xref: /linux/drivers/rtc/rtc-armada38x.c (revision d2a4a07190f42e4f82805daf58e708400b703f1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC driver for the Armada 38x Marvell SoCs
4  *
5  * Copyright (C) 2015 Marvell
6  *
7  * Gregory Clement <gregory.clement@free-electrons.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/io.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtc.h>
16 
17 #define RTC_STATUS	    0x0
18 #define RTC_STATUS_ALARM1	    BIT(0)
19 #define RTC_STATUS_ALARM2	    BIT(1)
20 #define RTC_IRQ1_CONF	    0x4
21 #define RTC_IRQ2_CONF	    0x8
22 #define RTC_IRQ_AL_EN		    BIT(0)
23 #define RTC_IRQ_FREQ_EN		    BIT(1)
24 #define RTC_IRQ_FREQ_1HZ	    BIT(2)
25 #define RTC_CCR		    0x18
26 #define RTC_CCR_MODE		    BIT(15)
27 #define RTC_CONF_TEST	    0x1C
28 #define RTC_NOMINAL_TIMING	    BIT(13)
29 
30 #define RTC_TIME	    0xC
31 #define RTC_ALARM1	    0x10
32 #define RTC_ALARM2	    0x14
33 
34 /* Armada38x SoC registers  */
35 #define RTC_38X_BRIDGE_TIMING_CTL   0x0
36 #define RTC_38X_PERIOD_OFFS		0
37 #define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
38 #define RTC_38X_READ_DELAY_OFFS		26
39 #define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
40 
41 /* Armada 7K/8K registers  */
42 #define RTC_8K_BRIDGE_TIMING_CTL0    0x0
43 #define RTC_8K_WRCLK_PERIOD_OFFS	0
44 #define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
45 #define RTC_8K_WRCLK_SETUP_OFFS		16
46 #define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
47 #define RTC_8K_BRIDGE_TIMING_CTL1   0x4
48 #define RTC_8K_READ_DELAY_OFFS		0
49 #define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
50 
51 #define RTC_8K_ISR		    0x10
52 #define RTC_8K_IMR		    0x14
53 #define RTC_8K_ALARM2			BIT(0)
54 
55 #define SOC_RTC_INTERRUPT	    0x8
56 #define SOC_RTC_ALARM1			BIT(0)
57 #define SOC_RTC_ALARM2			BIT(1)
58 #define SOC_RTC_ALARM1_MASK		BIT(2)
59 #define SOC_RTC_ALARM2_MASK		BIT(3)
60 
61 #define SAMPLE_NR 100
62 
63 struct value_to_freq {
64 	u32 value;
65 	u8 freq;
66 };
67 
68 struct armada38x_rtc {
69 	struct rtc_device   *rtc_dev;
70 	void __iomem	    *regs;
71 	void __iomem	    *regs_soc;
72 	spinlock_t	    lock;
73 	int		    irq;
74 	bool		    initialized;
75 	struct value_to_freq *val_to_freq;
76 	const struct armada38x_rtc_data *data;
77 };
78 
79 #define ALARM1	0
80 #define ALARM2	1
81 
82 #define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
83 
84 struct armada38x_rtc_data {
85 	/* Initialize the RTC-MBUS bridge timing */
86 	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
87 	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
88 	void (*clear_isr)(struct armada38x_rtc *rtc);
89 	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
90 	u32 alarm;
91 };
92 
93 /*
94  * According to the datasheet, the OS should wait 5us after every
95  * register write to the RTC hard macro so that the required update
96  * can occur without holding off the system bus
97  * According to errata RES-3124064, Write to any RTC register
98  * may fail. As a workaround, before writing to RTC
99  * register, issue a dummy write of 0x0 twice to RTC Status
100  * register.
