1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, interface functions 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * based on arch/arm/common/rtctime.c 9 */ 10 11 #include <linux/rtc.h> 12 #include <linux/sched.h> 13 #include <linux/module.h> 14 #include <linux/log2.h> 15 #include <linux/workqueue.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/rtc.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 time64_t secs; 26 27 if (!rtc->offset_secs) 28 return; 29 30 secs = rtc_tm_to_time64(tm); 31 32 /* 33 * Since the reading time values from RTC device are always in the RTC 34 * original valid range, but we need to skip the overlapped region 35 * between expanded range and original range, which is no need to add 36 * the offset. 37 */ 38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 39 (rtc->start_secs < rtc->range_min && 40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 41 return; 42 43 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 44 } 45 46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 time64_t secs; 49 50 if (!rtc->offset_secs) 51 return; 52 53 secs = rtc_tm_to_time64(tm); 54 55 /* 56 * If the setting time values are in the valid range of RTC hardware 57 * device, then no need to subtract the offset when setting time to RTC 58 * device. Otherwise we need to subtract the offset to make the time 59 * values are valid for RTC hardware device. 60 */ 61 if (secs >= rtc->range_min && secs <= rtc->range_max) 62 return; 63 64 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 65 } 66 67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 68 { 69 if (rtc->range_min != rtc->range_max) { 70 time64_t time = rtc_tm_to_time64(tm); 71 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 72 rtc->range_min; 73 timeu64_t range_max = rtc->set_start_time ? 74 (rtc->start_secs + rtc->range_max - rtc->range_min) : 75 rtc->range_max; 76 77 if (time < range_min || time > range_max) 78 return -ERANGE; 79 } 80 81 return 0; 82 } 83 84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 85 { 86 int err; 87 88 if (!rtc->ops) { 89 err = -ENODEV; 90 } else if (!rtc->ops->read_time) { 91 err = -EINVAL; 92 } else { 93 memset(tm, 0, sizeof(struct rtc_time)); 94 err = rtc->ops->read_time(rtc->dev.parent, tm); 95 if (err < 0) { 96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 97 err); 98 return err; 99 } 100 101 rtc_add_offset(rtc, tm); 102 103 err = rtc_valid_tm(tm); 104 if (err < 0) 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 106 } 107 return err; 108 } 109 110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 111 { 112 int err; 113 114 err = mutex_lock_interruptible(&rtc->ops_lock); 115 if (err) 116 return err; 117 118 err = __rtc_read_time(rtc, tm); 119 mutex_unlock(&rtc->ops_lock); 120 121 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 122 return err; 123 } 124 EXPORT_SYMBOL_GPL(rtc_read_time); 125 126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 127 { 128 int err, uie; 129 130 err = rtc_valid_tm(tm); 131 if (err != 0) 132 return err; 133 134 err = rtc_valid_range(rtc, tm); 135 if (err) 136 return err; 137 138 rtc_subtract_offset(rtc, tm); 139 140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; 142 #else 143 uie = rtc->uie_rtctimer.enabled; 144 #endif 145 if (uie) { 146 err = rtc_update_irq_enable(rtc, 0); 147 if (err) 148 return err; 149 } 150 151 err = mutex_lock_interruptible(&rtc->ops_lock); 152 if (err) 153 return err; 154 155 if (!rtc->ops) 156 err = -ENODEV; 157 else if (rtc->ops->set_time) 158 err = rtc->ops->set_time(rtc->dev.parent, tm); 159 else 160 err = -EINVAL; 161 162 pm_stay_awake(rtc->dev.parent); 163 mutex_unlock(&rtc->ops_lock); 164 /* A timer might have just expired */ 165 schedule_work(&rtc->irqwork); 166 