1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, interface functions 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * based on arch/arm/common/rtctime.c 9 */ 10 11 #include <linux/rtc.h> 12 #include <linux/sched.h> 13 #include <linux/module.h> 14 #include <linux/log2.h> 15 #include <linux/workqueue.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/rtc.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 time64_t secs; 26 27 if (!rtc->offset_secs) 28 return; 29 30 secs = rtc_tm_to_time64(tm); 31 32 /* 33 * Since the reading time values from RTC device are always in the RTC 34 * original valid range, but we need to skip the overlapped region 35 * between expanded range and original range, which is no need to add 36 * the offset. 37 */ 38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 39 (rtc->start_secs < rtc->range_min && 40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 41 return; 42 43 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 44 } 45 46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 time64_t secs; 49 50 if (!rtc->offset_secs) 51 return; 52 53 secs = rtc_tm_to_time64(tm); 54 55 /* 56 * If the setting time values are in the valid range of RTC hardware 57 * device, then no need to subtract the offset when setting time to RTC 58 * device. Otherwise we need to subtract the offset to make the time 59 * values are valid for RTC hardware device. 60 */ 61 if (secs >= rtc->range_min && secs <= rtc->range_max) 62 return; 63 64 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 65 } 66 67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 68 { 69 if (rtc->range_min != rtc->range_max) { 70 time64_t time = rtc_tm_to_time64(tm); 71 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 72 rtc->range_min; 73 timeu64_t range_max = rtc->set_start_time ? 74 (rtc->start_secs + rtc->range_max - rtc->range_min) : 75 rtc->range_max; 76 77 if (time < range_min || time > range_max) 78 return -ERANGE; 79 } 80 81 return 0; 82 } 83 84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 85 { 86 int err; 87 88 if (!rtc->ops) { 89 err = -ENODEV; 90 } else if (!rtc->ops->read_time) { 91 err = -EINVAL; 92 } else { 93 memset(tm, 0, sizeof(struct rtc_time)); 94 err = rtc->ops->read_time(rtc->dev.parent, tm); 95 if (err < 0) { 96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 97 err); 98 return err; 99 } 100 101 rtc_add_offset(rtc, tm); 102 103 err = rtc_valid_tm(tm); 104 if (err < 0) 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 106 } 107 return err; 108 } 109 110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 111 { 112 int err; 113 114 err = mutex_lock_interruptible(&rtc->ops_lock); 115 if (err) 116 return err; 117 118 err = __rtc_read_time(rtc, tm); 119 mutex_unlock(&rtc->ops_lock); 120 121 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 122 return err; 123 } 124 EXPORT_SYMBOL_GPL(rtc_read_time); 125 126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 127 { 128 int err, uie; 129 130 err = rtc_valid_tm(tm); 131 if (err != 0) 132 return err; 133 134 err = rtc_valid_range(rtc, tm); 135 if (err) 136 return err; 137 138 rtc_subtract_offset(rtc, tm); 139 140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; 142 #else 143 uie = rtc->uie_rtctimer.enabled; 144 #endif 145 if (uie) { 146 err = rtc_update_irq_enable(rtc, 0); 147 if (err) 148 return err; 149 } 150 151 err = mutex_lock_interruptible(&rtc->ops_lock); 152 if (err) 153 return err; 154 155 if (!rtc->ops) 156 err = -ENODEV; 157 else if (rtc->ops->set_time) 158 err = rtc->ops->set_time(rtc->dev.parent, tm); 159 else 160 err = -EINVAL; 161 162 pm_stay_awake(rtc->dev.parent); 163 mutex_unlock(&rtc->ops_lock); 164 /* A timer might have just expired */ 165 schedule_work(&rtc->irqwork); 166 167 if (uie) { 168 err = rtc_update_irq_enable(rtc, 1); 169 if (err) 170 return err; 171 } 172 173 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 174 return err; 175 } 176 EXPORT_SYMBOL_GPL(rtc_set_time); 177 178 static int rtc_read_alarm_internal(struct rtc_device *rtc, 179 struct rtc_wkalrm *alarm) 180 { 181 int err; 182 183 err = mutex_lock_interruptible(&rtc->ops_lock); 184 if (err) 185 return err; 186 187 if (!rtc->ops) { 188 err = -ENODEV; 189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { 190 err = -EINVAL; 191 } else { 192 alarm->enabled = 0; 193 alarm->pending = 0; 194 alarm->time.tm_sec = -1; 195 alarm->time.tm_min = -1; 196 alarm->time.tm_hour = -1; 197 alarm->time.tm_mday = -1; 198 alarm->time.tm_mon = -1; 199 alarm->time.tm_year = -1; 200 alarm->time.tm_wday = -1; 201 alarm->time.tm_yday = -1; 202 alarm->time.tm_isdst = -1; 203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 204 } 205 206 mutex_unlock(&rtc->ops_lock); 207 208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 209 return err; 210 } 211 212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 213 { 214 int err; 215 struct rtc_time before, now; 216 int first_time = 1; 217 time64_t t_now, t_alm; 218 enum { none, day, month, year } missing = none; 219 unsigned int days; 220 221 /* The lower level RTC driver may return -1 in some fields, 222 * creating invalid alarm->time values, for reasons like: 223 * 224 * - The hardware may not be capable of filling them in; 225 * many alarms match only on time-of-day fields, not 226 * day/month/year calendar data. 227 * 228 * - Some hardware uses illegal values as "wildcard" match 229 * values, which non-Linux firmware (like a BIOS) may try 230 * to set up as e.g. "alarm 15 minutes after each hour". 231 * Linux uses only oneshot alarms. 232 * 233 * When we see that here, we deal with it by using values from 234 * a current RTC timestamp for any missing (-1) values. The 235 * RTC driver prevents "periodic alarm" modes. 236 * 237 * But this can be racey, because some fields of the RTC timestamp 238 * may have wrapped in the interval since we read the RTC alarm, 239 * which would lead to us inserting inconsistent values in place 240 * of the -1 fields. 241 * 242 * Reading the alarm and timestamp in the reverse sequence 243 * would have the same race condition, and not solve the issue. 244 * 245 * So, we must first read the RTC timestamp, 246 * then read the RTC alarm value, 247 * and then read a second RTC timestamp. 248 * 249 * If any fields of the second timestamp have changed 250 * when compared with the first timestamp, then we know 251 * our timestamp may be inconsistent with that used by 252 * the low-level rtc_read_alarm_internal() function. 253 * 254 * So, when the two timestamps disagree, we just loop and do 255 * the process again to get a fully consistent set of values. 256 * 257 * This could all instead be done in the lower level driver, 258 * but since more than one lower level RTC implementation needs it, 259 * then it's probably best to do it here instead of there.. 260 */ 261 262 /* Get the "before" timestamp */ 263 err = rtc_read_time(rtc, &before); 264 if (err < 0) 265 return err; 266 do { 267 if (!first_time) 268 memcpy(&before, &now, sizeof(struct rtc_time)); 269 first_time = 0; 270 271 /* get the RTC alarm values, which may be incomplete */ 272 err = rtc_read_alarm_internal(rtc, alarm); 273 if (err) 274 return err; 275 276 /* full-function RTCs won't have such missing fields */ 277 if (rtc_valid_tm(&alarm->time) == 0) { 278 rtc_add_offset(rtc, &alarm->time); 279 return 0; 280 } 281 282 /* get the "after" timestamp, to detect wrapped fields */ 283 err = rtc_read_time(rtc, &now); 284 if (err < 0) 285 return err; 286 287 /* note that tm_sec is a "don't care" value here: */ 288 } while (before.tm_min != now.tm_min || 289 before.tm_hour != now.tm_hour || 290 before.tm_mon != now.tm_mon || 291 before.tm_year != now.tm_year); 292 293 /* Fill in the missing alarm fields using the timestamp; we 294 * know there's at least one since alarm->time is invalid. 295 */ 296 if (alarm->time.tm_sec == -1) 297 alarm->time.tm_sec = now.tm_sec; 298 if (alarm->time.tm_min == -1) 299 alarm->time.tm_min = now.tm_min; 300 if (alarm->time.tm_hour == -1) 301 alarm->time.tm_hour = now.tm_hour; 302 303 /* For simplicity, only support date rollover for now */ 304 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 305 alarm->time.tm_mday = now.tm_mday; 306 missing = day; 307 } 308 if ((unsigned int)alarm->time.tm_mon >= 12) { 309 alarm->time.tm_mon = now.tm_mon; 310 if (missing == none) 311 missing = month; 312 } 313 if (alarm->time.tm_year == -1) { 314 alarm->time.tm_year = now.tm_year; 315 if (missing == none) 316 missing = year; 317 } 318 319 /* Can't proceed if alarm is still invalid after replacing 320 * missing fields. 