1 /* 2 * RTC Driver for X-Powers AC100 3 * 4 * Copyright (c) 2016 Chen-Yu Tsai 5 * 6 * Chen-Yu Tsai <wens@csie.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 */ 17 18 #include <linux/bcd.h> 19 #include <linux/clk-provider.h> 20 #include <linux/device.h> 21 #include <linux/interrupt.h> 22 #include <linux/kernel.h> 23 #include <linux/mfd/ac100.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/regmap.h> 29 #include <linux/rtc.h> 30 #include <linux/types.h> 31 32 /* Control register */ 33 #define AC100_RTC_CTRL_24HOUR BIT(0) 34 35 /* Clock output register bits */ 36 #define AC100_CLKOUT_PRE_DIV_SHIFT 5 37 #define AC100_CLKOUT_PRE_DIV_WIDTH 3 38 #define AC100_CLKOUT_MUX_SHIFT 4 39 #define AC100_CLKOUT_MUX_WIDTH 1 40 #define AC100_CLKOUT_DIV_SHIFT 1 41 #define AC100_CLKOUT_DIV_WIDTH 3 42 #define AC100_CLKOUT_EN BIT(0) 43 44 /* RTC */ 45 #define AC100_RTC_SEC_MASK GENMASK(6, 0) 46 #define AC100_RTC_MIN_MASK GENMASK(6, 0) 47 #define AC100_RTC_HOU_MASK GENMASK(5, 0) 48 #define AC100_RTC_WEE_MASK GENMASK(2, 0) 49 #define AC100_RTC_DAY_MASK GENMASK(5, 0) 50 #define AC100_RTC_MON_MASK GENMASK(4, 0) 51 #define AC100_RTC_YEA_MASK GENMASK(7, 0) 52 #define AC100_RTC_YEA_LEAP BIT(15) 53 #define AC100_RTC_UPD_TRIGGER BIT(15) 54 55 /* Alarm (wall clock) */ 56 #define AC100_ALM_INT_ENABLE BIT(0) 57 58 #define AC100_ALM_SEC_MASK GENMASK(6, 0) 59 #define AC100_ALM_MIN_MASK GENMASK(6, 0) 60 #define AC100_ALM_HOU_MASK GENMASK(5, 0) 61 #define AC100_ALM_WEE_MASK GENMASK(2, 0) 62 #define AC100_ALM_DAY_MASK GENMASK(5, 0) 63 #define AC100_ALM_MON_MASK GENMASK(4, 0) 64 #define AC100_ALM_YEA_MASK GENMASK(7, 0) 65 #define AC100_ALM_ENABLE_FLAG BIT(15) 66 #define AC100_ALM_UPD_TRIGGER BIT(15) 67 68 /* 69 * The year parameter passed to the driver is usually an offset relative to 70 * the year 1900. This macro is used to convert this offset to another one 71 * relative to the minimum year allowed by the hardware. 72 * 73 * The year range is 1970 - 2069. This range is selected to match Allwinner's 74 * driver. 75 */ 76 #define AC100_YEAR_MIN 1970 77 #define AC100_YEAR_MAX 2069 78 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900) 79 80 struct ac100_clkout { 81 struct clk_hw hw; 82 struct regmap *regmap; 83 u8 offset; 84 }; 85 86 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw) 87 88 #define AC100_RTC_32K_NAME "ac100-rtc-32k" 89 #define AC100_RTC_32K_RATE 32768 90 #define AC100_CLKOUT_NUM 3 91 92 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = { 93 "ac100-cko1-rtc", 94 "ac100-cko2-rtc", 95 "ac100-cko3-rtc", 96 }; 97 98 struct ac100_rtc_dev { 99 struct rtc_device *rtc; 100 struct device *dev; 101 struct regmap *regmap; 102 int irq; 103 unsigned long alarm; 104 105 struct clk_hw *rtc_32k_clk; 106 struct ac100_clkout clks[AC100_CLKOUT_NUM]; 107 struct clk_hw_onecell_data *clk_data; 108 }; 109 110 /** 111 * Clock controls for 3 clock output pins 112 */ 113 114 static const struct clk_div_table ac100_clkout_prediv[] = { 115 { .val = 0, .div = 1 }, 116 { .val = 1, .div = 2 }, 117 { .val = 2, .div = 4 }, 118 { .val = 3, .div = 8 }, 119 { .val = 4, .div = 16 }, 120 { .val = 5, .div = 32 }, 121 { .val = 6, .div = 64 }, 122 { .val = 7, .div = 122 }, 123 { }, 124 }; 125 126 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */ 127 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw, 128 unsigned long prate) 129 { 130 struct ac100_clkout *clk = to_ac100_clkout(hw); 131 unsigned int reg, div; 132 133 regmap_read(clk->regmap, clk->offset, ®); 134 135 /* Handle pre-divider first */ 136 if (prate != AC100_RTC_32K_RATE) { 137 div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) & 138 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1); 139 prate = divider_recalc_rate(hw, prate, div, 140 ac100_clkout_prediv, 0, 141 