101  */
102 
103 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
104 {
105 	writel(0, rtc->regs + RTC_STATUS);
106 	writel(0, rtc->regs + RTC_STATUS);
107 	writel(val, rtc->regs + offset);
108 	udelay(5);
109 }
110 
111 /* Update RTC-MBUS bridge timing parameters */
112 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
113 {
114 	u32 reg;
115 
116 	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
117 	reg &= ~RTC_38X_PERIOD_MASK;
118 	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
119 	reg &= ~RTC_38X_READ_DELAY_MASK;
120 	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
121 	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
122 }
123 
124 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
125 {
126 	u32 reg;
127 
128 	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
129 	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
130 	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
131 	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
132 	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
133 	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
134 
135 	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
136 	reg &= ~RTC_8K_READ_DELAY_MASK;
137 	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
138 	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
139 }
140 
141 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
142 {
143 	return readl(rtc->regs + rtc_reg);
144 }
145 
146 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
147 {
148 	int i, index_max = 0, max = 0;
149 
150 	for (i = 0; i < SAMPLE_NR; i++) {
151 		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
152 		rtc->val_to_freq[i].freq = 0;
153 	}
154 
155 	for (i = 0; i < SAMPLE_NR; i++) {
156 		int j = 0;
157 		u32 value = rtc->val_to_freq[i].value;
158 
159 		while (rtc->val_to_freq[j].freq) {
160 			if (rtc->val_to_freq[j].value == value) {
161 				rtc->val_to_freq[j].freq++;
162 				break;
163 			}
164 			j++;
165 		}
166 
167 		if (!rtc->val_to_freq[j].freq) {
168 			rtc->val_to_freq[j].value = value;
169 			rtc->val_to_freq[j].freq = 1;
170 		}
171 
172 		if (rtc->val_to_freq[j].freq > max) {
173 			index_max = j;
174 			max = rtc->val_to_freq[j].freq;
175 		}
176 
177 		/*
178 		 * If a value already has half of the sample this is the most
179 		 * frequent one and we can stop the research right now
180 		 */
181 		if (max > SAMPLE_NR / 2)
182 			break;
183 	}
184 
185 	return rtc->val_to_freq[index_max].value;
186 }
187 
188 static void armada38x_clear_isr(struct armada38x_rtc *rtc)
189 {
190 	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
191 
192 	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
193 }
194 
195 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
196 {
197 	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
198 
199 	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
200 }
201 
202 static void armada8k_clear_isr(struct armada38x_rtc *rtc)
203 {
204 	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
205 }
206 
207 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
208 {
209 	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
210 }
211 
212 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
213 {
214 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
215 	unsigned long time, flags;
216 
217 	spin_lock_irqsave(&rtc->lock, flags);
218 	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
219 	spin_unlock_irqrestore(&rtc->lock, flags);
220 
221 	rtc_time64_to_tm(time, tm);
222 
223 	return 0;
224 }
225 
226 static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
227 {
228 	u32 reg;
229 
230 	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
231 	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
232 	if (reg & 0xff) {
233 		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
234 		msleep(500); /* Oscillator startup time */
235 		rtc_delayed_write(0, rtc, RTC_TIME);
236 		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
237 				  RTC_STATUS);
238 		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
239 	}
240 	rtc->initialized = true;
241 }
242 
243 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
244 {
245 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
246 	unsigned long time, flags;
247 
248 	time = rtc_tm_to_time64(tm);
249 
250 	if (!rtc->initialized)
251 		armada38x_rtc_reset(rtc);
252 
253 	spin_lock_irqsave(&rtc->lock, flags);
254 	rtc_delayed_write(time, rtc, RTC_TIME);
255 	spin_unlock_irqrestore(&rtc->lock, flags);
256 
257 	return 0;
258 }
259 
260 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
261 {
262 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
263 	unsigned long time, flags;
264 	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
265 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
266 	u32 val;
267 
268 	spin_lock_irqsave(&rtc->lock, flags);
269 
270 	time = rtc->data->read_rtc_reg(rtc, reg);
271 	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
272 
273 	spin_unlock_irqrestore(&rtc->lock, flags);
274 
275 	alrm->enabled = val ? 1 : 0;
276 	rtc_time64_to_tm(time,  &alrm->time);
277 
278 	return 0;
279 }
280 
281 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
282 {
283 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
284 	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
285 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
286 	unsigned long time, flags;
287 
288 	time = rtc_tm_to_time64(&alrm->time);
289 
290 	spin_lock_irqsave(&rtc->lock, flags);
291 
292 	rtc_delayed_write(time, rtc, reg);
293 
294 	if (alrm->enabled) {
295 		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
296 		rtc->data->unmask_interrupt(rtc);
297 	}
298 
299 	spin_unlock_irqrestore(&rtc->lock, flags);
300 
301 	return 0;
302 }
303 
304 static int armada38x_rtc_alarm_irq_enable(struct device *dev,
305 					 unsigned int enabled)
306 {
307 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
308 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(&rtc->lock, flags);
312 
313 	if (enabled)
314 		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
315 	else
316 		rtc_delayed_write(0, rtc, reg_irq);
317 
318 	spin_unlock_irqrestore(&rtc->lock, flags);
319 
320 	return 0;
321 }
322 
323 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
324 {
325 	struct armada38x_rtc *rtc = data;
326 	u32 val;
327 	int event = RTC_IRQF | RTC_AF;
328 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
329 
330 	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
331 
332 	spin_lock(&rtc->lock);
333 
334 	rtc->data->clear_isr(rtc);
335 	val = rtc->data->read_rtc_reg(rtc, reg_irq);
336 	/* disable all the interrupts for alarm*/
337 	rtc_delayed_write(0, rtc, reg_irq);
338 	/* Ack the event */
339 	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
340 
341 	spin_unlock(&rtc->lock);
342 
343 	if (val & RTC_IRQ_FREQ_EN) {
344 		if (val & RTC_IRQ_FREQ_1HZ)
345 			event |= RTC_UF;
346 		else
347 			event |= RTC_PF;
348 	}
349 
350 	rtc_update_irq(rtc->rtc_dev, 1, event);
351 
352 	return IRQ_HANDLED;
353 }
354 
355 /*
356  * The information given in the Armada 388 functional spec is complex.
