1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RTC Driver for X-Powers AC100 4 * 5 * Copyright (c) 2016 Chen-Yu Tsai 6 * 7 * Chen-Yu Tsai <wens@csie.org> 8 */ 9 10 #include <linux/bcd.h> 11 #include <linux/clk-provider.h> 12 #include <linux/device.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel.h> 15 #include <linux/mfd/ac100.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/of.h> 19 #include <linux/platform_device.h> 20 #include <linux/regmap.h> 21 #include <linux/rtc.h> 22 #include <linux/types.h> 23 24 /* Control register */ 25 #define AC100_RTC_CTRL_24HOUR BIT(0) 26 27 /* Clock output register bits */ 28 #define AC100_CLKOUT_PRE_DIV_SHIFT 5 29 #define AC100_CLKOUT_PRE_DIV_WIDTH 3 30 #define AC100_CLKOUT_MUX_SHIFT 4 31 #define AC100_CLKOUT_MUX_WIDTH 1 32 #define AC100_CLKOUT_DIV_SHIFT 1 33 #define AC100_CLKOUT_DIV_WIDTH 3 34 #define AC100_CLKOUT_EN BIT(0) 35 36 /* RTC */ 37 #define AC100_RTC_SEC_MASK GENMASK(6, 0) 38 #define AC100_RTC_MIN_MASK GENMASK(6, 0) 39 #define AC100_RTC_HOU_MASK GENMASK(5, 0) 40 #define AC100_RTC_WEE_MASK GENMASK(2, 0) 41 #define AC100_RTC_DAY_MASK GENMASK(5, 0) 42 #define AC100_RTC_MON_MASK GENMASK(4, 0) 43 #define AC100_RTC_YEA_MASK GENMASK(7, 0) 44 #define AC100_RTC_YEA_LEAP BIT(15) 45 #define AC100_RTC_UPD_TRIGGER BIT(15) 46 47 /* Alarm (wall clock) */ 48 #define AC100_ALM_INT_ENABLE BIT(0) 49 50 #define AC100_ALM_SEC_MASK GENMASK(6, 0) 51 #define AC100_ALM_MIN_MASK GENMASK(6, 0) 52 #define AC100_ALM_HOU_MASK GENMASK(5, 0) 53 #define AC100_ALM_WEE_MASK GENMASK(2, 0) 54 #define AC100_ALM_DAY_MASK GENMASK(5, 0) 55 #define AC100_ALM_MON_MASK GENMASK(4, 0) 56 #define AC100_ALM_YEA_MASK GENMASK(7, 0) 57 #define AC100_ALM_ENABLE_FLAG BIT(15) 58 #define AC100_ALM_UPD_TRIGGER BIT(15) 59 60 /* 61 * The year parameter passed to the driver is usually an offset relative to 62 * the year 1900. This macro is used to convert this offset to another one 63 * relative to the minimum year allowed by the hardware. 64 * 65 * The year range is 1970 - 2069. This range is selected to match Allwinner's 66 * driver. 67 */ 68 #define AC100_YEAR_MIN 1970 69 #define AC100_YEAR_MAX 2069 70 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900) 71 72 struct ac100_clkout { 73 struct clk_hw hw; 74 struct regmap *regmap; 75 u8 offset; 76 }; 77 78 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw) 79 80 #define AC100_RTC_32K_NAME "ac100-rtc-32k" 81 #define AC100_RTC_32K_RATE 32768 82 #define AC100_CLKOUT_NUM 3 83 84 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = { 85 "ac100-cko1-rtc", 86 "ac100-cko2-rtc", 87 "ac100-cko3-rtc", 88 }; 89 90 struct ac100_rtc_dev { 91 struct rtc_device *rtc; 92 struct device *dev; 93 struct regmap *regmap; 94 int irq; 95 unsigned long alarm; 96 97 struct clk_hw *rtc_32k_clk; 98 struct ac100_clkout clks[AC100_CLKOUT_NUM]; 99 struct clk_hw_onecell_data *clk_data; 100 }; 101 102 /* 103 * Clock controls for 3 clock output pins 104 */ 105 106 static const struct clk_div_table ac100_clkout_prediv[] = { 107 { .val = 0, .div = 1 }, 108 { .val = 1, .div = 2 }, 109 { .val = 2, .div = 4 }, 110 { .val = 3, .div = 8 }, 111 { .val = 4, .div = 16 }, 112 { .val = 5, .div = 32 }, 113 { .val = 6, .div = 64 }, 114 { .val = 7, .div = 122 }, 115 { }, 116 }; 117 118 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */ 119 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw, 120 unsigned long prate) 121 { 122 struct ac100_clkout *clk = to_ac100_clkout(hw); 123 unsigned int reg, div; 124 125 regmap_read(clk->regmap, clk->offset, ®); 126 127 /* Handle pre-divider first */ 128 if (prate != AC100_RTC_32K_RATE) { 129 div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) & 130 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1); 131 prate = divider_recalc_rate(hw, prate, div, 132 ac100_clkout_prediv, 0, 133 AC100_CLKOUT_PRE_DIV_WIDTH); 134 } 135 136 div = (reg >> AC100_CLKOUT_DIV_SHIFT) & 137 (BIT(AC100_CLKOUT_DIV_WIDTH) - 1); 138 return divider_recalc_rate(hw, prate, div, NULL, 139 CLK_DIVIDER_POWER_OF_TWO, 140 AC100_CLKOUT_DIV_WIDTH); 141 } 142 143 static int ac100_clkout_determine_rate(struct clk_hw *hw, 144 struct clk_rate_request *req) 145 { 146 int i, ret, num_parents = clk_hw_get_num_parents(hw); 147 struct clk_hw *best_parent = NULL; 148 unsigned long best = 0; 149 150 for (i = 0; i < num_parents; i++) { 151 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i); 152 unsigned long prate; 153 154 /* 155 * The clock has two parents, one is a fixed clock which is 156 * internally registered by the ac100 driver. The other parent 157 * is a clock from the codec side of the chip, which we 158 * properly declare and reference in the devicetree and is 159 * not implemented in any driver right now. 160 * If the clock core looks for the parent of that second 161 * missing clock, it can't find one that is registered and 162 * returns NULL. 163 * So we end up in a situation where clk_hw_get_num_parents 164 * returns the amount of clocks we can be parented to, but 165 * clk_hw_get_parent_by_index will not return the orphan 166 * clocks. 167 * Thus we need to check if the parent exists before 168 * we get the parent rate, so we could use the RTC 169 * without waiting for the codec to be supported. 170 */ 171 if (!parent) 172 continue; 173 174 prate = clk_hw_get_rate(parent); 175 176 if (prate == AC100_RTC_32K_RATE) { 177 struct clk_rate_request div_req = *req; 178 179 div_req.best_parent_rate = prate; 180 181 ret = divider_determine_rate(hw, &div_req, NULL, 182 AC100_CLKOUT_DIV_WIDTH, 183 CLK_DIVIDER_POWER_OF_TWO); 184 if (ret != 0 || div_req.rate > req->rate) { 185 continue; 186 } else if (req->rate - div_req.rate < req->rate - best) { 187 best = div_req.rate; 188 best_parent = parent; 189 } 190 } else { 191 int j; 192 193 for (j = 0; ac100_clkout_prediv[j].div; j++) { 194 struct clk_rate_request div_req = *req; 195 unsigned long tmp_prate; 196 197 tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[j].div); 198 div_req.best_parent_rate = tmp_prate; 199 200 ret = divider_determine_rate(hw, &div_req, NULL, 201 AC100_CLKOUT_DIV_WIDTH, 202 CLK_DIVIDER_POWER_OF_TWO); 203 if (ret != 0 || div_req.rate > req->rate) { 204 continue; 205 } else if (req->rate - div_req.rate < req->rate - best) { 206 best = div_req.rate; 207 best_parent = parent; 208 } 209 } 210 } 211 } 212 213 if (!best) 214 return -EINVAL; 215 216 req->best_parent_hw = best_parent; 217 req->best_parent_rate = clk_hw_get_rate(best_parent); 218 req->rate = best; 219 220 return 0; 221 } 222 223 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate, 224 unsigned long prate) 225 { 226 struct ac100_clkout *clk = to_ac100_clkout(hw); 227 int div = 0, pre_div = 0; 228 229 do { 230 div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div, 231 prate, NULL, AC100_CLKOUT_DIV_WIDTH, 232 CLK_DIVIDER_POWER_OF_TWO); 233 if (div >= 0) 234 break; 235 } while (prate != AC100_RTC_32K_RATE && 236 ac100_clkout_prediv[++pre_div].div); 237 238 if (div < 0) 239 return div; 240 241 pre_div = ac100_clkout_prediv[pre_div].val; 242 243 regmap_update_bits(clk->regmap, clk->offset, 244 ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT | 245 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT, 246 (div - 1) << AC100_CLKOUT_DIV_SHIFT | 247 (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT); 248 249 return 0; 250 } 251 252 static int ac100_clkout_prepare(struct clk_hw *hw) 253 { 254 struct ac100_clkout *clk = to_ac100_clkout(hw); 255 256 return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 257 