321 */ 322 err = rtc_valid_tm(&alarm->time); 323 if (err) 324 goto done; 325 326 /* with luck, no rollover is needed */ 327 t_now = rtc_tm_to_time64(&now); 328 t_alm = rtc_tm_to_time64(&alarm->time); 329 if (t_now < t_alm) 330 goto done; 331 332 switch (missing) { 333 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 334 * that will trigger at 5am will do so at 5am Tuesday, which 335 * could also be in the next month or year. This is a common 336 * case, especially for PCs. 337 */ 338 case day: 339 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 340 t_alm += 24 * 60 * 60; 341 rtc_time64_to_tm(t_alm, &alarm->time); 342 break; 343 344 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 345 * be next month. An alarm matching on the 30th, 29th, or 28th 346 * may end up in the month after that! Many newer PCs support 347 * this type of alarm. 348 */ 349 case month: 350 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 351 do { 352 if (alarm->time.tm_mon < 11) { 353 alarm->time.tm_mon++; 354 } else { 355 alarm->time.tm_mon = 0; 356 alarm->time.tm_year++; 357 } 358 days = rtc_month_days(alarm->time.tm_mon, 359 alarm->time.tm_year); 360 } while (days < alarm->time.tm_mday); 361 break; 362 363 /* Year rollover ... easy except for leap years! */ 364 case year: 365 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 366 do { 367 alarm->time.tm_year++; 368 } while (!is_leap_year(alarm->time.tm_year + 1900) && 369 rtc_valid_tm(&alarm->time) != 0); 370 break; 371 372 default: 373 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 374 } 375 376 err = rtc_valid_tm(&alarm->time); 377 378 done: 379 if (err && alarm->enabled) 380 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", 381 &alarm->time); 382 383 return err; 384 } 385 386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 387 { 388 int err; 389 390 err = mutex_lock_interruptible(&rtc->ops_lock); 391 if (err) 392 return err; 393 if (!rtc->ops) { 394 err = -ENODEV; 395 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) { 396 err = -EINVAL; 397 } else { 398 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 399 alarm->enabled = rtc->aie_timer.enabled; 400 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 401 } 402 mutex_unlock(&rtc->ops_lock); 403 404 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 405 return err; 406 } 407 EXPORT_SYMBOL_GPL(rtc_read_alarm); 408 409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 410 { 411 struct rtc_time tm; 412 time64_t now, scheduled; 413 int err; 414 415 err = rtc_valid_tm(&alarm->time); 416 if (err) 417 return err; 418 419 scheduled = rtc_tm_to_time64(&alarm->time); 420 421 /* Make sure we're not setting alarms in the past */ 422 err = __rtc_read_time(rtc, &tm); 423 if (err) 424 return err; 425 now = rtc_tm_to_time64(&tm); 426 427 if (scheduled <= now) 428 return -ETIME; 429 /* 430 * XXX - We just checked to make sure the alarm time is not 431 * in the past, but there is still a race window where if 432 * the is alarm set for the next second and the second ticks 433 * over right here, before we set the alarm. 434 */ 435 436 rtc_subtract_offset(rtc, &alarm->time); 437 438 if (!rtc->ops) 439 err = -ENODEV; 440 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 441 err = -EINVAL; 442 else 443 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 444 445 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 446 return err; 447 } 448 449 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 450 { 451 ktime_t alarm_time; 452 int err; 453 454 if (!rtc->ops) 455 return -ENODEV; 456 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 457 return -EINVAL; 458 459 err = rtc_valid_tm(&alarm->time); 460 if (err != 0) 461 return err; 462 463 err = rtc_valid_range(rtc, &alarm->time); 464 if (err) 465 return err; 466 467 err = mutex_lock_interruptible(&rtc->ops_lock); 