167 if (uie) { 168 err = rtc_update_irq_enable(rtc, 1); 169 if (err) 170 return err; 171 } 172 173 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 174 return err; 175 } 176 EXPORT_SYMBOL_GPL(rtc_set_time); 177 178 static int rtc_read_alarm_internal(struct rtc_device *rtc, 179 struct rtc_wkalrm *alarm) 180 { 181 int err; 182 183 err = mutex_lock_interruptible(&rtc->ops_lock); 184 if (err) 185 return err; 186 187 if (!rtc->ops) { 188 err = -ENODEV; 189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { 190 err = -EINVAL; 191 } else { 192 alarm->enabled = 0; 193 alarm->pending = 0; 194 alarm->time.tm_sec = -1; 195 alarm->time.tm_min = -1; 196 alarm->time.tm_hour = -1; 197 alarm->time.tm_mday = -1; 198 alarm->time.tm_mon = -1; 199 alarm->time.tm_year = -1; 200 alarm->time.tm_wday = -1; 201 alarm->time.tm_yday = -1; 202 alarm->time.tm_isdst = -1; 203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 204 } 205 206 mutex_unlock(&rtc->ops_lock); 207 208 trace_rtc_read_alarm(err?0:rtc_tm_to_time64(&alarm->time), err); 209 return err; 210 } 211 212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 213 { 214 int err; 215 struct rtc_time before, now; 216 int first_time = 1; 217 time64_t t_now, t_alm; 218 enum { none, day, month, year } missing = none; 219 unsigned int days; 220 221 /* The lower level RTC driver may return -1 in some fields, 222 * creating invalid alarm->time values, for reasons like: 223 * 224 * - The hardware may not be capable of filling them in; 225 * many alarms match only on time-of-day fields, not 226 * day/month/year calendar data. 227 * 228 * - Some hardware uses illegal values as "wildcard" match 229 * values, which non-Linux firmware (like a BIOS) may try 230 * to set up as e.g. "alarm 15 minutes after each hour". 231 * Linux uses only oneshot alarms. 232 * 233 * When we see that here, we deal with it by using values from 234 * a current RTC timestamp for any missing (-1) values. The 235 * RTC driver prevents "periodic alarm" modes. 236 * 237 * But this can be racey, because some fields of the RTC timestamp 238 * may have wrapped in the interval since we read the RTC alarm, 239 * which would lead to us inserting inconsistent values in place 240 * of the -1 fields. 241 * 242 * Reading the alarm and timestamp in the reverse sequence 243 * would have the same race condition, and not solve the issue. 244 * 245 * So, we must first read the RTC timestamp, 246 * then read the RTC alarm value, 247 * and then read a second RTC timestamp. 248 * 249 * If any fields of the second timestamp have changed 250 * when compared with the first timestamp, then we know 251 * our timestamp may be inconsistent with that used by 252 * the low-level rtc_read_alarm_internal() function. 253 * 254 * So, when the two timestamps disagree, we just loop and do 255 * the process again to get a fully consistent set of values. 256 * 257 * This could all instead be done in the lower level driver, 258 * but since more than one lower level RTC implementation needs it, 259 * then it's probably best to do it here instead of there.. 260 */ 261 262 /* Get the "before" timestamp */ 263 err = rtc_read_time(rtc, &before); 264 if (err < 0) 265 return err; 266 do { 267 if (!first_time) 268 memcpy(&before, &now, sizeof(struct rtc_time)); 269 first_time = 0; 270 271 /* get the RTC alarm values, which may be incomplete */ 272 err = rtc_read_alarm_internal(rtc, alarm); 273 if (err) 274 return err; 275 276 /* full-function RTCs won't have such missing fields */ 277 err = rtc_valid_tm(&alarm->time); 278 if (!err) 279 goto done; 280 281 /* get the "after" timestamp, to detect wrapped fields */ 282 err = rtc_read_time(rtc, &now); 283 if (err < 0) 284 return err; 285 286 /* note that tm_sec is a "don't care" value here: */ 287 } while (before.tm_min != now.tm_min || 288 before.tm_hour != now.tm_hour || 289 before.tm_mon != now.tm_mon || 290 before.tm_year != now.tm_year); 291 292 /* Fill in the missing alarm fields using the timestamp; we 293 * know there's at least one since alarm->time is invalid. 