AC100_CLKOUT_PRE_DIV_WIDTH); 142 } 143 144 div = (reg >> AC100_CLKOUT_DIV_SHIFT) & 145 (BIT(AC100_CLKOUT_DIV_WIDTH) - 1); 146 return divider_recalc_rate(hw, prate, div, NULL, 147 CLK_DIVIDER_POWER_OF_TWO, 148 AC100_CLKOUT_DIV_WIDTH); 149 } 150 151 static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate, 152 unsigned long prate) 153 { 154 unsigned long best_rate = 0, tmp_rate, tmp_prate; 155 int i; 156 157 if (prate == AC100_RTC_32K_RATE) 158 return divider_round_rate(hw, rate, &prate, NULL, 159 AC100_CLKOUT_DIV_WIDTH, 160 CLK_DIVIDER_POWER_OF_TWO); 161 162 for (i = 0; ac100_clkout_prediv[i].div; i++) { 163 tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val); 164 tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL, 165 AC100_CLKOUT_DIV_WIDTH, 166 CLK_DIVIDER_POWER_OF_TWO); 167 168 if (tmp_rate > rate) 169 continue; 170 if (rate - tmp_rate < best_rate - tmp_rate) 171 best_rate = tmp_rate; 172 } 173 174 return best_rate; 175 } 176 177 static int ac100_clkout_determine_rate(struct clk_hw *hw, 178 struct clk_rate_request *req) 179 { 180 struct clk_hw *best_parent; 181 unsigned long best = 0; 182 int i, num_parents = clk_hw_get_num_parents(hw); 183 184 for (i = 0; i < num_parents; i++) { 185 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i); 186 unsigned long tmp, prate; 187 188 /* 189 * The clock has two parents, one is a fixed clock which is 190 * internally registered by the ac100 driver. The other parent 191 * is a clock from the codec side of the chip, which we 192 * properly declare and reference in the devicetree and is 193 * not implemented in any driver right now. 194 * If the clock core looks for the parent of that second 195 * missing clock, it can't find one that is registered and 196 * returns NULL. 197 * So we end up in a situation where clk_hw_get_num_parents 198 * returns the amount of clocks we can be parented to, but 199 * clk_hw_get_parent_by_index will not return the orphan 200 * clocks. 201 * Thus we need to check if the parent exists before 202 * we get the parent rate, so we could use the RTC 203 * without waiting for the codec to be supported. 204 */ 205 if (!parent) 206 continue; 207 208 prate = clk_hw_get_rate(parent); 209 210 tmp = ac100_clkout_round_rate(hw, req->rate, prate); 211 212 if (tmp > req->rate) 213 continue; 214 if (req->rate - tmp < req->rate - best) { 215 best = tmp; 216 best_parent = parent; 217 } 218 } 219 220 if (!best) 221 return -EINVAL; 222 223 req->best_parent_hw = best_parent; 224 req->best_parent_rate = best; 225 req->rate = best; 226 227 return 0; 228 } 229 230 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate, 231 unsigned long prate) 232 { 233 struct ac100_clkout *clk = to_ac100_clkout(hw); 234 int div = 0, pre_div = 0; 235 236 do { 237 div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div, 238 prate, NULL, AC100_CLKOUT_DIV_WIDTH, 239 CLK_DIVIDER_POWER_OF_TWO); 240 if (div >= 0) 241 break; 242 } while (prate != AC100_RTC_32K_RATE && 243 ac100_clkout_prediv[++pre_div].div); 244 245 if (div < 0) 246 return div; 247 248 pre_div = ac100_clkout_prediv[pre_div].val; 249 250 regmap_update_bits(clk->regmap, clk->offset, 251 ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT | 252 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT, 253 (div - 1) << AC100_CLKOUT_DIV_SHIFT | 254 (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT); 255 256 return 0; 257 } 258 259 static int ac100_clkout_prepare(struct clk_hw *hw) 260 { 261 struct ac100_clkout *clk = to_ac100_clkout(hw); 262 263 return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 264 AC100_CLKOUT_EN); 265 } 266 267 static void ac100_clkout_unprepare(struct clk_hw *hw) 268 { 269 struct ac100_clkout *clk = to_ac100_clkout(hw); 270 271 regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0); 272 } 273 274 static int ac100_clkout_is_prepared(struct clk_hw *hw) 275 { 276 struct ac100_clkout *clk = to_ac100_clkout(hw); 277 unsigned int reg; 278 279 regmap_read(clk->regmap, clk->offset, ®); 280 281 return reg & AC100_CLKOUT_EN; 282 } 283 284 static u8 ac100_clkout_get_parent(struct clk_hw *hw) 285 { 286 struct ac100_clkout *clk = to_ac100_clkout(hw); 287 unsigned int reg; 288 289 regmap_read(clk->regmap, clk->offset, ®); 290 291 return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1; 292 } 293 294 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index) 295 { 296 struct ac100_clkout *clk = to_ac100_clkout(hw); 297 298 return regmap_update_bits(clk->regmap, clk->offset, 299 BIT(AC100_CLKOUT_MUX_SHIFT), 300 index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0); 301 } 302 303 static const struct clk_ops ac100_clkout_ops = { 304 .prepare = ac100_clkout_prepare, 305 .unprepare = ac100_clkout_unprepare, 306 .is_prepared = ac100_clkout_is_prepared, 307 .recalc_rate = ac100_clkout_recalc_rate, 308 .determine_rate = ac100_clkout_determine_rate, 309 .get_parent = ac100_clkout_get_parent, 310 .set_parent = ac100_clkout_set_parent, 311 .set_rate = ac100_clkout_set_rate, 312 }; 313 314 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip) 315 { 316 struct device_node *np = chip->dev->of_node; 317 const char *parents[2] = {AC100_RTC_32K_NAME}; 318 int i, ret; 319 320 chip->clk_data = devm_kzalloc(chip->dev, sizeof(*chip->clk_data) + 321 sizeof(*chip->clk_data->hws) * 322 AC100_CLKOUT_NUM, 323 GFP_KERNEL); 324 if (!chip->clk_data) 325 return -ENOMEM; 326 327 chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev, 328 AC100_RTC_32K_NAME, 329 NULL, 0, 330 AC100_RTC_32K_RATE); 331 if (IS_ERR(chip->rtc_32k_clk)) { 332 ret = PTR_ERR(chip->rtc_32k_clk); 333 dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n", 334 ret); 335 return ret; 336 } 337 338 parents[1] = of_clk_get_parent_name(np, 0); 339 if (!parents[1]) { 340 dev_err(chip->dev, "Failed to get ADDA 4M clock\n"); 341 return -EINVAL; 342 } 343 344 for (i = 0; i < AC100_CLKOUT_NUM; i++) { 345 struct ac100_clkout *clk = &chip->clks[i]; 346 struct clk_init_data init = { 347 .name = ac100_clkout_names[i], 348 .ops = &ac100_clkout_ops, 349 .parent_names = parents, 350 .num_parents = ARRAY_SIZE(parents), 351 .flags = 0, 352 }; 353 354 of_property_read_string_index(np, "clock-output-names", 355 i, &init.name); 356 clk->regmap = chip->regmap; 357 clk->offset = AC100_CLKOUT_CTRL1 + i; 358 clk->hw.init = &init; 359 360 ret = devm_clk_hw_register(chip->dev, &clk->hw); 361 if (ret) { 362 dev_err(chip->dev, "Failed to register clk '%s': %d\n", 363 init.name, ret); 364 goto err_unregister_rtc_32k; 365 } 366 367 chip->clk_data->hws[i] = &clk->hw; 368 } 369 370 chip->clk_data->num = i; 371 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data); 372 if (ret) 373 goto err_unregister_rtc_32k; 374 375 return 0; 376 377 err_unregister_rtc_32k: 378 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); 379 380 return ret; 381 } 382 383 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip) 384 { 385 of_clk_del_provider(chip->dev->of_node); 386 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); 387 } 388 389 /** 390 * RTC related bits 391 */ 392 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm) 393 { 394 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 395 struct regmap *regmap = chip->regmap; 396 u16 reg[7]; 397 int ret; 398 399 ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7); 400 if (ret) 401 return ret; 402 403 rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK); 404 rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK); 405 rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK); 406 rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK); 