468 if (err) 469 return err; 470 if (rtc->aie_timer.enabled) 471 rtc_timer_remove(rtc, &rtc->aie_timer); 472 473 alarm_time = rtc_tm_to_ktime(alarm->time); 474 /* 475 * Round down so we never miss a deadline, checking for past deadline is 476 * done in __rtc_set_alarm 477 */ 478 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features)) 479 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC); 480 481 rtc->aie_timer.node.expires = alarm_time; 482 rtc->aie_timer.period = 0; 483 if (alarm->enabled) 484 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 485 486 mutex_unlock(&rtc->ops_lock); 487 488 return err; 489 } 490 EXPORT_SYMBOL_GPL(rtc_set_alarm); 491 492 /* Called once per device from rtc_device_register */ 493 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 494 { 495 int err; 496 struct rtc_time now; 497 498 err = rtc_valid_tm(&alarm->time); 499 if (err != 0) 500 return err; 501 502 err = rtc_read_time(rtc, &now); 503 if (err) 504 return err; 505 506 err = mutex_lock_interruptible(&rtc->ops_lock); 507 if (err) 508 return err; 509 510 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 511 rtc->aie_timer.period = 0; 512 513 /* Alarm has to be enabled & in the future for us to enqueue it */ 514 if (alarm->enabled && (rtc_tm_to_ktime(now) < 515 rtc->aie_timer.node.expires)) { 516 rtc->aie_timer.enabled = 1; 517 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 518 trace_rtc_timer_enqueue(&rtc->aie_timer); 519 } 520 mutex_unlock(&rtc->ops_lock); 521 return err; 522 } 523 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 524 525 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 526 { 527 int err; 528 529 err = mutex_lock_interruptible(&rtc->ops_lock); 530 if (err) 531 return err; 532 533 if (rtc->aie_timer.enabled != enabled) { 534 if (enabled) 535 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 536 else 537 rtc_timer_remove(rtc, &rtc->aie_timer); 538 } 539 540 if (err) 541 /* nothing */; 542 else if (!rtc->ops) 543 err = -ENODEV; 544 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 545 err = -EINVAL; 546 else 547 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 548 549 mutex_unlock(&rtc->ops_lock); 550 551 trace_rtc_alarm_irq_enable(enabled, err); 552 return err; 553 } 554 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 555 556 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 557 { 558 int err; 559 560 err = mutex_lock_interruptible(&rtc->ops_lock); 561 if (err) 562 return err; 563 564 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 565 if (enabled == 0 && rtc->uie_irq_active) { 566 mutex_unlock(&rtc->ops_lock); 567 return rtc_dev_update_irq_enable_emul(rtc, 0); 568 } 569 #endif 570 /* make sure we're changing state */ 571 if (rtc->uie_rtctimer.enabled == enabled) 572 goto out; 573 574 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) || 575 !test_bit(RTC_FEATURE_ALARM, rtc->features)) { 576 mutex_unlock(&rtc->ops_lock); 577 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 578 return rtc_dev_update_irq_enable_emul(rtc, enabled); 579 #else 580 return -EINVAL; 581 #endif 582 } 583 584 if (enabled) { 585 struct rtc_time tm; 586 ktime_t now, onesec; 587 588 err = __rtc_read_time(rtc, &tm); 589 if (err) 590 goto out; 591 onesec = ktime_set(1, 0); 592 now = rtc_tm_to_ktime(tm); 593 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 594 rtc->uie_rtctimer.period = ktime_set(1, 0); 595 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 596 } else { 597 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 598 } 599 600 out: 601 mutex_unlock(&rtc->ops_lock); 602 603 return err; 604 } 605 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 606 607 /** 608 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 609 * @rtc: pointer to the rtc device 610 * @num: number of occurence of the event 611 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF 612 * 613 * This function is called when an AIE, UIE or PIE mode interrupt 614 * has occurred (or been emulated). 