357  * They give two different formulas for calculating the offset value,
358  * but when considering "Offset" as an 8-bit signed integer, they both
359  * reduce down to (we shall rename "Offset" as "val" here):
360  *
361  *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
362  *
363  * Converting to time, f = 1/t:
364  *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
365  *
366  *   =>  t_measured / t_ideal = val * resolution + 1
367  *
368  * "offset" in the RTC interface is defined as:
369  *   t = t0 * (1 + offset * 1e-9)
370  * where t is the desired period, t0 is the measured period with a zero
371  * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
372  *   offset = (t_ideal / t_measured - 1) / 1e-9
373  *
374  *   => t_ideal / t_measured = offset * 1e-9 + 1
375  *
376  * so:
377  *
378  *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
379  *
380  * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
381  *   offset = 1e18 / (val * R + 1e9) - 1e9
382  *   val = (1e18 / (offset + 1e9) - 1e9) / R
383  * with a common transformation:
384  *   f(x) = 1e18 / (x + 1e9) - 1e9
385  *   offset = f(val * R)
386  *   val = f(offset) / R
387  *
388  * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
389  */
390 static long armada38x_ppb_convert(long ppb)
391 {
392 	long div = ppb + 1000000000L;
393 
394 	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
395 }
396 
397 static int armada38x_rtc_read_offset(struct device *dev, long *offset)
398 {
399 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
400 	unsigned long ccr, flags;
401 	long ppb_cor;
402 
403 	spin_lock_irqsave(&rtc->lock, flags);
404 	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
405 	spin_unlock_irqrestore(&rtc->lock, flags);
406 
407 	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
408 	/* ppb_cor + 1000000000L can never be zero */
409 	*offset = armada38x_ppb_convert(ppb_cor);
410 
411 	return 0;
412 }
413 
414 static int armada38x_rtc_set_offset(struct device *dev, long offset)
415 {
416 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
417 	unsigned long ccr = 0;
418 	long ppb_cor, off;
419 
420 	/*
421 	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
422 	 * need to clamp the input.  This equates to -484270 .. 488558.
423 	 * Not only is this to stop out of range "off" but also to
424 	 * avoid the division by zero in armada38x_ppb_convert().
425 	 */
426 	offset = clamp(offset, -484270L, 488558L);
427 
428 	ppb_cor = armada38x_ppb_convert(offset);
429 
430 	/*
431 	 * Use low update mode where possible, which gives a better
432 	 * resolution of correction.
