PNP
1456 	retval = pnp_register_driver(&cmos_pnp_driver);
1457 	if (retval == 0)
1458 		pnp_driver_registered = true;
1459 #endif
1460 
1461 	if (!cmos_rtc.dev) {
1462 		retval = platform_driver_probe(&cmos_platform_driver,
1463 					       cmos_platform_probe);
1464 		if (retval == 0)
1465 			platform_driver_registered = true;
1466 	}
1467 
1468 	if (retval == 0)
1469 		return 0;
1470 
1471 #ifdef	CONFIG_PNP
1472 	if (pnp_driver_registered)
1473 		pnp_unregister_driver(&cmos_pnp_driver);
1474 #endif
1475 	return retval;
1476 }
1477 module_init(cmos_init);
1478 
1479 static void __exit cmos_exit(void)
1480 {
1481 #ifdef	CONFIG_PNP
1482 	if (pnp_driver_registered)
1483 		pnp_unregister_driver(&cmos_pnp_driver);
1484 #endif
1485 	if (platform_driver_registered)
1486 		platform_driver_unregister(&cmos_platform_driver);
1487 }
1488 module_exit(cmos_exit);
1489 
1490 
1491 MODULE_AUTHOR("David Brownell");
1492 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1493 MODULE_LICENSE("GPL");
1494