615 * 616 */ 617 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 618 { 619 unsigned long flags; 620 621 /* mark one irq of the appropriate mode */ 622 spin_lock_irqsave(&rtc->irq_lock, flags); 623 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); 624 spin_unlock_irqrestore(&rtc->irq_lock, flags); 625 626 wake_up_interruptible(&rtc->irq_queue); 627 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 628 } 629 630 /** 631 * rtc_aie_update_irq - AIE mode rtctimer hook 632 * @rtc: pointer to the rtc_device 633 * 634 * This functions is called when the aie_timer expires. 635 */ 636 void rtc_aie_update_irq(struct rtc_device *rtc) 637 { 638 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 639 } 640 641 /** 642 * rtc_uie_update_irq - UIE mode rtctimer hook 643 * @rtc: pointer to the rtc_device 644 * 645 * This functions is called when the uie_timer expires. 646 */ 647 void rtc_uie_update_irq(struct rtc_device *rtc) 648 { 649 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 650 } 651 652 /** 653 * rtc_pie_update_irq - PIE mode hrtimer hook 654 * @timer: pointer to the pie mode hrtimer 655 * 656 * This function is used to emulate PIE mode interrupts 657 * using an hrtimer. This function is called when the periodic 658 * hrtimer expires. 659 */ 660 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 661 { 662 struct rtc_device *rtc; 663 ktime_t period; 664 u64 count; 665 666 rtc = container_of(timer, struct rtc_device, pie_timer); 667 668 period = NSEC_PER_SEC / rtc->irq_freq; 669 count = hrtimer_forward_now(timer, period); 670 671 rtc_handle_legacy_irq(rtc, count, RTC_PF); 672 673 return HRTIMER_RESTART; 674 } 675 676 /** 677 * rtc_update_irq - Triggered when a RTC interrupt occurs. 678 * @rtc: the rtc device 679 * @num: how many irqs are being reported (usually one) 680 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 681 * Context: any 682 */ 683 void rtc_update_irq(struct rtc_device *rtc, 684 unsigned long num, unsigned long events) 685 { 686 if (IS_ERR_OR_NULL(rtc)) 687 return; 688 689 pm_stay_awake(rtc->dev.parent); 690 schedule_work(&rtc->irqwork); 691 } 692 EXPORT_SYMBOL_GPL(rtc_update_irq); 693 694 struct rtc_device *rtc_class_open(const char *name) 695 { 696 struct device *dev; 697 struct rtc_device *rtc = NULL; 698 699 dev = class_find_device_by_name(&rtc_class, name); 700 if (dev) 701 rtc = to_rtc_device(dev); 702 703 if (rtc) { 704 if (!try_module_get(rtc->owner)) { 705 put_device(dev); 706 rtc = NULL; 707 } 708 } 709 710 return rtc; 711 } 712 EXPORT_SYMBOL_GPL(rtc_class_open); 713 714 void rtc_class_close(struct rtc_device *rtc) 715 { 716 module_put(rtc->owner); 717 put_device(&rtc->dev); 718 } 719 EXPORT_SYMBOL_GPL(rtc_class_close); 720 721 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 722 { 723 /* 724 * We always cancel the timer here first, because otherwise 725 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 726 * when we manage to start the timer before the callback 727 * returns HRTIMER_RESTART. 728 * 729 * We cannot use hrtimer_cancel() here as a running callback 730 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 731 * would spin forever. 732 */ 733 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 734 return -1; 735 736 if (enabled) { 737 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 738 739 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 740 } 741 return 0; 742 } 743 744 /** 745 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 746 * @rtc: the rtc device 747 * @enabled: true to enable periodic IRQs 748 * Context: any 749 * 750 * Note that rtc_irq_set_freq() should previously have been used to 751 * specify the desired frequency of periodic IRQ. 752 */ 753 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 754 { 755 int err = 0; 756 757 while (rtc_update_hrtimer(rtc, enabled) < 0) 758 cpu_relax(); 759 760 rtc->pie_enabled = enabled; 761 762 trace_rtc_irq_set_state(enabled, err); 763 return err; 764 } 765 766 /** 767 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 768 * @rtc: the rtc device 769 * @freq: positive frequency 770 * Context: any 771 * 772 * Note that rtc_irq_set_state() is used to enable or disable the 773 * periodic IRQs. 774 */ 775 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 776 { 777 int err = 0; 778 779 if (freq <= 0 || freq > RTC_MAX_FREQ) 780 return -EINVAL; 781 782 rtc->irq_freq = freq; 783 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 784 cpu_relax(); 785 786 trace_rtc_irq_set_freq(freq, err); 787 return err; 788 } 789 790 /** 791 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 792 * @rtc: rtc device 793 * @timer: timer being added. 