294 */ 295 if (alarm->time.tm_sec == -1) 296 alarm->time.tm_sec = now.tm_sec; 297 if (alarm->time.tm_min == -1) 298 alarm->time.tm_min = now.tm_min; 299 if (alarm->time.tm_hour == -1) 300 alarm->time.tm_hour = now.tm_hour; 301 302 /* For simplicity, only support date rollover for now */ 303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 304 alarm->time.tm_mday = now.tm_mday; 305 missing = day; 306 } 307 if ((unsigned int)alarm->time.tm_mon >= 12) { 308 alarm->time.tm_mon = now.tm_mon; 309 if (missing == none) 310 missing = month; 311 } 312 if (alarm->time.tm_year == -1) { 313 alarm->time.tm_year = now.tm_year; 314 if (missing == none) 315 missing = year; 316 } 317 318 /* Can't proceed if alarm is still invalid after replacing 319 * missing fields. 320 */ 321 err = rtc_valid_tm(&alarm->time); 322 if (err) 323 goto done; 324 325 /* with luck, no rollover is needed */ 326 t_now = rtc_tm_to_time64(&now); 327 t_alm = rtc_tm_to_time64(&alarm->time); 328 if (t_now < t_alm) 329 goto done; 330 331 switch (missing) { 332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 333 * that will trigger at 5am will do so at 5am Tuesday, which 334 * could also be in the next month or year. This is a common 335 * case, especially for PCs. 336 */ 337 case day: 338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 339 t_alm += 24 * 60 * 60; 340 rtc_time64_to_tm(t_alm, &alarm->time); 341 break; 342 343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 344 * be next month. An alarm matching on the 30th, 29th, or 28th 345 * may end up in the month after that! Many newer PCs support 346 * this type of alarm. 347 */ 348 case month: 349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 350 do { 351 if (alarm->time.tm_mon < 11) { 352 alarm->time.tm_mon++; 353 } else { 354 alarm->time.tm_mon = 0; 355 alarm->time.tm_year++; 356 } 357 days = rtc_month_days(alarm->time.tm_mon, 358 alarm->time.tm_year); 359 } while (days < alarm->time.tm_mday); 360 break; 361 362 /* Year rollover ... easy except for leap years! */ 363 case year: 364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 365 do { 366 alarm->time.tm_year++; 367 } while (!is_leap_year(alarm->time.tm_year + 1900) && 368 rtc_valid_tm(&alarm->time) != 0); 369 break; 370 371 default: 372 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 373 } 374 375 err = rtc_valid_tm(&alarm->time); 376 377 done: 378 if (err && alarm->enabled) 379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", 380 &alarm->time); 381 else 382 rtc_add_offset(rtc, &alarm->time); 383 384 return err; 385 } 386 387 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 388 { 389 int err; 390 391 err = mutex_lock_interruptible(&rtc->ops_lock); 392 if (err) 393 return err; 394 if (!rtc->ops) { 395 err = -ENODEV; 396 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) { 397 err = -EINVAL; 398 } else { 399 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 400 alarm->enabled = rtc->aie_timer.enabled; 401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 402 } 403 mutex_unlock(&rtc->ops_lock); 404 405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 406 return err; 407 } 408 EXPORT_SYMBOL_GPL(rtc_read_alarm); 409 410 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 411 { 412 struct rtc_time tm; 413 time64_t now, scheduled; 414 int err; 415 416 err = rtc_valid_tm(&alarm->time); 417 if (err) 418 return err; 419 420 scheduled = rtc_tm_to_time64(&alarm->time); 421 422 /* Make sure we're not setting alarms in the past */ 423 err = __rtc_read_time(rtc, &tm); 424 if (err) 425 return err; 426 now = rtc_tm_to_time64(&tm); 427 428 if (scheduled <= now) 429 return -ETIME; 430 /* 431 * XXX - We just checked to make sure the alarm time is not 432 * in the past, but there is still a race window where if 433 * the is alarm set for the next second and the second ticks 434 * over right here, before we set the alarm. 