433 	 */
434 	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
435 	if (off > 127 || off < -128) {
436 		ccr = RTC_CCR_MODE;
437 		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
438 	}
439 
440 	/*
441 	 * Armada 388 requires a bit pattern in bits 14..8 depending on
442 	 * the sign bit: { 0, ~S, S, S, S, S, S }
443 	 */
444 	ccr |= (off & 0x3fff) ^ 0x2000;
445 	rtc_delayed_write(ccr, rtc, RTC_CCR);
446 
447 	return 0;
448 }
449 
450 static const struct rtc_class_ops armada38x_rtc_ops = {
451 	.read_time = armada38x_rtc_read_time,
452 	.set_time = armada38x_rtc_set_time,
453 	.read_alarm = armada38x_rtc_read_alarm,
454 	.set_alarm = armada38x_rtc_set_alarm,
455 	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
456 	.read_offset = armada38x_rtc_read_offset,
457 	.set_offset = armada38x_rtc_set_offset,
458 };
459 
460 static const struct armada38x_rtc_data armada38x_data = {
461 	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
462 	.read_rtc_reg = read_rtc_register_38x_wa,
463 	.clear_isr = armada38x_clear_isr,
464 	.unmask_interrupt = armada38x_unmask_interrupt,
465 	.alarm = ALARM1,
466 };
467 
468 static const struct armada38x_rtc_data armada8k_data = {
469 	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
470 	.read_rtc_reg = read_rtc_register,
471 	.clear_isr = armada8k_clear_isr,
472 	.unmask_interrupt = armada8k_unmask_interrupt,
473 	.alarm = ALARM2,
474 };
475 
476 static const struct of_device_id armada38x_rtc_of_match_table[] = {
477 	{
478 		.compatible = "marvell,armada-380-rtc",
479 		.data = &armada38x_data,
480 	},
481 	{
482 		.compatible = "marvell,armada-8k-rtc",
483 		.data = &armada8k_data,
484 	},
485 	{}
486 };
487 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
488 
489 static __init int armada38x_rtc_probe(struct platform_device *pdev)
490 {
491 	struct armada38x_rtc *rtc;
492 
493 	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
494 			    GFP_KERNEL);
495 	if (!rtc)
496 		return -ENOMEM;
497 
498 	rtc->data = of_device_get_match_data(&pdev->dev);
499 
500 	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
501 				sizeof(struct value_to_freq), GFP_KERNEL);
502 	if (!rtc->val_to_freq)
503 		return -ENOMEM;
504 
505 	spin_lock_init(&rtc->lock);
506 
507 	rtc->regs = devm_platform_ioremap_resource_byname(pdev, "rtc");
508 	if (IS_ERR(rtc->regs))
509 		return PTR_ERR(rtc->regs);
510 	rtc->regs_soc = devm_platform_ioremap_resource_byname(pdev, "rtc-soc");
511 	if (IS_ERR(rtc->regs_soc))
512 		return PTR_ERR(rtc->regs_soc);
513 
514 	rtc->irq = platform_get_irq(pdev, 0);
515 	if (rtc->irq < 0)
516 		return rtc->irq;
517 
518 	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
519 	if (IS_ERR(rtc->rtc_dev))
520 		return PTR_ERR(rtc->rtc_dev);
521 
522 	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
523 				0, pdev->name, rtc) < 0) {
524 		dev_warn(&pdev->dev, "Interrupt not available.\n");
525 		rtc->irq = -1;
526 	}
527 	platform_set_drvdata(pdev, rtc);
528 
529 	if (rtc->irq != -1)
530 		device_init_wakeup(&pdev->dev, 1);
531 	else
532 		clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
533 
534 	/* Update RTC-MBUS bridge timing parameters */
535 	rtc->data->update_mbus_timing(rtc);
536 
537 	rtc->rtc_dev->ops = &armada38x_rtc_ops;
538 	rtc->rtc_dev->range_max = U32_MAX;
539 
540 	return devm_rtc_register_device(rtc->rtc_dev);
541 }
542 
543 #ifdef CONFIG_PM_SLEEP
544 static int armada38x_rtc_suspend(struct device *dev)
545 {
546 	if (device_may_wakeup(dev)) {
547 		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
548 
549 		return enable_irq_wake(rtc->irq);
550 	}
551 
552 	return 0;
553 }
554 
555 static int armada38x_rtc_resume(struct device *dev)
556 {
557 	if (device_may_wakeup(dev)) {
558 		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
559 
560 		/* Update RTC-MBUS bridge timing parameters */
561 		rtc->data->update_mbus_timing(rtc);
562 
563 		return disable_irq_wake(rtc->irq);
564 	}
565 
566 	return 0;
567 }
568 #endif
569 
570 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
571 			 armada38x_rtc_suspend, armada38x_rtc_resume);
572 
573 static struct platform_driver armada38x_rtc_driver = {
574 	.driver		= {
575 		.name	= "armada38x-rtc",
576 		.pm	= &armada38x_rtc_pm_ops,
577 		.of_match_table = armada38x_rtc_of_match_table,
578 	},
579 };
580 
581 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
582 
583 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
584 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
585 MODULE_LICENSE("GPL");
586