794 * 795 * Enqueues a timer onto the rtc devices timerqueue and sets 796 * the next alarm event appropriately. 797 * 798 * Sets the enabled bit on the added timer. 799 * 800 * Must hold ops_lock for proper serialization of timerqueue 801 */ 802 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 803 { 804 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 805 struct rtc_time tm; 806 ktime_t now; 807 int err; 808 809 err = __rtc_read_time(rtc, &tm); 810 if (err) 811 return err; 812 813 timer->enabled = 1; 814 now = rtc_tm_to_ktime(tm); 815 816 /* Skip over expired timers */ 817 while (next) { 818 if (next->expires >= now) 819 break; 820 next = timerqueue_iterate_next(next); 821 } 822 823 timerqueue_add(&rtc->timerqueue, &timer->node); 824 trace_rtc_timer_enqueue(timer); 825 if (!next || ktime_before(timer->node.expires, next->expires)) { 826 struct rtc_wkalrm alarm; 827 828 alarm.time = rtc_ktime_to_tm(timer->node.expires); 829 alarm.enabled = 1; 830 err = __rtc_set_alarm(rtc, &alarm); 831 if (err == -ETIME) { 832 pm_stay_awake(rtc->dev.parent); 833 schedule_work(&rtc->irqwork); 834 } else if (err) { 835 timerqueue_del(&rtc->timerqueue, &timer->node); 836 trace_rtc_timer_dequeue(timer); 837 timer->enabled = 0; 838 return err; 839 } 840 } 841 return 0; 842 } 843 844 static void rtc_alarm_disable(struct rtc_device *rtc) 845 { 846 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 847 return; 848 849 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 850 trace_rtc_alarm_irq_enable(0, 0); 851 } 852 853 /** 854 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 855 * @rtc: rtc device 856 * @timer: timer being removed. 857 * 858 * Removes a timer onto the rtc devices timerqueue and sets 859 * the next alarm event appropriately. 860 * 861 * Clears the enabled bit on the removed timer. 862 * 863 * Must hold ops_lock for proper serialization of timerqueue 864 */ 865 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 866 { 867 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 868 869 timerqueue_del(&rtc->timerqueue, &timer->node); 870 trace_rtc_timer_dequeue(timer); 871 timer->enabled = 0; 872 if (next == &timer->node) { 873 struct rtc_wkalrm alarm; 874 int err; 875 876 next = timerqueue_getnext(&rtc->timerqueue); 877 if (!next) { 878 rtc_alarm_disable(rtc); 879 return; 880 } 881 alarm.time = rtc_ktime_to_tm(next->expires); 882 alarm.enabled = 1; 883 err = __rtc_set_alarm(rtc, &alarm); 884 if (err == -ETIME) { 885 pm_stay_awake(rtc->dev.parent); 886 schedule_work(&rtc->irqwork); 887 } 888 } 889 } 890 891 /** 892 * rtc_timer_do_work - Expires rtc timers 893 * @work: work item 894 * 895 * Expires rtc timers. Reprograms next alarm event if needed. 896 * Called via worktask. 897 * 898 * Serializes access to timerqueue via ops_lock mutex 899 */ 900 void rtc_timer_do_work(struct work_struct *work) 901 { 902 struct rtc_timer *timer; 903 struct timerqueue_node *next; 904 ktime_t now; 905 struct rtc_time tm; 906 907 struct rtc_device *rtc = 908 container_of(work, struct rtc_device, irqwork); 909 910 mutex_lock(&rtc->ops_lock); 911 again: 912 __rtc_read_time(rtc, &tm); 913 now = rtc_tm_to_ktime(tm); 914 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 915 if (next->expires > now) 916 break; 917 918 /* expire timer */ 919 timer = container_of(next, struct rtc_timer, node); 920 timerqueue_del(&rtc->timerqueue, &timer->node); 921 trace_rtc_timer_dequeue(timer); 922 timer->enabled = 0; 923 if (timer->func) 924 timer->func(timer->rtc); 925 926 trace_rtc_timer_fired(timer); 927 /* Re-add/fwd periodic timers */ 928 if (ktime_to_ns(timer->period)) { 929 timer->node.expires = ktime_add(timer->node.expires, 930 timer->period); 931 timer->enabled = 1; 932 timerqueue_add(&rtc->timerqueue, &timer->node); 933 trace_rtc_timer_enqueue(timer); 