435 */ 436 437 rtc_subtract_offset(rtc, &alarm->time); 438 439 if (!rtc->ops) 440 err = -ENODEV; 441 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 442 err = -EINVAL; 443 else 444 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 445 446 /* 447 * Check for potential race described above. If the waiting for next 448 * second, and the second just ticked since the check above, either 449 * 450 * 1) It ticked after the alarm was set, and an alarm irq should be 451 * generated. 452 * 453 * 2) It ticked before the alarm was set, and alarm irq most likely will 454 * not be generated. 455 * 456 * While we cannot easily check for which of these two scenarios we 457 * are in, we can return -ETIME to signal that the timer has already 458 * expired, which is true in both cases. 459 */ 460 if ((scheduled - now) <= 1) { 461 err = __rtc_read_time(rtc, &tm); 462 if (err) 463 return err; 464 now = rtc_tm_to_time64(&tm); 465 if (scheduled <= now) 466 return -ETIME; 467 } 468 469 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 470 return err; 471 } 472 473 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 474 { 475 ktime_t alarm_time; 476 int err; 477 478 if (!rtc->ops) 479 return -ENODEV; 480 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 481 return -EINVAL; 482 483 err = rtc_valid_tm(&alarm->time); 484 if (err != 0) 485 return err; 486 487 err = rtc_valid_range(rtc, &alarm->time); 488 if (err) 489 return err; 490 491 err = mutex_lock_interruptible(&rtc->ops_lock); 492 if (err) 493 return err; 494 if (rtc->aie_timer.enabled) 495 rtc_timer_remove(rtc, &rtc->aie_timer); 496 497 alarm_time = rtc_tm_to_ktime(alarm->time); 498 /* 499 * Round down so we never miss a deadline, checking for past deadline is 500 * done in __rtc_set_alarm 501 */ 502 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features)) 503 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC); 504 505 rtc->aie_timer.node.expires = alarm_time; 506 rtc->aie_timer.period = 0; 507 if (alarm->enabled) 508 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 509 510 mutex_unlock(&rtc->ops_lock); 511 512 return err; 513 } 514 EXPORT_SYMBOL_GPL(rtc_set_alarm); 515 516 /* Called once per device from rtc_device_register */ 517 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 518 { 519 int err; 520 struct rtc_time now; 521 522 err = rtc_valid_tm(&alarm->time); 523 if (err != 0) 524 return err; 525 526 err = rtc_read_time(rtc, &now); 527 if (err) 528 return err; 529 530 err = mutex_lock_interruptible(&rtc->ops_lock); 531 if (err) 532 return err; 533 534 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 535 rtc->aie_timer.period = 0; 536 537 /* Alarm has to be enabled & in the future for us to enqueue it */ 538 if (alarm->enabled && (rtc_tm_to_ktime(now) < 539 rtc->aie_timer.node.expires)) { 540 rtc->aie_timer.enabled = 1; 541 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 542 trace_rtc_timer_enqueue(&rtc->aie_timer); 543 } 544 mutex_unlock(&rtc->ops_lock); 545 return err; 546 } 547 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 548 549 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 550 { 551 int err; 552 553 err = mutex_lock_interruptible(&rtc->ops_lock); 554 if (err) 555 return err; 556 557 if (rtc->aie_timer.enabled != enabled) { 558 if (enabled) 559 