407 rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK); 408 rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1; 409 rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) + 410 AC100_YEAR_OFF; 411 412 return 0; 413 } 414 415 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm) 416 { 417 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 418 struct regmap *regmap = chip->regmap; 419 int year; 420 u16 reg[8]; 421 422 /* our RTC has a limited year range... */ 423 year = rtc_tm->tm_year - AC100_YEAR_OFF; 424 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { 425 dev_err(dev, "rtc only supports year in range %d - %d\n", 426 AC100_YEAR_MIN, AC100_YEAR_MAX); 427 return -EINVAL; 428 } 429 430 /* convert to BCD */ 431 reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK; 432 reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK; 433 reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK; 434 reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK; 435 reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK; 436 reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK; 437 reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK; 438 /* trigger write */ 439 reg[7] = AC100_RTC_UPD_TRIGGER; 440 441 /* Is it a leap year? */ 442 if (is_leap_year(year + AC100_YEAR_OFF + 1900)) 443 reg[6] |= AC100_RTC_YEA_LEAP; 444 445 return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8); 446 } 447 448 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en) 449 { 450 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 451 struct regmap *regmap = chip->regmap; 452 unsigned int val; 453 454 val = en ? AC100_ALM_INT_ENABLE : 0; 455 456 return regmap_write(regmap, AC100_ALM_INT_ENA, val); 457 } 458 459 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm) 460 { 461 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 462 struct regmap *regmap = chip->regmap; 463 struct rtc_time *alrm_tm = &alrm->time; 464 u16 reg[7]; 465 unsigned int val; 466 int ret; 467 468 ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val); 469 if (ret) 470 return ret; 471 472 alrm->enabled = !!(val & AC100_ALM_INT_ENABLE); 473 474 ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7); 475 if (ret) 476 return ret; 477 478 alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK); 479 alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK); 480 alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK); 481 alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK); 482 alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK); 483 alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1; 484 alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) + 485 AC100_YEAR_OFF; 486 487 return 0; 488 } 489 490 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 491 { 492 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 493 struct regmap *regmap = chip->regmap; 494 struct rtc_time *alrm_tm = &alrm->time; 495 u16 reg[8]; 496 int year; 497 int ret; 498 499 /* our alarm has a limited year range... */ 500 year = alrm_tm->tm_year - AC100_YEAR_OFF; 501 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { 502 dev_err(dev, "alarm only supports year in range %d - %d\n", 503 AC100_YEAR_MIN, AC100_YEAR_MAX); 504 return -EINVAL; 505 } 506 507 /* convert to BCD */ 508 reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) | 509 AC100_ALM_ENABLE_FLAG; 510 reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) | 511 AC100_ALM_ENABLE_FLAG; 512 reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) | 513 AC100_ALM_ENABLE_FLAG; 514 /* Do not enable weekday alarm */ 515 reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK; 516 reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) | 517 AC100_ALM_ENABLE_FLAG; 518 reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) | 519 AC100_ALM_ENABLE_FLAG; 520 reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) | 521 AC100_ALM_ENABLE_FLAG; 522 /* trigger write */ 523 reg[7] = AC100_ALM_UPD_TRIGGER; 524 525 ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8); 526 if (ret) 527 return ret; 528 529 return ac100_rtc_alarm_irq_enable(dev, alrm->enabled); 530 } 531 532 static irqreturn_t ac100_rtc_irq(int irq, void *data) 533 { 534 struct ac100_rtc_dev *chip = data; 535 struct regmap *regmap = chip->regmap; 536 unsigned int val = 0; 537 int ret; 538 539 mutex_lock(&chip->rtc->ops_lock); 540 541 /* read status */ 542 ret = regmap_read(regmap, AC100_ALM_INT_STA, &val); 543 if (ret) 544 goto out; 545 546 if (val & AC100_ALM_INT_ENABLE) { 547 /* signal rtc framework */ 548 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); 549 550 /* clear status */ 551 ret = regmap_write(regmap, AC100_ALM_INT_STA, val); 552 if (ret) 553 goto out; 554 555 /* disable interrupt */ 556 ret = ac100_rtc_alarm_irq_enable(chip->dev, 0); 557 if (ret) 558 goto out; 559 } 560 561 out: 562 mutex_unlock(&chip->rtc->ops_lock); 563 return IRQ_HANDLED; 564 } 565 566 static const struct rtc_class_ops ac100_rtc_ops = { 567 .read_time = ac100_rtc_get_time, 568 .set_time = ac100_rtc_set_time, 569 .read_alarm = ac100_rtc_get_alarm, 570 .set_alarm = ac100_rtc_set_alarm, 571 .alarm_irq_enable = ac100_rtc_alarm_irq_enable, 572 }; 573 574 static int ac100_rtc_probe(struct platform_device *pdev) 575 { 576 struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent); 577 struct ac100_rtc_dev *chip; 578 int ret; 579 580 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); 581 if (!chip) 582 return -ENOMEM; 583 584 platform_set_drvdata(pdev, chip); 585 chip->dev = &pdev->dev; 586 chip->regmap = ac100->regmap; 587 588 chip->irq = platform_get_irq(pdev, 0); 589 if (chip->irq < 0) { 590 dev_err(&pdev->dev, "No IRQ resource\n"); 591 return chip->irq; 592 } 593 594 chip->rtc = devm_rtc_allocate_device(&pdev->dev); 595 if (IS_ERR(chip->rtc)) 596 return PTR_ERR(chip->rtc); 597 598 chip->rtc->ops = &ac100_rtc_ops; 599 600 ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL, 601 ac100_rtc_irq, 602 IRQF_SHARED | IRQF_ONESHOT, 603 dev_name(&pdev->dev), chip); 604 if (ret) { 605 dev_err(&pdev->dev, "Could not request IRQ\n"); 606 return ret; 607 } 608 609 /* always use 24 hour mode */ 610 regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR, 611 AC100_RTC_CTRL_24HOUR); 612 613 /* disable counter alarm interrupt */ 614 regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0); 615 616 /* clear counter alarm pending interrupts */ 617 regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE); 618 619 ret = ac100_rtc_register_clks(chip); 620 if (ret) 621 return ret; 622 623 ret = rtc_register_device(chip->rtc); 624 if (ret) { 625 dev_err(&pdev->dev, "unable to register device\n"); 626 return ret; 627 } 628 629 dev_info(&pdev->dev, "RTC enabled\n"); 630 631 return 0; 632 } 633 634 static int ac100_rtc_remove(struct platform_device *pdev) 635 { 636 struct ac100_rtc_dev *chip = platform_get_drvdata(pdev); 637 638 ac100_rtc_unregister_clks(chip); 639 640 return 0; 641 } 642 643 static const struct of_device_id ac100_rtc_match[] = { 644 { .compatible = "x-powers,ac100-rtc" }, 645 { }, 646 }; 647 MODULE_DEVICE_TABLE(of, ac100_rtc_match); 648 649 static struct platform_driver ac100_rtc_driver = { 650 .probe = ac100_rtc_probe, 651 .remove = ac100_rtc_remove, 652 .driver = { 653 .name = "ac100-rtc", 654 .of_match_table = of_match_ptr(ac100_rtc_match), 655 }, 656 }; 657 module_platform_driver(ac100_rtc_driver); 658 659 MODULE_DESCRIPTION("X-Powers AC100 RTC driver"); 660 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>"); 661 MODULE_LICENSE("GPL v2"); 662