934 } 935 } 936 937 /* Set next alarm */ 938 if (next) { 939 struct rtc_wkalrm alarm; 940 int err; 941 int retry = 3; 942 943 alarm.time = rtc_ktime_to_tm(next->expires); 944 alarm.enabled = 1; 945 reprogram: 946 err = __rtc_set_alarm(rtc, &alarm); 947 if (err == -ETIME) { 948 goto again; 949 } else if (err) { 950 if (retry-- > 0) 951 goto reprogram; 952 953 timer = container_of(next, struct rtc_timer, node); 954 timerqueue_del(&rtc->timerqueue, &timer->node); 955 trace_rtc_timer_dequeue(timer); 956 timer->enabled = 0; 957 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 958 goto again; 959 } 960 } else { 961 rtc_alarm_disable(rtc); 962 } 963 964 pm_relax(rtc->dev.parent); 965 mutex_unlock(&rtc->ops_lock); 966 } 967 968 /* rtc_timer_init - Initializes an rtc_timer 969 * @timer: timer to be intiialized 970 * @f: function pointer to be called when timer fires 971 * @rtc: pointer to the rtc_device 972 * 973 * Kernel interface to initializing an rtc_timer. 974 */ 975 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), 976 struct rtc_device *rtc) 977 { 978 timerqueue_init(&timer->node); 979 timer->enabled = 0; 980 timer->func = f; 981 timer->rtc = rtc; 982 } 983 984 /* rtc_timer_start - Sets an rtc_timer to fire in the future 985 * @ rtc: rtc device to be used 986 * @ timer: timer being set 987 * @ expires: time at which to expire the timer 988 * @ period: period that the timer will recur 989 * 990 * Kernel interface to set an rtc_timer 991 */ 992 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 993 ktime_t expires, ktime_t period) 994 { 995 int ret = 0; 996 997 mutex_lock(&rtc->ops_lock); 998 if (timer->enabled) 999 rtc_timer_remove(rtc, timer); 1000 1001 timer->node.expires = expires; 1002 timer->period = period; 1003 1004 ret = rtc_timer_enqueue(rtc, timer); 1005 1006 mutex_unlock(&rtc->ops_lock); 1007 return ret; 1008 } 1009 1010 /* rtc_timer_cancel - Stops an rtc_timer 1011 * @ rtc: rtc device to be used 1012 * @ timer: timer being set 1013 * 1014 * Kernel interface to cancel an rtc_timer 1015 */ 1016 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1017 { 1018 mutex_lock(&rtc->ops_lock); 1019 if (timer->enabled) 1020 rtc_timer_remove(rtc, timer); 1021 mutex_unlock(&rtc->ops_lock); 1022 } 1023 1024 /** 1025 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1026 * @rtc: rtc device to be used 1027 * @offset: the offset in parts per billion 1028 * 1029 * see below for details. 1030 * 1031 * Kernel interface to read rtc clock offset 1032 * Returns 0 on success, or a negative number on error. 1033 * If read_offset() is not implemented for the rtc, return -EINVAL 1034 */ 1035 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1036 { 1037 int ret; 1038 1039 if (!rtc->ops) 1040 return -ENODEV; 1041 1042 if (!rtc->ops->read_offset) 1043 return -EINVAL; 1044 1045 mutex_lock(&rtc->ops_lock); 1046 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1047 mutex_unlock(&rtc->ops_lock); 1048 1049 trace_rtc_read_offset(*offset, ret); 1050 return ret; 1051 } 1052 1053 /** 1054 * rtc_set_offset - Adjusts the duration of the average second 1055 * @rtc: rtc device to be used 1056 * @offset: the offset in parts per billion 1057 * 1058 * Some rtc's allow an adjustment to the average duration of a second 1059 * to compensate for differences in the actual clock rate due to temperature, 1060 * the crystal, capacitor, etc. 1061 * 1062 * The adjustment applied is as follows: 1063 * t = t0 * (1 + offset * 1e-9) 1064 * where t0 is the measured length of 1 RTC second with offset = 0 1065 * 1066 * Kernel interface to adjust an rtc clock offset. 1067 * Return 0 on success, or a negative number on error. 1068 * If the rtc offset is not setable (or not implemented), return -EINVAL 1069 */ 1070 int rtc_set_offset(struct rtc_device *rtc, long offset) 1071 { 1072 int ret; 1073 1074 if (!rtc->ops) 1075 return -ENODEV; 1076 1077 if (!rtc->ops->set_offset) 1078 return -EINVAL; 1079 1080 mutex_lock(&rtc->ops_lock); 1081 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1082 mutex_unlock(&rtc->ops_lock); 1083 1084 trace_rtc_set_offset(offset, ret); 1085 return ret; 1086 } 1087