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 560 else 561 rtc_timer_remove(rtc, &rtc->aie_timer); 562 } 563 564 if (err) 565 /* nothing */; 566 else if (!rtc->ops) 567 err = -ENODEV; 568 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 569 err = -EINVAL; 570 else 571 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 572 573 mutex_unlock(&rtc->ops_lock); 574 575 trace_rtc_alarm_irq_enable(enabled, err); 576 return err; 577 } 578 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 579 580 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 581 { 582 int err; 583 584 err = mutex_lock_interruptible(&rtc->ops_lock); 585 if (err) 586 return err; 587 588 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 589 if (enabled == 0 && rtc->uie_irq_active) { 590 mutex_unlock(&rtc->ops_lock); 591 return rtc_dev_update_irq_enable_emul(rtc, 0); 592 } 593 #endif 594 /* make sure we're changing state */ 595 if (rtc->uie_rtctimer.enabled == enabled) 596 goto out; 597 598 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) || 599 !test_bit(RTC_FEATURE_ALARM, rtc->features)) { 600 mutex_unlock(&rtc->ops_lock); 601 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 602 return rtc_dev_update_irq_enable_emul(rtc, enabled); 603 #else 604 return -EINVAL; 605 #endif 606 } 607 608 if (enabled) { 609 struct rtc_time tm; 610 ktime_t now, onesec; 611 612 err = __rtc_read_time(rtc, &tm); 613 if (err) 614 goto out; 615 onesec = ktime_set(1, 0); 616 now = rtc_tm_to_ktime(tm); 617 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 618 rtc->uie_rtctimer.period = ktime_set(1, 0); 619 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 620 if (!err && rtc->ops && rtc->ops->alarm_irq_enable) 621 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, 1); 622 if (err) 623 goto out; 624 } else { 625 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 626 } 627 628 out: 629 mutex_unlock(&rtc->ops_lock); 630 631 return err; 632 } 633 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 634 635 /** 636 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 637 * @rtc: pointer to the rtc device 638 * @num: number of occurence of the event 639 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF 640 * 641 * This function is called when an AIE, UIE or PIE mode interrupt 642 * has occurred (or been emulated). 643 * 644 */ 645 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 646 { 647 unsigned long flags; 648 649 /* mark one irq of the appropriate mode */ 650 spin_lock_irqsave(&rtc->irq_lock, flags); 651 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); 652 spin_unlock_irqrestore(&rtc->irq_lock, flags); 653 654 wake_up_interruptible(&rtc->irq_queue); 655 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 656 } 657 658 /** 659 * rtc_aie_update_irq - AIE mode rtctimer hook 660 * @rtc: pointer to the rtc_device 661 * 662 * This functions is called when the aie_timer expires. 663 */ 664 void rtc_aie_update_irq(struct rtc_device *rtc) 665 { 666 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 667 } 668 669 /** 670 * rtc_uie_update_irq - UIE mode rtctimer hook 671 * @rtc: pointer to the rtc_device 672 * 673 * This functions is called when the uie_timer expires. 674 */ 675 void rtc_uie_update_irq(struct rtc_device *rtc) 676 { 677 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 678 } 679 680 /** 681 * rtc_pie_update_irq - PIE mode hrtimer hook 682 * @timer: pointer to the pie mode hrtimer 683 * 684 * This function is used to emulate PIE mode interrupts 685 * using an hrtimer. This function is called when the periodic 686 * hrtimer expires. 