AC100_CLKOUT_EN); 258 } 259 260 static void ac100_clkout_unprepare(struct clk_hw *hw) 261 { 262 struct ac100_clkout *clk = to_ac100_clkout(hw); 263 264 regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0); 265 } 266 267 static int ac100_clkout_is_prepared(struct clk_hw *hw) 268 { 269 struct ac100_clkout *clk = to_ac100_clkout(hw); 270 unsigned int reg; 271 272 regmap_read(clk->regmap, clk->offset, ®); 273 274 return reg & AC100_CLKOUT_EN; 275 } 276 277 static u8 ac100_clkout_get_parent(struct clk_hw *hw) 278 { 279 struct ac100_clkout *clk = to_ac100_clkout(hw); 280 unsigned int reg; 281 282 regmap_read(clk->regmap, clk->offset, ®); 283 284 return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1; 285 } 286 287 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index) 288 { 289 struct ac100_clkout *clk = to_ac100_clkout(hw); 290 291 return regmap_update_bits(clk->regmap, clk->offset, 292 BIT(AC100_CLKOUT_MUX_SHIFT), 293 index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0); 294 } 295 296 static const struct clk_ops ac100_clkout_ops = { 297 .prepare = ac100_clkout_prepare, 298 .unprepare = ac100_clkout_unprepare, 299 .is_prepared = ac100_clkout_is_prepared, 300 .recalc_rate = ac100_clkout_recalc_rate, 301 .determine_rate = ac100_clkout_determine_rate, 302 .get_parent = ac100_clkout_get_parent, 303 .set_parent = ac100_clkout_set_parent, 304 .set_rate = ac100_clkout_set_rate, 305 }; 306 307 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip) 308 { 309 struct device_node *np = chip->dev->of_node; 310 const char *parents[2] = {AC100_RTC_32K_NAME}; 311 int i, ret; 312 313 chip->clk_data = devm_kzalloc(chip->dev, 314 struct_size(chip->clk_data, hws, 315 AC100_CLKOUT_NUM), 316 GFP_KERNEL); 317 if (!chip->clk_data) 318 return -ENOMEM; 319 320 chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev, 321 AC100_RTC_32K_NAME, 322 NULL, 0, 323 AC100_RTC_32K_RATE); 324 if (IS_ERR(chip->rtc_32k_clk)) { 325 ret = PTR_ERR(chip->rtc_32k_clk); 326 dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n", 327 ret); 328 return ret; 329 } 330 331 parents[1] = of_clk_get_parent_name(np, 0); 332 if (!parents[1]) { 333 dev_err(chip->dev, "Failed to get ADDA 4M clock\n"); 334 return -EINVAL; 335 } 336 337 for (i = 0; i < AC100_CLKOUT_NUM; i++) { 338 struct ac100_clkout *clk = &chip->clks[i]; 339 struct clk_init_data init = { 340 .name = ac100_clkout_names[i], 341 .ops = &ac100_clkout_ops, 342 .parent_names = parents, 343 .num_parents = ARRAY_SIZE(parents), 344 .flags = 0, 345 }; 346 347 of_property_read_string_index(np, "clock-output-names", 348 i, &init.name); 349 clk->regmap = chip->regmap; 350 clk->offset = AC100_CLKOUT_CTRL1 + i; 351 clk->hw.init = &init; 352 353 ret = devm_clk_hw_register(chip->dev, &clk->hw); 354 if (ret) { 355 dev_err(chip->dev, "Failed to register clk '%s': %d\n", 356 init.name, ret); 357 goto err_unregister_rtc_32k; 358 } 359 360 chip->clk_data->hws[i] = &clk->hw; 361 } 362 363 chip->clk_data->num = i; 364 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data); 365 if (ret) 366 goto err_unregister_rtc_32k; 367 368 return 0; 369 370 err_unregister_rtc_32k: 371 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); 372 373 return ret; 374 } 375 376 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip) 377 { 378 of_clk_del_provider(chip->dev->of_node); 379 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); 380 } 381 382 /* 383 * RTC related bits 384 */ 385 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm) 386 { 387 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 388 struct regmap *regmap = chip->regmap; 389 u16 reg[7]; 390 int ret; 391 392 ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7); 393 if (ret) 394 return ret; 395 396 rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK); 397 rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK); 398 rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK); 399 rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK); 400 rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK); 401 rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1; 402 rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) + 403 AC100_YEAR_OFF; 404 405 return 0; 406 } 407 408 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm) 409 { 410 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 411 struct regmap *regmap = chip->regmap; 412 int year; 413 u16 reg[8]; 414 415 /* our RTC has a limited year range... */ 416 year = rtc_tm->tm_year - AC100_YEAR_OFF; 417 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { 418 dev_err(dev, "rtc only supports year in range %d - %d\n", 419 AC100_YEAR_MIN, AC100_YEAR_MAX); 420 return -EINVAL; 421 } 422 423 /* convert to BCD */ 424 reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK; 425 reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK; 426 reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK; 427 reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK; 428 reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK; 429 reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK; 430 reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK; 431 /* trigger write */ 432 reg[7] = AC100_RTC_UPD_TRIGGER; 433 434 /* Is it a leap year? */ 435 if (is_leap_year(year + AC100_YEAR_OFF + 1900)) 436 reg[6] |= AC100_RTC_YEA_LEAP; 437 438 return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8); 439 } 440 441 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en) 442 { 443 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 444 struct regmap *regmap = chip->regmap; 445 unsigned int val; 446 447 val = en ? AC100_ALM_INT_ENABLE : 0; 448 449 return regmap_write(regmap, AC100_ALM_INT_ENA, val); 450 } 451 452 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm) 453 { 454 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 455 struct regmap *regmap = chip->regmap; 456 struct rtc_time *alrm_tm = &alrm->time; 457 u16 reg[7]; 458 unsigned int val; 459 int ret; 460 461 ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val); 462 if (ret) 463 return ret; 464 465 alrm->enabled = !!(val & AC100_ALM_INT_ENABLE); 466 467 ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7); 468 if (ret) 469 return ret; 470 471 alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK); 472 alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK); 473 alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK); 474 alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK); 475 alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK); 476 alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1; 477 alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) + 478 AC100_YEAR_OFF; 479 480 return 0; 481 } 482 483 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 484 { 485 struct ac100_rtc_dev *chip = dev_get_drvdata(dev); 486 struct regmap *regmap = chip->regmap; 487 struct rtc_time *alrm_tm = &alrm->time; 488 u16 reg[8]; 489 int year; 490 int ret; 491 492 /* our alarm has a limited year range... */ 493 year = alrm_tm->tm_year - AC100_YEAR_OFF; 494 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { 495 dev_err(dev, "alarm only supports year in range %d - %d\n", 496 AC100_YEAR_MIN, AC100_YEAR_MAX); 497 return -EINVAL; 498 } 499 500 /* convert to BCD */ 501 reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) | 502 AC100_ALM_ENABLE_FLAG; 503 reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) | 504 AC100_ALM_ENABLE_FLAG; 505 reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) | 506 