687 */ 688 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 689 { 690 struct rtc_device *rtc; 691 ktime_t period; 692 u64 count; 693 694 rtc = container_of(timer, struct rtc_device, pie_timer); 695 696 period = NSEC_PER_SEC / rtc->irq_freq; 697 count = hrtimer_forward_now(timer, period); 698 699 rtc_handle_legacy_irq(rtc, count, RTC_PF); 700 701 return HRTIMER_RESTART; 702 } 703 704 /** 705 * rtc_update_irq - Triggered when a RTC interrupt occurs. 706 * @rtc: the rtc device 707 * @num: how many irqs are being reported (usually one) 708 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 709 * Context: any 710 */ 711 void rtc_update_irq(struct rtc_device *rtc, 712 unsigned long num, unsigned long events) 713 { 714 if (IS_ERR_OR_NULL(rtc)) 715 return; 716 717 pm_stay_awake(rtc->dev.parent); 718 schedule_work(&rtc->irqwork); 719 } 720 EXPORT_SYMBOL_GPL(rtc_update_irq); 721 722 struct rtc_device *rtc_class_open(const char *name) 723 { 724 struct device *dev; 725 struct rtc_device *rtc = NULL; 726 727 dev = class_find_device_by_name(&rtc_class, name); 728 if (dev) 729 rtc = to_rtc_device(dev); 730 731 if (rtc) { 732 if (!try_module_get(rtc->owner)) { 733 put_device(dev); 734 rtc = NULL; 735 } 736 } 737 738 return rtc; 739 } 740 EXPORT_SYMBOL_GPL(rtc_class_open); 741 742 void rtc_class_close(struct rtc_device *rtc) 743 { 744 module_put(rtc->owner); 745 put_device(&rtc->dev); 746 } 747 EXPORT_SYMBOL_GPL(rtc_class_close); 748 749 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 750 { 751 /* 752 * We always cancel the timer here first, because otherwise 753 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 754 * when we manage to start the timer before the callback 755 * returns HRTIMER_RESTART. 756 * 757 * We cannot use hrtimer_cancel() here as a running callback 758 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 759 * would spin forever. 760 */ 761 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 762 return -1; 763 764 if (enabled) { 765 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 766 767 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 768 } 769 return 0; 770 } 771 772 /** 773 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 774 * @rtc: the rtc device 775 * @enabled: true to enable periodic IRQs 776 * Context: any 777 * 778 * Note that rtc_irq_set_freq() should previously have been used to 779 * specify the desired frequency of periodic IRQ. 780 */ 781 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 782 { 783 int err = 0; 784 785 while (rtc_update_hrtimer(rtc, enabled) < 0) 786 cpu_relax(); 787 788 rtc->pie_enabled = enabled; 789 790 trace_rtc_irq_set_state(enabled, err); 791 return err; 792 } 793 794 /** 795 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 796 * @rtc: the rtc device 797 * @freq: positive frequency 798 * Context: any 799 * 800 * Note that rtc_irq_set_state() is used to enable or disable the 801 * periodic IRQs. 802 */ 803 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 804 { 805 int err = 0; 806 807 if (freq <= 0 || freq > RTC_MAX_FREQ) 808 return -EINVAL; 809 810 rtc->irq_freq = freq; 811 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 812 cpu_relax(); 813 814 trace_rtc_irq_set_freq(freq, err); 815 return err; 816 } 817 818 /** 819 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 820 * @rtc: rtc device 821 * @timer: timer being added. 822 * 823 * Enqueues a timer onto the rtc devices timerqueue and sets 824 * the next alarm event appropriately. 825 * 826 * Sets the enabled bit on the added timer. 827 * 828 * Must hold ops_lock for proper serialization of timerqueue 829 */ 830 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 831 { 832 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 833 struct rtc_time tm; 834 ktime_t now; 835 int err; 836 837 err = __rtc_read_time(rtc, &tm); 838 if (err) 839 return err; 840 841 timer->enabled = 1; 842 now = rtc_tm_to_ktime(tm); 843 844 /* Skip over expired timers */ 845 while (next) { 846 if (next->expires >= now) 847 break; 848 next = timerqueue_iterate_next(next); 849 } 850 851 timerqueue_add(&rtc->timerqueue, &timer->node); 852 trace_rtc_timer_enqueue(timer); 853 if (!next || ktime_before(timer->node.expires, next->expires)) { 854 struct rtc_wkalrm alarm; 855 856 alarm.time = rtc_ktime_to_tm(timer->node.expires); 857 alarm.enabled = 1; 858 err = __rtc_set_alarm(rtc, &alarm); 859 if (err == -ETIME) { 860 pm_stay_awake(rtc->dev.parent); 861 schedule_work(&rtc->irqwork); 862 } else if (err) { 863 timerqueue_del(&rtc->timerqueue, &timer->node); 864 trace_rtc_timer_dequeue(timer); 865 timer->enabled = 0; 866 return err; 867 } 868 } 869 return 0; 870 } 871 872 static void rtc_alarm_disable(struct rtc_device *rtc) 873 { 874 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 875 return; 876 877 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 878 trace_rtc_alarm_irq_enable(0, 0); 879 } 880 881 /** 882 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 883 * @rtc: rtc device 884 * @timer: timer being removed. 885 * 886 * Removes a timer onto the rtc devices timerqueue and sets 887 * the next alarm event appropriately. 888 * 889 * Clears the enabled bit on the removed timer. 890 * 891 * Must hold ops_lock for proper serialization of timerqueue 892 */ 893 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 894 { 895 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 896 897 timerqueue_del(&rtc->timerqueue, &timer->node); 898 trace_rtc_timer_dequeue(timer); 899 timer->enabled = 0; 900 if (next == &timer->node) { 901 struct rtc_wkalrm alarm; 902 int err; 903 904 next = timerqueue_getnext(&rtc->timerqueue); 905 if (!next) { 906 rtc_alarm_disable(rtc); 907 return; 908 } 909 alarm.time = rtc_ktime_to_tm(next->expires); 910 alarm.enabled = 1; 911 err = __rtc_set_alarm(rtc, &alarm); 912 if (err == -ETIME) { 913 pm_stay_awake(rtc->dev.parent); 914 schedule_work(&rtc->irqwork); 915 } 916 } 917 } 918 919 /** 920 * rtc_timer_do_work - Expires rtc timers 921 * @work: work item 922 * 923 * Expires rtc timers. Reprograms next alarm event if needed. 924 * Called via worktask. 925 * 926 * Serializes access to timerqueue via ops_lock mutex 927 */ 928 void rtc_timer_do_work(struct work_struct *work) 929 { 930 struct rtc_timer *timer; 931 struct timerqueue_node *next; 932 ktime_t now; 933 struct rtc_time tm; 934 int err; 935 936 struct rtc_device *rtc = 937 container_of(work, struct rtc_device, irqwork); 938 939 mutex_lock(&rtc->ops_lock); 940 again: 941 err = __rtc_read_time(rtc, &tm); 942 if (err) { 943 mutex_unlock(&rtc->ops_lock); 944 return; 945 } 946 now = rtc_tm_to_ktime(tm); 947 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 948 if (next->expires > now) 949 break; 950 951 /* expire timer */ 952 timer = container_of(next, struct rtc_timer, node); 953 timerqueue_del(&rtc->timerqueue, &timer->node); 954 trace_rtc_timer_dequeue(timer); 955 timer->enabled = 0; 956 if (timer->func) 957 timer->func(timer->rtc); 958 959 trace_rtc_timer_fired(timer); 960 /* Re-add/fwd periodic timers */ 961 if (ktime_to_ns(timer->period)) { 962 timer->node.expires = ktime_add(timer->node.expires, 963 timer->period); 964 timer->enabled = 1; 965 timerqueue_add(&rtc->timerqueue, &timer->node); 966 trace_rtc_timer_enqueue(timer); 967 } 968 } 969 970 /* Set next alarm */ 971 if (next) { 972 struct rtc_wkalrm alarm; 973 int err; 974 int retry = 3; 975 976 alarm.time = rtc_ktime_to_tm(next->expires); 977 alarm.enabled = 1; 978 reprogram: 979 err = __rtc_set_alarm(rtc, &alarm); 980 if (err == -ETIME) { 981 goto again; 982 } else if (err) { 983 if (retry-- > 0) 984 goto reprogram; 985 986 timer = container_of(next, struct rtc_timer, node); 