AC100_ALM_ENABLE_FLAG; 507 /* Do not enable weekday alarm */ 508 reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK; 509 reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) | 510 AC100_ALM_ENABLE_FLAG; 511 reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) | 512 AC100_ALM_ENABLE_FLAG; 513 reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) | 514 AC100_ALM_ENABLE_FLAG; 515 /* trigger write */ 516 reg[7] = AC100_ALM_UPD_TRIGGER; 517 518 ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8); 519 if (ret) 520 return ret; 521 522 return ac100_rtc_alarm_irq_enable(dev, alrm->enabled); 523 } 524 525 static irqreturn_t ac100_rtc_irq(int irq, void *data) 526 { 527 struct ac100_rtc_dev *chip = data; 528 struct regmap *regmap = chip->regmap; 529 unsigned int val = 0; 530 int ret; 531 532 rtc_lock(chip->rtc); 533 534 /* read status */ 535 ret = regmap_read(regmap, AC100_ALM_INT_STA, &val); 536 if (ret) 537 goto out; 538 539 if (val & AC100_ALM_INT_ENABLE) { 540 /* signal rtc framework */ 541 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); 542 543 /* clear status */ 544 ret = regmap_write(regmap, AC100_ALM_INT_STA, val); 545 if (ret) 546 goto out; 547 548 /* disable interrupt */ 549 ret = ac100_rtc_alarm_irq_enable(chip->dev, 0); 550 if (ret) 551 goto out; 552 } 553 554 out: 555 rtc_unlock(chip->rtc); 556 return IRQ_HANDLED; 557 } 558 559 static const struct rtc_class_ops ac100_rtc_ops = { 560 .read_time = ac100_rtc_get_time, 561 .set_time = ac100_rtc_set_time, 562 .read_alarm = ac100_rtc_get_alarm, 563 .set_alarm = ac100_rtc_set_alarm, 564 .alarm_irq_enable = ac100_rtc_alarm_irq_enable, 565 }; 566 567 static int ac100_rtc_probe(struct platform_device *pdev) 568 { 569 struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent); 570 struct ac100_rtc_dev *chip; 571 int ret; 572 573 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); 574 if (!chip) 575 return -ENOMEM; 576 577 platform_set_drvdata(pdev, chip); 578 chip->dev = &pdev->dev; 579 chip->regmap = ac100->regmap; 580 581 chip->irq = platform_get_irq(pdev, 0); 582 if (chip->irq < 0) 583 return chip->irq; 584 585 chip->rtc = devm_rtc_allocate_device(&pdev->dev); 586 if (IS_ERR(chip->rtc)) 587 return PTR_ERR(chip->rtc); 588 589 chip->rtc->ops = &ac100_rtc_ops; 590 591 ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL, 592 ac100_rtc_irq, 593 IRQF_SHARED | IRQF_ONESHOT, 594 dev_name(&pdev->dev), chip); 595 if (ret) { 596 dev_err(&pdev->dev, "Could not request IRQ\n"); 597 return ret; 598 } 599 600 /* always use 24 hour mode */ 601 regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR, 602 AC100_RTC_CTRL_24HOUR); 603 604 /* disable counter alarm interrupt */ 605 regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0); 606 607 /* clear counter alarm pending interrupts */ 608 regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE); 609 610 ret = ac100_rtc_register_clks(chip); 611 if (ret) 612 return ret; 613 614 return devm_rtc_register_device(chip->rtc); 615 } 616 617 static void ac100_rtc_remove(struct platform_device *pdev) 618 { 619 struct ac100_rtc_dev *chip = platform_get_drvdata(pdev); 620 621 ac100_rtc_unregister_clks(chip); 622 } 623 624 static const struct of_device_id ac100_rtc_match[] = { 625 { .compatible = "x-powers,ac100-rtc" }, 626 { }, 627 }; 628 MODULE_DEVICE_TABLE(of, ac100_rtc_match); 629 630 static struct platform_driver ac100_rtc_driver = { 631 .probe = ac100_rtc_probe, 632 .remove = ac100_rtc_remove, 633 .driver = { 634 .name = "ac100-rtc", 635 .of_match_table = of_match_ptr(ac100_rtc_match), 636 }, 637 }; 638 module_platform_driver(ac100_rtc_driver); 639 640 MODULE_DESCRIPTION("X-Powers AC100 RTC driver"); 641 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>"); 642 MODULE_LICENSE("GPL v2"); 643