987 timerqueue_del(&rtc->timerqueue, &timer->node); 988 trace_rtc_timer_dequeue(timer); 989 timer->enabled = 0; 990 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 991 goto again; 992 } 993 } else { 994 rtc_alarm_disable(rtc); 995 } 996 997 pm_relax(rtc->dev.parent); 998 mutex_unlock(&rtc->ops_lock); 999 } 1000 1001 /* rtc_timer_init - Initializes an rtc_timer 1002 * @timer: timer to be intiialized 1003 * @f: function pointer to be called when timer fires 1004 * @rtc: pointer to the rtc_device 1005 * 1006 * Kernel interface to initializing an rtc_timer. 1007 */ 1008 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), 1009 struct rtc_device *rtc) 1010 { 1011 timerqueue_init(&timer->node); 1012 timer->enabled = 0; 1013 timer->func = f; 1014 timer->rtc = rtc; 1015 } 1016 1017 /* rtc_timer_start - Sets an rtc_timer to fire in the future 1018 * @ rtc: rtc device to be used 1019 * @ timer: timer being set 1020 * @ expires: time at which to expire the timer 1021 * @ period: period that the timer will recur 1022 * 1023 * Kernel interface to set an rtc_timer 1024 */ 1025 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 1026 ktime_t expires, ktime_t period) 1027 { 1028 int ret = 0; 1029 1030 mutex_lock(&rtc->ops_lock); 1031 if (timer->enabled) 1032 rtc_timer_remove(rtc, timer); 1033 1034 timer->node.expires = expires; 1035 timer->period = period; 1036 1037 ret = rtc_timer_enqueue(rtc, timer); 1038 1039 mutex_unlock(&rtc->ops_lock); 1040 return ret; 1041 } 1042 1043 /* rtc_timer_cancel - Stops an rtc_timer 1044 * @ rtc: rtc device to be used 1045 * @ timer: timer being set 1046 * 1047 * Kernel interface to cancel an rtc_timer 1048 */ 1049 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1050 { 1051 mutex_lock(&rtc->ops_lock); 1052 if (timer->enabled) 1053 rtc_timer_remove(rtc, timer); 1054 mutex_unlock(&rtc->ops_lock); 1055 } 1056 1057 /** 1058 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1059 * @rtc: rtc device to be used 1060 * @offset: the offset in parts per billion 1061 * 1062 * see below for details. 1063 * 1064 * Kernel interface to read rtc clock offset 1065 * Returns 0 on success, or a negative number on error. 1066 * If read_offset() is not implemented for the rtc, return -EINVAL 1067 */ 1068 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1069 { 1070 int ret; 1071 1072 if (!rtc->ops) 1073 return -ENODEV; 1074 1075 if (!rtc->ops->read_offset) 1076 return -EINVAL; 1077 1078 mutex_lock(&rtc->ops_lock); 1079 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1080 mutex_unlock(&rtc->ops_lock); 1081 1082 trace_rtc_read_offset(*offset, ret); 1083 return ret; 1084 } 1085 1086 /** 1087 * rtc_set_offset - Adjusts the duration of the average second 1088 * @rtc: rtc device to be used 1089 * @offset: the offset in parts per billion 1090 * 1091 * Some rtc's allow an adjustment to the average duration of a second 1092 * to compensate for differences in the actual clock rate due to temperature, 1093 * the crystal, capacitor, etc. 1094 * 1095 * The adjustment applied is as follows: 1096 * t = t0 * (1 + offset * 1e-9) 1097 * where t0 is the measured length of 1 RTC second with offset = 0 1098 * 1099 * Kernel interface to adjust an rtc clock offset. 1100 * Return 0 on success, or a negative number on error. 1101 * If the rtc offset is not setable (or not implemented), return -EINVAL 1102 */ 1103 int rtc_set_offset(struct rtc_device *rtc, long offset) 1104 { 1105 int ret; 1106 1107 if (!rtc->ops) 1108 return -ENODEV; 1109 1110 if (!rtc->ops->set_offset) 1111 return -EINVAL; 1112 1113 mutex_lock(&rtc->ops_lock); 1114 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1115 mutex_unlock(&rtc->ops_lock); 1116 1117 trace_rtc_set_offset(offset, ret); 1118 return ret; 1119 } 1120